R i 4 8 Bl O PSEfig v
WATIATE (HTEHD)

PSE analysis of crossflow disturbances
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Abstract

We have developed a system for prediction of boundary-layer transition. The system consists of a Navier-

Stokes code and two codes based on linear parabolized stability equations. The location of the onset of

transition is estimated on the basis of the NV factor. The system is applied to swept-cylinder boundary layers

with stationary crossflow disturbances. The wavelength of the disturbance whose N-factor curve first reaches

6 agrees approximately with the wavelength observed in the experiment.
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1. Introduction
CFD has
aerodynamic design. However, it is still difficult to

been playing an important role in
precisely estimate friction drag from numerical solutions
that a Reynolds-averaged Navier-Stokes code yields. It is
because of the accuracy of a turbulence model used and
the neglect of laminar-turbulent transition. If it is
possible to locate the onset of transition, more accurate
friction drag will be obtained by using a turbulence
model downstream of the location. A numerical tool
coupling with CFD to locate the onset of transition is
desirable.

We have developed a system for prediction of
boundary-layer transition.! The system consists of a
Navier-Stokes code’ and two codes based on linear
parabolized stability equations (PSE). The location of the
onset of transition is estimated on the basis of the N
factor. All the equations are formulated in generalized
curvilinear coordinates, and all the codes use the same
computational grid. Moreover, the PSE are free from the
parallel-flow approximation.

Creel, Beckwith, and Chen® conducted transition
experiments on a swept cylinder at Mach 3.5. In the
experiments, stationary crossflow disturbances were
observed with oil flow at two Reynolds numbers. The
purpose of this paper is to validate the prediction system

by capturing the crossflow disturbances.

2. System for prediction of boundary-layer
transition

A compressible flow around a body is computed by
the Navier-Stokes code, and then a boundary-layer flow
is extracted from the converged flow for linear stability
analysis. One of the stability analysis codes searches for
an initial disturbance, and another conducts space
marching of the disturbance. The spatial growth rates of
the disturbance are integrated to obtain the N factor. The
location of the onset of transition is estimated on the
basis of the N factor.
2.1 Navier-Stokes simulation

A computational grid is generated by Takanashi’s
method,* and then a compressible flow around a body is
computed by the Navier-Stokes code. Let & 1, {, and 7
be the surface coordinate in the normal-chord direction,
the coordinate normal to the surface, the coordinate in
the spanwise direction, and time, Q the vector of
dependent variables, E s F , and G the inviscid-flux
vectors, 1?7v the viscous-flux vector, and Re the Reynolds
number. The thin-layer Navier-Stokes equations that are
the governing equations for the Navier-Stokes code can

be written as

30 oE oF oG 1 OF,
—t—t—t— = , (2.1)
ot 95 dn 9f Re dn

which are numerically solved with a finite-volume

method. The inviscid-flux vectors of third-order accuracy
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in space are computed by the Chakravarthy-Osher TVD

scheme,” and the viscous-flux vector of second-order
accuracy in space by Gauss’ theorem. The diagonalized
ADI scheme by Pulliam and Chaussee® is used for time
integration. A boundary-layer flow is extracted from the
converged flow for linear stability analysis.
2.2 Linear stability analysis
An instantaneous flow may be represented as the sum
of a mean flow denoted by ~ and a disturbance denoted
by ~
U=U+U, VEVHY, W=w+w,
- - - (2.2)
p=p+p, T=T+T,
where u, v, and w are the velocity components in
and T the

The disturbance in a boundary

Cartesian coordinates, p the density,

temperature. layer

nonparallel to the £ direction may be written as
- ~ I R
dénrinﬂ=d§JﬂewL{Lt%é%%+ﬁé—wr}l
0

(2.3)
defined by

(12, v, D, T, vT/)l, g the corresponding shape function

where ¢ is the disturbance = vector
written as (ﬁ, v, P, T, v?/)r, and &, the location of the
onset of instability. Here, spatial stability is dealt with.
The real wavenumber 8 and the real frequency @ are
known, while the complex wavenumber ¢ is sought.
Substituting equations (2.2) and (2.3) into equation
(2.1), subtracting the mean-flow terms, and eliminating
the terms including the product of the shape functions
yield linear PSE
- - g~
D§+A%+B%=V-a—g,
o dn oy

where D, A, B, and V are 5x5 matrices. The boundary

(2.4)

conditions for equation (2.4) are
u=v=w=T=0
J, 1;, W s /;, T—0 in the freestream (1 — o) .

