44

249

Flow Simulation using a Hybrid of Cartesian and Prismatic Grids

by

Paulus Lahur”

ABSTRACT

This paper discusses the current development of a hybrid grid method suitable for compressible and viscous flow simulation.
The method is part of computational software platform, UPACS (Unified Platform for Acrospace Computational Simulation),
being developed in National Aerospace Laboratory (NAL). Its need arises due to the level of difficulty and the time required in
generating grid of reasonable quality using currently available tools. A hybrid of prismatic and Cartesian grids is chosen as an
extension of previous research in Cartesian grid for inviscid flow simulation. The main objective is to develop a robust, fast,
and automatic grid generation tool, together with its flow solver. Grid generation module of each cell type (prismatic,
Cartesian, cut cell) can be combined in such a way to suit various flow computation needs. Major considerations, problems
encountered during the development and their possible solutions are discussed.

1. Introduction

Grid generation is a crucial part in computational fluid dynamics.
It determines not only the accuracy of the solution, but also the
overall efficiency and the cost of flow simulation process. As the
simulation objective shifts toward more and more realistic body
geometry, grid generation becomes a bottleneck. This is
especially true for the case of structured grid, which is widely
used by many commercial grid generation tools today. It is well
known that grid generation process using this method can take
weeks of inanual labor.

It is clear that trying to build a 3D structured grid around an
essentially unstructured, complicated body surface is the root of
the problem. The success of unstructured grid is due to the fact
that it takes exactly the opposite approach. Using elementary cell
shape (tetrahedron in 3D), unstructured grid method has been
applied successfully to complicated surface geometries. At
present, this task can be carried out with a high degree of
automation and under a very short time. "

Although less mature than unstructured grid method,
Cartesian grid method is also capable to achieve similar
performance, due to its “non-body-fitted” characteristic. The grid
is constructed following the Cartesian coordinate system instead
of the bedy surface, which enables very simple grid generation in
most part of the computational domain. The cubic cell shape also
contributes to more accurate flow solution when compared to
tetrahedral cell. One of the main problems is treatment of cells
intersecting the solid surface. Several approaches are available:
(1) assume there is no cell, (2) cut the Cartesian cells,* or (3)
deform the Cartesian cells to fit body surface.® The first method is
usually employed in simulation of very complicated objects
invelving mostly separated flow, such as flow around a large
number of buildings. For flows around smooth surface, the
second and third methods become necessary.

Concerning the nature of the flow, the present demand in
CFD has shifted toward simulation of viscous flows with high
Reynolds number. The presence of very thin boundary layer
requires the use of prismatic grid, in order for the simulation to be
accurate and efficient. Robust prismatic grid generation of
reasonable quality in the vicinity of a complicated body surface,
however, is a difficult task, let alone filling the whole
computational domain. This is where the concept of hybrid grid
becomes indispensable, because it allows one to worry about
generating prismatic grid only in the region very close to body
surface. Prismatic grid can be used in hybrid with tetrahedral-
based unstructured grid"? or with Cartesian grid.>*

At present, a development of 3D grid generator and flow
solver for a hybrid of Cartesian and prismatic grids for viscous
flow simulation is being carried out in National Aerospace
Laboratory (NAL). The method is based on unstructured
approach, applied to cells of arbitrary shape. The Cartesian grid
method is an extension of the author’s previous research.* The
key development concepts are presented here.

*! National Aerospace Laboratory (NAL)
Email: labur@nal.go.jp

2. Grid Generation

It is assumed that the surface grid is already available, and given
as a collection of interconnected triangles or rectangles or both,
with the connection information between them.

Each type of grid is generated in separate modules, such that
by matching these modules in certain order, it is possible to
produce grids for different simulation purpose, as shown in Fig. 1.
For example, flow simulation around a suburb comprising a large
number of buildings can be handled most efficiently using
Cartesian grid. Smooth body surface, on the other hand, requires
proper attention regarding solid boundary interface, thus cut cells
are generated to fill the room between Cartesian grid and body
surface. When viscous flow is simulated, especially at high
Reynolds number, prismatic grid is generated first around body
surface, to provide proper boundary layer resolution. Each grid
generation method will be discussed in the following.

