デジタル/アナログ・ハイブリッド風洞の開発状況について

口石茂、渡辺重哉、村上桂一、橋本敦、加藤裕之、 山下達也、保江かな子、今川健太郎、中北和之(JAXA)

Current Status of the Development of JAXA Digital/Analog-Hybrid Wind Tunnel

Shigeru Kuchi-Ishi, Shigeya Watanabe, Keiichi Murakami, Atsushi Hashimoto, Hiroyuki Kato, Tatsuya Yamashita, Kanako Yasue, Kentaro Imagawa, and Kazuyuki Nakakita (JAXA)

概要

宇宙航空研究開発機構(JAXA)では、現状の風洞(実流れを対象とした「アナログ風洞」)に対して CFD (数値シミュレーションという意味での「デジタル風洞」)を強く連携させたコンカレントな EFD/CFD 融合 システムである、「デジタル/アナログ・ハイブリッド風洞」の開発を現在進めている。ハイブリッド風洞 では EFD(風洞)/CFD 両者に固有な弱点・技術課題を相補的に解決するとともに、EFD/CFD 両データを統一 的に生産・管理して対等な比較検証が可能なプラットフォームを整備することにより、EFD/CFD 両者の有用 性を向上させ、航空・宇宙機の設計時間/コスト/リスクの低減、設計データ精度/信頼性の改善を行うこと を目指す。現在の開発ステータスとしては、試行システムを JAXA 2m×2m 遷音速風洞における実風洞試験に 適用して課題・問題点を抽出すると共に、EFD/CFD 両者の融合をより高めた機能の研究開発を進めていると ころである。本稿では、平成 23 年度以降、新たに追加となった機能について概要を紹介すると共に、風試 適用結果(DLR-F6 形状模型 PSP/PIV/模型変形同時計測試験)を示す。

1. システム構成および利用フロー

図1にハイブリッド風洞のシステム構成を示す。 システム本体はハードウェアおよびソフトウェア の集合体であり、遷音速風洞およびJAXAスパコン (JSS)それぞれのネットワークとのインターフェ ースを形成することによって、風試/CFDデータを 一元的に取得・管理することができる。また、シ ステムはインターネットを介して外部に開放され ており、ユーザはJAXA内外の任意の端末からWeb ブラウザを用いてシステムにアクセスすることが 可能である(実際にはセキュリティに鑑みて、ア クセス可能な端末を、IPアドレスを指定すること によって制限している)。 図2にシステムの基本的な利用の流れを示す。ま ず機体設計において風試模型形状が定義されたの ち、デジタル風洞側では試験実施に先立った事前C FD 解析を行う。結果はアナログ風洞側に送られて 試験計画や模型詳細設計、さらに各種補正処理に おける基本データとして使われる。風試中におい ては、計測データを事前CFDデータとリアルタイ ミングで比較することにより、風試データの健全 性評価を可能とする。また、主要な風試データは 随時デジタル風洞側に戻され、最適な乱流モデル の選択や格子の再配置等、風試データを有効に利 用した高精度CFD 解析がなされる。風試全体が終 了した時点では、完全に対等な条件でのEFD/CFD

図1:ハイブリッド風洞システム構成

図 2: ハイブリッド風洞利用フロー

データおよび両者を融合させた最も確からしい空 力特性データ(最尤値)がユーザに提供されると 同時にデータベース(DB)化され、以降の風試や C FD 解析、ついては実機の設計開発に活用される。

2. 機能要素

ハイブリッド風洞では EFD/CFD 融合の観点はも ちろんのこと、従来風試データ処理としてユーザ ニーズが高かったものの、遷音速風洞として標準 サポートされていなかった機能も含め、アプリケ ーションの総合プラットフォームとして多種多様 な機能を実装している。ここでは文献 1)~4)にお いて報告した内容以降に新規開発された機能の概 要について紹介する。

2.1 模型設計支援機能

風試模型の設計製作においては、風洞における 種々の制約(測定部サイズ、測定装置、製作コス ト等)を踏まえた上で決定すべき要素がいくつか 存在する。今回はそれらの中から①模型サイズ、 ②支持装置、③圧力孔配置、それぞれの決定を、 事前 CFD を活用して行う模型設計支援機能を開発 した。

