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Gust Response Analysis for SST with Navier-Stokes Equations

Guowei YANG' and Shigeru OBAYASHI

ABSTRACT
Based on Navier-Stokes equations and structural and flight dynamic equations of motion,

dynamic responses in vertical gust flow perturbation are investigated for a supersomnic

transport. A tightly coupled method was developed by the subiteration between aerodynamic

equations and dynamic equations of motion. First, the results of direct-coupling method are

compared with the results of two model methods. Then gust responses for the

one-minus-cosine gust profile are analyzed for the rigid and flexible airplane configurations.

1. Introduction

Gust load is one of the important dynamic loads
considered in aircraft structure design. Due to its
multidisciplinary nature with aerodynamics, {flight
dynamics, aeroelasticity and atmospheric turbulence, up
to now, only the doublet-lattice, unsteady linear
aerodynamic code (DLM) coupled with the equation of
motion of flexible vehicle was used for the gust response
analysis [1-4].

Gusts in nature tend to random. The early design
methods for gust loads were based on a single discrete
gust having one-minus-cosine velocity profile. Recently
the statistical discrete gust (SDG) method and the power
spectral density (PSD) method [5] in the frequency
domain are used to define the gust loads, however, which
are still hard to combine with the modern Navier-Stokes
numerical method. ‘

In the paper, the fully implicit multiblock Navier-
Stokes aeroelastic solver implemented by the authors [6],
coupled with the flight and structural dynamic equations
of motion, has been developed to simulate gust dynamic
responses for the supersonic transport (SST) designed by
National Aerospace Laboratory of Japan (NAL) [7]. To
study the effects of dynamic response due to flow
perturbation and airplane motion, a comparative study
was first done for the rigid airplane in the harmonic flow
perturbation with the direct-coupling method and other
model methods. Then the gust responses in a
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one-minus-cosine gust velocity profile are analyzed for
the rigid and flexible airplane models.

2. Aerodynamic Equations and Numerical Method

Aecrodynamic governing equations are the unsteady,
three-dimensional thin-layer Navier-Stokes equations in
strong conservation law form, which can be written in

curvilinear coordinates as
6,Q+65F+6ﬂG+3§H=aCHv +SGCL (1)

The source term S, is obtained from the geometric
conservation for a moving mesh. In the formulation, all
variables are normalized by the appropriate combination
of freestream density, freestream velocity and mean
acrodynamic chord length. The viscosity coefficient u
in H, is computed as the sum of laminar and turbulent
viscosity coefficients, which are evaluated by the
Sutherland’s law and Baldwin-Lomax model.

LU-SGS method, employing a Newton-like
subiteration, is used for solving Equation 1. Second order
temporal accuracy is obtained by utilizing three-point
backward difference in the subiteration procedure. The
numerical algorithm can be deduced as

LDTUAQ

= ¢ {(1+¢)07 - (1+24)Q0" + 90" @
—JAQPSE o + JAL(8¢FF +6,GP + 6, (H? -H! )}

where
L=pI+¢' JA(AY ;o + B 04 +C i)

D=7l
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U= —p-l_qjiJAt(Ai:-l,j,k +B; ik +Cijpa)
and

P =1+¢'JAt(0(A) + P(B) + 5(C))

¢! =1/(1+¢)

AQ =07 - Q"

Here ¢ =05 and QF is the subiteration

approximation to Q"' . As p—ow, QF - Q"1

The deduced subiteration scheme reverts to the standard
first-order LU-SGS scheme for ¢ =0 and p=1. In
the following calculations, the number of subiteration is
set to 3.

The inviscid terms in Equation 1 are approximated by
the modified third-order upwind HLLEW scheme of
Obayashi et al [8]. For the isentropic flow, the scheme
results in the standard upwind-biased flux-difference
splitting scheme of Roe, and as the jump in entropy
becomes large in the flow, the scheme turns into the
standard HLLEW scheme. Thin-layer viscous term in
Equation 1 is discretized by second-order central
difference.

For multiblock-grid application, the Navier Stokes
equations are solved in each block separately. To
calculate the convective and viscous fluxes in the block
boundary, data communication is performed through
two-level halo cells. The detail about the multiblock
Navier-Stokes solver can be found in references [6] [9].

3. Equations of Motion and Numerical Method

In the present study of dynamic response, the airplane
is permitted freedom in vertical translation and pitch, and
the following assumptions are made,

1. The disturbed motion is symmetrical with respect

to the airplane’s longitudinal plane of symmetry.

2. The airplane is initially in horizontal flight at

cruise velocity.

3. The vertical flow perturbation is normal to the

flight path, and is uniform in the spanwise
direction.