Rough body surface Smooth body surface
(eg. Buildings) (eg. Aircraft)
.
R
i Prismatic grid
A:4 A 4 %
[Cartesian grid l l Cartesian grid—l , Cartesian grid l

l 1

¥

Cutcell | | Cutcel

, ; !

Viscous flow Inviscid flow Viscous flow
High Reynolds

Fig. 1 Modes of grid generation

2.1. Prismatic Grid Generation

Prismatic grid generation around complicated body surface is still
a challenge, and is a research subject by itself. The strategy of
this study is to start from the simplest method, tackling the
simplest class of geometry, and then proceed to the more
complicated ones, in the following order:

(1y Mildly curved surface,

(2) Highly convex surface,

(3) Highly concave surface,

(4) Highly convex and concave surface,

(5) Surface with gap.

These types of geometry are illustrated using the rear section of a
generic aircraft shown in Fig. 2.

In simulations where boundary layer effect is important,
usually body surface is dominated by mildly curved geometry.
Difficult regions are actually very limited, so it is tempting to
generate prismatic grid using the simplest method first, and then
apply some adjustment for the more complicated cases. Thus, a
simple advancing layer method is chosen as the basic approach.
The method makes a new surface outside the given surface. An

Thic dociiment i nrovided hv JAXA

250 M2 F T ZE AT R B R 575

advancing vector at each node is constructed by taking a proper
average of the normal vectors of the manifold, that is, the faces
surrounding the node, as shown in Fig. 3.

Fig.2 Surface types: (a) mildly curved, (b) highly convex, (c)
highly concave, (d) highly concave and convex, and (e) gap.

Fig.3 A manifold.

Here ny ; and ng j are defined as the normal vector and the
vector of face j, respectively. 1i A; Is the advancing vector at

node i, whereas 6y is the included angle at node i and face j.

Note the difference between face normal vector and face vector.
The first is a geometric property and an unchanged quantity,
whereas the second is an auxiliary variable, used for smoothing.

When a highly convex surface such as wing trailing edge is
present, it is important to ensure smooth transition among
neighboring advancing vectors to enhance grid quality in this
region. Thus, an iterative smoothing involving the direction of the
vectors is carried out, using equations (1) and (2). At the
beginning of iteration, the face vector is taken to be equal to the
face normal vector. The number of jteration normally used here is
about 10 times.

_ 284fi

TS, W

R . 0;n,,
N =Wy, +(1—w)%%f‘—

where w is the weighting factor to control how far the face vector
is allowed to deviate from its corresponding normal vector. Fig,
4a and 4b illustrates the effect of smoothing.

The magnitude of an advancing vector is determined in such a
way that the next surface is more round that the preceding one,
that is, small advancing distance for convex surface, and large for
concave one.

As an example, a prismatic grid is generated around a
dicretized surface of ONERA M6 wing with span of 1.2m. The
surface grid consists of 14,968 triangles and 7,557 nodes. The
surfaces of 10, 20, 30, and 40 layers of prismatic grid are shown
in Fig. 7. It is evident that the surface becomes more rounded as
more layers are generated. The thickness of the first layer is set at
0.Imm, and it increases by a factor of 1.2 for the subsequent
layers. The resulting thickness of 30 layers is thus about 12cm.
The total number of cells is 449,040. Close-up views of the grid
in the leading and trailing edge regions at the wing’s root and tip
are shown in Fig. 8.

This point marks the present development status of our grid

@

generator. Below is a brief discussion on key aspects concerning

the coming development.

(1) Multiple advancing vectors at highly convex surface, for
example wing’s trailing edge, to increase grid resolution (see
Fig. 4c). The concept of “split manifold” will be introduced,
to assist construction of the advancing vectors.

(2) Algorithm to avoid grid crossing in the region of highly
concave surface and gap.

(3) The use of Cartesian grid to substitute for prismatic grid in
the regions where the geometry is especially difficult to
handle.

(®

Fig. 4 Handling of highly concave surface: (a) basic, (b) with
smoothing, and (c) with multiple advancing vectors (future
development).

2.2. Cartesian Grid Generation

The Cartesian grid is generated around a base surface, which can

be either a body surface or the outermost prismatic surface; both

have the same format.