模型サイズ決定支援

模型サイズは製作精度の確保や実機レイノルズ 数との対応に鑑みて、風洞測定部サイズを上回ら ない範囲で極力大きくすることが望ましいが、閉 塞効果や風洞壁干渉がデータに深刻な影響を及ぼ さない範囲に留めておくことが要求される。ハイ ブリッド風洞においては先にシステムに実装され たパネル法壁干渉補正機能を流用し、模型サイズ を変化させてそれぞれのブロッケージ比を自動算 出すると共に、サイズの変化に対する壁干渉量(空 力係数に対する補正量)の変化を計算の上グラフ 化することにより、最適な模型サイズを決定する ための一指針として供している。

支持装置選択支援

模型支持装置(スティング)の存在は、支持干 渉効果として計測データに少なからぬ影響を与え るため、最適な支持形態(後方支持、ブレード支 持等)の選択は風試データを取得する上において 本質的である。本機能においては複数の支持装置 を考慮した CFD 解析を実施し、支持無しの計算結 果と比較することによりそれぞれの干渉量を評価 して、支持装置の選択を支援することを可能とし ている。

圧力孔による模型表面圧計測を行うに当たって は、製作コストや配管等の試験中の作業労力に鑑 みて、必要最低限の個数を適切な場所に配置させ ることが望ましい。本機能においては、事前 CFD 結果の圧力分布から模型表面上の圧力勾配を算出、 表示するとともに、ユーザが指定した圧力孔総数 から圧力勾配の大きな箇所により多くの圧力孔が 集まるような圧力孔自動配置計算の実施をサポー トしている。

2.2 模型変形推算機能

遷音速風洞のような動圧の高い気流中における 試験においては空力荷重により模型が変形し、特 に実機空力特性の推算という観点からは重大な誤 差要因となることが知られている。このため変形 量を事前に予測することは特に開発風試において 重要であり、さらに場合によっては変形を経て実 機飛行状態の形状に一致するような模型の初期形 状を逆算するようなことも求められる。このため、 ハイブリッド風洞においても流体/構造連成解析 として、数値シミュレーションにより模型主翼の 変形量を事前予測する機能を開発した。図5に本 機能のイメージ図を示す。構造解析用汎用ソフト ウェア NASTRAN と高速流体ソルバ FaSTAR⁵⁾との間 で、表面圧力分布及び風圧による翼変形後の表面 形状データなどの入出力ファイルを共通化して流 体/構造連成解析を行い、主翼前縁/後縁における 変位(たわみ)量およびねじり量を求めている。

図 5: 模型変形推算機能

2.3 風試不確かさ解析機能

風洞試験データに誤差情報(エラーバー)を付 加する不確かさ解析手法については ASME や AIAA 等で規定されている標準的な手法が存在し、JAXA 風洞群においてもそれらに則った不確かさ解析が これまで行われてきたが⁶⁰、今回はこれらの手法を ハイブリッド風洞においてシステム化することに より、風試終了後、簡便かつ迅速に計算、出力を 行うことを可能とした。

利用の流れとしてはまず計測における不確かさ

要素(気流総圧、天秤出力、たわみ補正量等)の 正確度(bias limit)および偶然誤差限界(preci sion limit)を入力したファイルを用意しておく。 風試終了後、ユーザは不確かさ解析を実施したい データおよび上記入力ファイルを指定したら、後 は解析実行ボタンを押すのみで計算することがで きる。不確かさ解析の対象となるデータは6分力 空力係数が主体となるが、副産物としてマッハ数、 動圧、模型姿勢角、ベース/キャビティ圧等に関す る誤差情報も得られる。事前入力する不確かさ要 素の正確度/偶然誤差限界については、風試に先立 って風洞気流や計測装置を対象とした校正試験を 行うことで決定する必要があり、現在は遷音速風 洞においてそのための基礎データを蓄積する作業 を進めているところである。