on the surface (n=0),

In equation (2.4), dq/d& is approximated with a first-
order backward difference, and 94 /9n and 9°G/dn’
with a second-order central difference. An extension of
Malik’s global method’ to spatial stability searches for
an initial disturbance, and then a PSE code based on the
Bertolotti-Herbert method® conducts space marching of
the disturbance.
The N factor is defined by

N=-| of¢)d,
o
where the subscript i denotes an imaginary part. In case
of crossflow instability, the N factor for the onset of
‘transition is assumed to be around 6.°

3. Results

Creel, Beckwith, and Chen® conducted transition
experiments on a cylinder of sweep angle of 60° in
NASA Langley’s Mach 3.5 pilot
stationary

nozzle. In the
experiments, crossflow disturbances of
wavelength of 0.04 inch at 6 = 90° were observed with
oil flow at two Reynolds numbers. 6 is the angular
The Reynolds
numbers based on the freestream and the cylinder
diameter D of 1 inch were 0.46 x10° and 0.92 x10°.

As shown in figure 1, we simplify the flow by assuming

distance from the attachment line.

the swept cylinder to be infinite in the spanwise direction.
The subscript oo denotes the freestream conditions. The
flow at each Reynolds number is computed by the
Navier-Stokes code, and then PSE analyses of stationary
crossflow disturbances are conducted with their spanwise
wavenumbers varied.
3.1 Crossflow disturbances

The wavenumbers are defined by

2T . 2 .
ar = * ACS ’ ﬂ = * Ag 4
/’Lé l(

where the subscript r denotes a real part, ),2 and Aéj* are

respectively the dimensional wavelength and grid
spacing in the & direction, and ):; and Al in the ¢
direction. Both A& and A{’ on the cylinder surface are

constant and equal to 0.0105 inch. Because we consider
stationary crossflow disturbances, w is set equal to 0.

PSE analyses are conducted in case of f§=-1.15,
-0.859, -0.687, -0.573, and 0491 at
Re, , = 0.46 x 10°. Figures 2 (a), (b), and (c) show the
curves of ¢, —a,,and the N factor respectively. Here, j
is the index in the & direction, and j =250 and 325
correspond to € = 0° and 90.3° respectively. Each —q;,
curve shows transient around the initial point. It is
because the effect of boundary-layer nonparallelism is
not taken into account in the global method. The N-factor
curve of ff=-0.859 first reaches 6, and the N factor is
6.02 at j=311 (6=734°. In
thermocouples were attached to the inside cylinder

the experiments,
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surface at 6 =0°, 32.1°, 39.8°, and 50.4°. Transition
was not detected at 8 < 50.4°. We obtain the wavelength
of 0.0491 inch at 6 = 90.3° in case of J =-0.859. The
wavelength obtained is almost in agreement with that
observed.

PSE analyses are conducted in case of f=-1.72,
-1.15, -0.859, -0.687, -0.573, -0.491 at
Re_ , =092 x10°. Figures 3 (a), (b), and (c) show the
curves of «, —a,, and the N factor respectively. The
N-factor curve of f =-0.859 first reaches 6, and the N
factor is 6.10 at j =292 (0 =50.6°). In the experiment,
6=0°
spanwise contamination. The wavelength of 0.0489 inch
is obtained at 6 =90.3° in case of f=-0.859 and
agrees approximately with the wavelength observed.

and

however, transition occurred at because of

4. Conclusions

Transition experiments on a swept cylinder were
conducted at Mach 3.5. In the experiments, stationary
crossflow disturbances were observed at two Reynolds
The flow at
computed by the Navier-Stokes code, and then PSE

numbers. each Reynolds number is

analyses of stationary crossflow disturbances are
conducted with their spanwise wavenumbers varied. At
both the Reynolds numbers, the wavelength of the
disturbance whose N-factor curve first reaches 6 is
almost in agreement with the wavelength observed.
However, the relation between the N factor and the

transition-onset location is not investigated, because the

Flow

EETTT>

M_ =35

oo

Re_ , =0.46x10°,092x10°

location was not found in the experiments.
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solution of the

Figure 1: Infinite swept cylinder.
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(c) N factors.
Figure 2: PSE solutions at Re.. , = 0.46x10°

(c) N factors.
Figure 3: PSE solutions at Re.. , = 0.92x10°.
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