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ABSTRACT

The flow around a bluff body is studied computationally at high Reynolds number to understand

the mechanism of drag crisis and the transitional flow phenomena to turbulence.

It is found that simulation based on Cartesian coordinates system can capture the drag crisis. The

present grid system is too coarse to resolve the boundary layer structure. This suggests that even

the drag crisis phenomena are determined mainly by large structure of the flow field.
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1 Introduction

Flow around a bluff body is characterized by a strong
vortex separation. This makes the flow turbulent in
the wake. However, the mechanism of the separation
leading to turbulence is not well understood because
experimentally it is very difficult to see the very short
period of the transition. It is also well known that,
at high Reynolds number, the flow attaches well on the
surface of the body if the surface is smooth. This causes
sometimes unexpectedly low drag. This is called the
drag crisis. In this paper, the flow around a bluff body
is studied computationally at high Reynolds number
to understand the mechanism of drag crisis and the
transitional flow phenomena to turbulence.

Many of the high-Reynolds-number, turbulence sim-
ulations have been based on Reynolds-averaged Navier-
Stokes equations using a turbulence model. Some use
a large-eddy simulation. However, a usual turbulence

model or a large-eddy simulation is not suitable for

high-Reynolds-number-flow computation especially tran-

sitional phenomena. There are some real direct numer-
ical simulation in which most of the small-scale struc-
ture are resolved, but the computations can be done
only at relatively small Reynolds numbers.

In many applications, large structures are most im-
portant and we usually are not interested much about
in small structures. What we want to do is to capture
the large-scale structure using a coarse grid system.

Quite a few simulations (see Kuwahara, 1992), show
that large structures of high-Reynolds-number, turbu-
lent flow can be captured using relatively coarse grid, if
the numerical instability, usually unavoidable for high-

Reynolds-number-flow simulation, is suppressed. Most
successful simulations in these approaches are based
on the third-order upwind formulation (Kawamura and
Kuwahara, 1984; Kuwahara, 1992; Kuwahara, 1999;
Kuwahara and Komurasaki, 2001). An approach simi-
lar in philosophy but different in method is adopted by
Boris et. al. (1992).

In the present paper, we simulated the flow around
a bluff body with smooth surface to capture the drag
crisis and the transition to turbulence, which is very dif-
ficult to compute by Reynolds averaged Navier-Stokes
equations or by large-eddy simulation (Deardorff, 1970).

2 Computational method

The governing equations are the unsteady incom-
pressible Navier-Stokes equations and the equation of
continuity.

Dive =0
88—: + (v - grad)v = —gradp + %Av

These equations are solved by a finite-difference method.
The numerical procedure is based on the projection
method (Chorin, 1968). Then, the pressure field is ob-
tained by solving the Poisson equation.

All the spatial derivative terms are represented by
the central difference approximation except for the con-
vection terms. For the convection terms, the third-
order upwind difference is used. This is the most im-
portant point for high-Reynolds-number computations.

There is another croucial problem in high-order up-

wind schemes. That is, the accuracy decreases when
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the flow direction is not well parallel to one of the co-
ordinate lines. If we use generalized coordinate system,
near the boundary, the flow direction and one of the co-
ordinate lines are almost parallel, and this problem is
not serious. However, in general, flow direction is not
always parallel to a coordinate line and the problem be-
come serious. To overcome this problem we introduced
the multi-directional upwind method. This method is
summarized as follows:

In case of 2-dimensional computation, when structured
grid points are given, the black points in fig.1(a) are
usually used to approximate the derivatives at the cen-
tral point (system A).

If we introduce the other 45 degrees-rotated local
grid points, the white ones in fig.1(b), which can be
used to approximate the derivatives at the central point
(system B).