4. The deformation of the wing is approximated to
the elastic plate model.

3.1 Direct-coupling method

With the above assumptions, the equilibriums of total
force along the z-axis and total pitching moment about
the y-axis are:

fj; w(x, y,t) pdxdy =fj;Ap(x,y,t)dxdy (3a)

[[; eyt ededy = ([ Ap(e, . tyxdxdy - (3b)
S
For the equilibrium of an element, we obtain:

w(x, y,t) - w(0,0,) _xiw%’co’t_)

(3¢)
- f fg C(x, y;€:mIAp(E,m,8) - p(E,nWW(E,n,1)ld&Edn

In the system of equations, the unknown quantity
isw(x, y,t) , which represents the disturbed displacement

of elastic airplane from its original equilibrium
configuration. The pressure change of Ap(x,y,?)based
on cruise condition is calculated by the aerodynamic
equations, which depends on the instantaneous values of
the displacement, velocity, acceleration of airplane, as
well as the past history of the motion.

Introducing natural modes, we have,

W(x, y,1) = 2 8: (%, ¥)a; (1) @

where ¢; (x, y) is normalized natural mode shapes of the
airplane including rigid modes and g;(#) normal

coordinate. Then Equations (3a-3c) can be deduced to
g; +28,0,4; +olq; =F; | M, )
(=12 nw, =w, =0)
with the initial conditions g; (0) = ¢; (0) = 0 and where

M; =fj; 87 (x,y) p(x, y)dxdy

F, =ﬂ; Ap(x, y,0)$; (x, y)dxdy

It can be seen that the generalized mass M,
represents the mass of airplane, and g, the plunging
displacement. Similarly, M,,q, represent the pitching
moment of inertia and angular displacement in pitch,
respectively.

The same subiteration method for the aerodynamic
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equation can be used for Equation 5. The resulting

numerical scheme is

1 '~¢iAt
o Mw? 1+2¢ 0w, At
=4 {A+4)S” ~(1+29)S" +¢5"" ©)

At 0 - SP <Az 0 }
+ -—
w? 2w;E; FP /M,

13

where S =[g,q], AS=SP"_§P,

As p—>o, a full implicit second-order temporal
accuracy scheme for the numerical simulation of
dynamic response is formed by the coupling solutions of
Eq. 2 and Eq. 6. In the following calculation, the number
of subiteration is set to 3.

If the airplane is assumed as the rigid configuration,
then only the first two equations of Eq. 5 coupled with
the aerodynamic equations need to be solved. If the
pitching motion can be further neglected, the dynamic
response is only considered in the motion of vertical
translation. For the simpler case, two model methods can
be introduced as follows.

3.2 Unsteady model method
Assume the airplane is rigid and is permitted freedom
only in vertical translation, the flight dynamic equation

of motion can be written as
Mz =L - Mg ™

M is the total mass of the vehicle and L the total lift.
z is the vertical displacement (positive upward). The
equation after normalized similar to the flow governing

equations becomes as:

Z =C1CL —'CZ (8)
PwScC ge

C=Tn o C2mur
M 1265

If the lift coefficient in the equation is obtained from
the pre-calculation for the fixed airplane in the same
vertical flow perturbation, then the equation of motion
can be solved independently. Through the comparison of
this method with the direct-coupling method, the effect
of dynamic responses neglecting airplane motion in
buildup of lift can be studied.

PRI ERET

3.3 Quasi-steady model method

If the time lag in buildup of lift is neglected and the
incremental lift is considered only due to the change of
angle of attack, then the model equation of motion 7 can
be further written as.

Mz =%pwV£SCLa (T,%) —%J ©)
Here w(¢) represents the vertical perturbation velocity
profile. The normalized equation can be written as:

Z+4CCrz=CC, w() (10)
C,, is the derivative of lift coefficient which is

determined by steady flow calculations.
4. Results and Discussions

Dynamic responses in vertical flow perturbation are
studied for the SST wing/fuselage model [7]. For the
experimental aircraft, the fuselage length is 11.5m, the

mean aerodynamic chord 2.754m, the reference area
S =10.12m?. The design cruise point is at M, =2.0,

a=2° and Re=275x10%. In the calculation, the
flight altitude of the airplane is assumed at the 8,000m
from sea level. The H-H type multiblock grid with 30
blocks was generated for the SST configuration. The
aircraft is initially assumed at cruise flight, and then
encounters a gust turbulence atmosphere. So the
calculation of gust dynamic response needs to start from
the cruise steady flowfield.

The cruise lift coefficient at cruise condition
M,=20, a=2°is C;,=0.108 , which is in
correspondence with the experimental value‘ of 0.110
(the experimental model contains horizontal and vertical
wings). To determine the derivative of lift coefficient for
the quasi-steady model equation of motion, the steady
flow at M, =20, a=1° is also calculated. The
calculated lift coefficient is 0.073, which also agrees
with the experimental value of 0.0745. The derivative of
lift coefficient can be approximately calculated as
Crp =20. ‘

In addition, at the cruise flight, due to the equilibrium
of various forces, the cruise lift should be equal to the
total weight of the airplane. The total mass of the aircraft

can be calculated with
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1
M =—pV2SCp, (11)
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Fig. 1 Time histories of vertical displacement, angle of
attack and incremental lead factor for SST at
M,=20, a=2°

4.1 Supersonic dynamic response at M, =2.0
As the aircraft is cruising at M, =2.0, a=2°, 2
vertical harmonic flow perturbation is added to the
aircraft with
w(t) = w, sin(wt) (12)
the amplitude of the flow perturbation is taken as
wy =V, /30  and the
k=owc/V, =0.314.