3. システム適用例

前述の通り、ハイブリッド風洞の開発ステータ スとしては、試行システムを遷音速風洞における 実風洞試験に適用してニーズや問題点を抽出し、 システム改修や新たな機能の追加を行っていると ころである。これまでに文献 4)で報告された内容 を含めて 10 件以上の風試に対してシステムを適用 してきたが、それらの中から本稿では平成 23 年度 に実施した DLR-F6 形状模型 PSP/PIV/模型変形同時 計測試験への適用例について紹介する。

3.1 画像流体計測データモニタリング

アナログ風洞の一要素である画像流体計測(PIV /PSP/模型変形)データ処理システムについては、 特に煩雑なデータ処理が必要となる PIV 処理シス テムについて処理時間が現状の 1/10 以下となるべ く、処理アルゴリズムの改善および Cell アクセラ レータの導入によるソフトウェア/ハードウェア 両面からの高速化を図ってきた⁷⁰。さらに PSP およ び模型変形についても試験中のデータ確認が可能 となるように、処理の高速化、効率化作業が進め られている。今回は各計測およびデータ処理作業 の高速化、効率化の実現を確認することを主目的

として、DLR-F6形状標準模型⁸⁾を用いた PIV/PSP/ 模型変形の同時計測試験を実施した。

(a) DLR-F6 形状模型

(b) システム使用風景

(c) 空気力計測モニタリング画面

(d) PSP 計測モニタリング画面

⁽e) PIV 計測モニタリング画面

⁽f) 模型変形計測モニタリング画面

図 8: PIV/PSP/模型変形同時計測試験

図8に模型概観、試験風景、各計測のモニタリ ング画面を示す。モニタリング処理の流れとして は、遷音速風洞において標準的に取得されるデー タ(6分力データおよび圧力孔データ)に加えて、 画像流体計測データが高速データ処理された後に 通信サーバ(風洞計測系/ハイブリッド風洞間のデ ータ通信を担うサーバ)の特定フォルダに保存さ れる。一方、当該フォルダを監視しているシステ ムが新規データを認識すると速やかにシステムに 取り込み、DB 登録した後にファイルの名称規則か らデータの種類を判断して所定の可視化作業を行 う。PSP/PIV データについては、処理の高速化によ り、いずれもデータ取得後10分以内にクイックル ックデータを算出して、通風時間中に確認するこ とが可能となった(模型変形計測については自動 処理システムの開発を進めているところであり、 現状は通風終了後のデータ処理、確認となってい る)。事前 CFD はセル数 1500 万(支持装置無し) ~1800万(支持装置有り)の計算を全部で42ケー ス実行しており、支持干渉補正や風試データの健 全性確認のために用いられる。パラメトリック CF

D 解析機能を用いた全ケース計算所要時間は、2 週 間程度であった。風試データは取得後速やかにモ ニタリング画面において表示され、対応する CFD データと比較される。CFD データについては風試デ ータとの比較対象をユーザが直接指定するのでは なく、風試の気流条件/模型姿勢角に最も近い条件 のデータがシステムによって自動検索されて表示 される。なお、CFD データについてはパラメトリッ ク解析データを用いて作成された応答曲面から切 り出された線により表示されている。このように、 従来は通風終了後でなければ確認することができ なかった画像流体計測についてデータ取得後速や かに CFD と比較、確認することにより、データの 健全性確認や以降の試験計画への反映が可能とな ったことのメリットは大きい。

3.2 変形計測データを用いた高忠実度 CFD 解析

風洞試験模型は、通風時に掛かる空力荷重によ り、翼が変形することが知られている。一方、CFD においては模型を剛体と仮定しているため、風試 と CFD とを比較する際に形状に差異が生じてしま う。そこで、風試で取得された模型変形計測デー タを使って CFD 表面格子を修正することにより、 風試における模型状態を忠実に模擬した CFD 解析 を実施した。

本手法では、翼の変形を多項式でモデル化し、 翼面変位量の計測データから最小二乗法により多 項式の係数を決定して模型表面格子および空間格 子を移動させる。手法の詳細は文献9)に譲るが、 本手法を平成21年度に遷音速風洞において実施し たDLR-F6 模型試験について適用したところ、翼表 面上の圧力分布を比較した結果から、変形を考慮 することでCFD 結果がより風試データに近づくこ とが確認される(図9(b))。このような高忠実 C FD 解析の実施により厳密な EFD/CFD の比較検討が 可能になるとともに、データの理解がより深まる と期待される。