In order to improve the derivative value at the cen-
tral point, we mix the derivative values calculated from
both systems (A and B) at a proper ratio. We adopt
the ratio A : B = 2/3: 1/3. Using this ratio, for exam-

ple, resulting finite-difference scheme for the Laplacian

coincides with the well-known 9-points formula with '

forth-order accuracy. This method improves the rota-
tional invariance of the coordinate system. Then those
flows where flow direction is not parallel to the grid
direction are better simulated.

In case of 3-dimensional computation, we introduce
three different grid systems. Fach grid system is ob-
tained by rotating ordinary one (system A) around one
axis. For example, one of those systems,
system B (z'-y'-z) is shown in fig.1.

In the same way as 2-dimensional computation, white
circle points are used instead of black ones on the z-y
plane, and ordinary ones in the z direction. Other grid
systems are also introduced similarly. Thus we can ob-
tain three different values at the same point, and they
are averaged, since any physical phenomena, are equiv-
alent in each grid system. The rotational invariance
of the coordinate system can be improved by means of
this procedure.

(a) system A

(c) system B: z'-y'-2

Figure 1 Grid for multi-directional scheme

For all the spatial derivatives, the multi-directional
finite-difference method is used.

For the temporal integration of the Navier-Stokes
equations, the Crank-Nicolson implicit scheme is uti-
lized. This scheme has second-order accuracy in time.
These equations and the Poisson equation are itera-
tively solved at each time step by the successive over

relaxation (SOR) coupled with a multi-grid method.
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3 Computational results

(1) Flow past a circular cylinder
The drag sharply decreases at about Reynolds number 400,000, which is called drag crisis, is well captured even
using this coarse grid. Instantaneous and time-averaged flow patterns clearly show the difference as shown in

Figs.2,3. After drag crisis, flow separation delays and the wake becomes narrower, which makes the drag less.

e = 10°, after drag crisis e = , after drag crisis
b) R 0°, after drag cri b) R 10°, after d isi

Figure 2 Instantaneous flow patterns; Figure 3 Time-averaged flow patterns;
stream lines, pressure contours, grid=129x65. stream lines, pressure contours, grid=129x65.

Results of finer computation at Re = 10° is shown in fig.4.

Figure 4 Instantaneous flow patterns; stream lines, pressure contours and vorticity shading.
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(2) Flow past a sphere

Similar phenomena are observed in 3D computation.
The simulation were carried out using two grid systems:
64 x 32 x 32 and 128 x 64 x 64. Even very coarse grid
as 64 x 32 x 32, can capture the drag crisis. Following
figures show a flow around a sphere. '
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(a) Re = 2 x 10*, before drag crisis
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Figure 5 Computational grid for a flow around a sphere

grid 65 x 33%33

tme:233128 ¢ stew s 1500

(a) Re = 2 x 10*, before drag crisis

orid:8533x33 1 * (488,304) |

(b) Re = 2 x 10°, after drag crisis
Figure 6 Pressure contours and stream lines,

grid = 129 x 65 x 65.

time:233122 | - sten : 1500
(b) Re = 2 x 10°, after drag crisis
Figure 7 Pressure contours and stream lines,

grid = 65 x 33 x 33.
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(3) Flow past an ellipsoid
Similar computation is done for a flow around an ellipsoid at Re=2,000,000, and Re=20,000. Figure 8 shows the

flow patterns. The body shape is visualized by using CAD data directry.
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(b) Re = 2 x 10°, after drag crisis

Figure 8 Vorticity sharding and stream lines
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(4) Flow around a car

As an example of more realistic case, a flow around a car is simulated. Following figures show the flow at

Re=10,000,000.

gnd : 257 x129x97

(1020, 649)

(a) Side view

(b) Rear view

Figure 9 Pressure sharding and stream lines

4 Conclusion

It was found that simulation based on Cartesian co-
ordinates system can capture the drag crisis. The present
grid system is too coarse to resolve the boundary layer
structure. This suggests that even the drag crisis phe-
nomena are determined mainly by large structure of
the flow field.
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