reduced frequency

The airplane is assumed as rigid body and only the
vertical translation is considered. Dynamic responses are
calculated with the above three methods. For the solution
of the equations of motion, the initial conditions are
assumed as z,_5 =0,2,_, =0. Fig. 1 shows the time
histories of vertical displacement z(t), angle of attack
due to motion a(t)~z(t)/V, and incremental load
factor An(t)=Z(t)/ g . For the comparison, the dynamic
responses of ‘quasi-steady model’ method after the
translation of lag time ¢, =5.543 are also depicted in
the figure. If the time lag of the ‘quasi-steady model’
method can be ignored, the time histories of angle of
attack and incremental load factor show nearly no
difference although the vertical displacement of
‘direct-coupling’ method increases with the time a little
faster than other two model methods. In fact, the
incremental load factor is equivalent {fo the lift
coefficient, comparing the incremental load factor of
direct-coupling solution with the unsteady model method.
It indicates, in this case, the contribution for the buildup
of lift due to airplane motion is small and can be
neglected.

Through the above comparison, although all the three
methods can be used for dynamic response analyses, the
compufational expenses are completely different.
Comparing the unsteady model method and
direct-coupling method, the time cost of the quasi-steady
method can be ignored, but the lag time is not known
before the other method is implemented.

4.2 Transonic dynamic response at M, =09

The SST experimental model is designed for cruise
flight at M_ =2.0, a=2° and the flight altitude
15,000m. Because there is nearly no gust at that high
altitude, in the above study, the cruise altitude 8,000m is
assumed and the total mass of airplane is calculated with
the lift coefficient at the corresponding condition. Due to
the strong nonlinearity of transonic flows, the transonic
dynamic response may be interested. To investigate the
dynamic response at a transonic Mach number, here, we
still assume the airplane can cruise at M, =0.9,
a =2° and flight altitude 8,000m, which means the
total mass of the airplane is alleviated artificially. The
parameters of vertical flow perturbation and the flight

altitude are taken the same values of the above
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Fig. 2 Time histories of vertical displacement, angle of
attack and incremental load factor for SST at
M,=09, a=2°

The time histories of dynamic responses are shown in
Fig. 2, in which the dynamic responses of the
‘quasi-steady model’ method after the translation of lag
time z; =4.22 are also depicted in the figure. Even no
consideration of time lag, comparing unsteady model and
direct-coupling methods, the quasi-steady method
predicts the slower growth of displacement with time,
the reverse tendency of change of angle of attack and the
smaller maximum load incremental factor. It indicates
the quasi-steady method is unsuitable for the analyses of
transonic dynamic response. For the unsteady model

206 22 BT R ZE AT B B BT =

method, the vertical displacement and angle of attack

also increase faster with time than the direct coupling

method.
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Fig. 3 Time histories of the coefficients of normal,
axial forces and pitching moments for rigid and
flexible configurations at M _ =09, a =2°

4.3 Dynamic response for one-minus-cosine gust
The early design methods for gust loads were based on
the discrete gust having one-minus-cosine pulse, namely,

W =1 (1< cos 2= (13)
2 C2H

Thic dociiment i nrovided hv JAXA



MEEEEMIES 2L~ 3 VIS Y RV LR R 207

W, is the gust velocity, which is specified as functions
of altitudes. In the present calculation of cruise altitude
of 8,000 m, W, is assumed as 66ft/s. Based on the
experimental evidence [5], the gust gradient distance H
is taken as the 12.5 times mean geometric chordiengths.
Considering structural deformation of wing, the
aeroelastic natural modes are taken from the natural
modes of the flutter experimental model of rigid
structure, Due to the difference of structure and mass
distributions of the real airplane and the experimental

model, the structural data of experimental model cannot

be used for the gust response analyses of the real airplane.

But the calculated results should be nearly identical for
the rigid and flexible analyses due to the rigidity of
structure of the experimental model. And in the future,
when the normalized natural modes shapes of the real
unrestrained airplane can be provided, the solver can be
used directly for the dynamic analyses of gust response
with the consideration of the elastic deformation.

%% One-Minus-Cosine Vertical Gust

Generalized Dlsplacement
o o
E &

o

0.
001 G

20 30 40
Nodimensional Time ()

Fig. 4 Time histories of the structural deformation of
the first six modesat M, =09, a=2°

The time histories the coefficients of normal force,

axial force and pitching moments are shown in figure 3.

When the airplane flight through the gust pulse, the force
and moments also experience a pulse, then tend to
recover the equilibriﬁm state. The maximum of lift can
reach 166.7% larger than the value of cruise flight and a
larger pitching-down moment is also produced. As stated
above, the results of flexible analyses are similar as those
of rigid analyses except smaller difference on the
maximum area. Figure 4 gives the time histories of
structural deformation of the generalized displacements.
For the airplane of rigidity, although the deformation is

smaller, the airplane experiences a larger structural

deformation in the gust process, which should be
considered in the structure design, especially for the

design of large civil aircraft.
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