(a) 変形前後の CFD 格子および表面圧力分布

(b) 変形前後の圧力係数分布

図 9: 変形計測データを用いた高忠実度 CFD 解析

4. まとめ

風洞試験に対して CFD を強く連携させることに より風試/CFD 両者の有用性を向上させ、航空宇宙 機の空力特性取得・空力設計を多面的に改善する ことを目的とした、デジタル/アナログ・ハイブリ ッド風洞のシステム開発状況及び諸課題について 報告した。システム開発の当面の対象として、典 型的な風洞試験ケースである航空機形状模型に対 する空気力・圧力試験についての効率向上を目指 してシステム開発を進めてきたが、実際の風洞試 験は内容が多岐に渡っており、ユーザによってシ ステムに対する要求が極めて詳細化していくこと が、システムの実風試適用を通じて明らかになっ てきた。そのような多種多様なニーズを踏まえて システムを如何に柔軟にカスタマイズできるかが、 今後の大きな課題である。

一方、現時点におけるシステム開発の目標を端

的に述べると「風洞試験をより良くする基盤イン フラの整備」ということになり、まずは風洞試験 そのもののレベル向上を主目的に開発を進めてき たが、一方で本システムを単なる風洞試験の1ツ ールとしてではなく、航空宇宙機の設計開発プロ セスの一環として利用したいというユーザからの 要望も出てきている。システム完成後はそのよう な要望を踏まえながら、より実機開発に資するシ ステムとしてレベルアップを図ることを目指して いきたいと考えている。

参考文献

- 渡辺他、"JAXA における EFD/CFD 融合に向けた 試み -デジタル/アナログ・ハイブリッド風洞 構想-," 第 40 回流体力学講演会/航空宇宙数 値シミュレーション技術シンポジウム 2008 講 演集, 1C12, June 2008.
- ロ石他, "JAXA における EFD/CFD 融合に向けた 試み ーデジタル/アナログ・ハイブリッド風洞 構想(第2報)ー," 第41回流体力学講演会/ 航空宇宙数値シミュレーション技術シンポジウ ム 2009 講演集, JSASS-2009-0137, June 2009.
- コ石他, "JAXA における EFD/CFD 融合に向けた 試み ーデジタル/アナログ・ハイブリッド風洞 構想(第3報)ー," 第42回流体力学講演会/ 航空宇宙数値シミュレーション技術シンポジウ ム 2010 講演集, JSASS-2010-2078-F/A, June 2 010.
- 4) ロ石他, "JAXA 2m×2m 遷音速風洞におけるデ ジタル/アナログ・ハイブリッド風洞検証試 験," 第43回流体力学講演会/航空宇宙数値シ ミュレーション技術シンポジウム 2011 講演集, JSASS-2011-2062-F/A, July 2011.
- 5)橋本他, "HexaGrid/FaSTAR を用いたデジタル 風洞の開発," 第43回流体力学講演会/航空宇 宙数値シミュレーション技術シンポジウム 201 1講演集, JSASS-2011-2063-A/F, July 2011.
- 6) Nagai, S., and Iijima, H., "Uncertainty I

dentification of Supersonic Wind-Tunnel Te sting," J. Aircraft, Vol. 48, No. 2, Marc h-April 2011, pp. 567-577.

- 7)加藤他, "Cell 及び GPGPU による PIV 処理高速 化," 第41回流体力学講演会/航空宇宙数値シ ミュレーション技術シンポジウム 2009 講演集, JSASS-2009-0138, June 2009 pp. 121-124.
- Laflin, K. R., Vassberg, J. C., Wahls, R. A., Morrison, J. H., Brodersen, O., Rakow itz, M., Tinoco, E. N., and Go-dard, J. (2 004). Summary of Data from the Second AIAA CFD Drag Prediction Workshop. AIAA Paper 2004-0555.
- (保江他, "模型変形計測データを反映した CFD 表面格子修正法の開発," JAXA Research and Development Report JAXA-RR-12-004, March 2 013.