The grid generation starts with a single cell comprising the
whole domain. The cell is then recursively refined until a certain
level to increase the grid resolution around the base surface, using
two criteria:

(1) A cell is within certain distance (in a certain direction) from
the base surface. Here “box of refinement” is used to set
more refinement downstream (Fig. 9 and Fig. 10).

(2) A cell contains a portion of surface that has a curvature
beyond a preset limit. The curvature is indicated by the
angular orientation between faces of the surface.

The grid refinement is isotropic, that is, a cell is refined in all

axial direction, which results in eight sub-cells. It is thus very

natural to use octree data structure here.

During the grid refinement, cells are divided into those that
intersect the base surface and those that do not, that is, cut cell
and non-cut cell, respectively. A linear check will take a very long
time when the number of base surface’s face elements is large. To
increase efficiency, a cut cell stores the list of all face elements it
intersects, and hands it down to all of its children. Thus the list of
a given cell becomes smaller and smaller as the grid is further
refined. When a cell is found to have no intersection with base
surface, its list is emptied. It is noted here that the child of a cut
cell may be a cut cell or a non-cut cell, whereas that of a non-cut
cell is always a non-cut cell.

After the grid refinement process is completed, non-cut cells
with no child are further classified into fluid or non-fluid cells.
The resulting fluid cells are the Cartesian grid cells participating
in flow computation. The classification is carried out using a
“ray-casting” technique. A line is projected from the center of the
cell to one of the comers of the computational domain. When the
number of intersections between this line and the base surface is
odd, then the cell is not a fluid cell. To improve efficiency, we
reduce the number of ray-casting runs by propagating the status
of a cell to its neighbors (“painting” algorithm).

Using the ONERA M6 wing example above, Cartesian grid is
generated around the outermost prismatic layer (the 30 layer case
is chasen here). Grid refinement is carried out 12 times, resulting
in 161,113 cells (Fig. 11). About 100 Cartesian cells of the finest
size (about 12mm) cover the span of the wing.

Thic dociiment i nrovided hv JAXA

BZeE G MY T2 b — Y a VIl Y URY T L EE Bl

2.3. Cut-Cell Generation

The list of cut cells from the Cartesian grid generation process is
taken as input. Each of the cut cells already contains the list of
base surface’s face elements that it intersects.

In the present method, a cut cell is constructed such that it
represents the base surface as closely as possible, that is, no
approximation of the surface is carried out. Thus, in general, the
resulting shape of a cut cell is of arbitrary polyhedron (Fig. 5).

Original Cartesian
grid cell

Part of base surface

Cut cell

Fig.5 Acutcell

Some issues that need special attention are:
(1) “Degeneration” in the cutting process, due to coinciding
geometrical objects (face, edge, node).
(2) “Split cell,” where the cutting process of one Cartesian cell
results in two or more cut cells.
(3) Very small cells, which can be treated by merging the cell to
a neighbor of bigger size to avoid very small time step.
These issues have been tackled to a certain degree in the previous
research on Cartesian grid method.* Modifications are being
introduced to improve the robustness and performance of the
code. One of them is the use of integer (fixed-point) to represent
coordinate. This change is motivated by the ambiguity during the
determination of intersection when floating-point representation
was used. The danger of using integer is the problem of overflow,
which, unfortunately, is not reported by most computer operating
system. To avoid this, when there is a possibility that such an
error may occur, the number is first converted to a floating point
before the actual operation takes place. Computation of
intersection between an edge and a triangle is one of such
examples. Its intermediate computation is open to the possibility
of integer overflow, so conversion to floating-point number is
carried out. The resulting intersection point is then converted
back to integer.

Doubt may arise concerning the accuracy of integer compared
to floating-point number. In most applications, this should not be
a concern. For example, suppose that grid is generated around a
100m-long aircraft in a computational domain of 10km-long. If
the whole domain is represented using integer from 0 to 2%, then
one unit of integer has the length of 9.3um, which is certainly
smaller than most manufacturing limitation. Note that the
common length of an integer data is 4-byte, which is equivalent
to a range of -2°* to 2*'-1.

3. Flow Solver
The flow solver is currently based on finite volume method for
Euler equations, with provisions for further extension to
Navier-Stokes equations. It is capable of handling a cell of
arbitrary shape, in an unstructured format. A cell is allowed to
have any number of faces. The face, in turn, can have any number
of vertices, which can be listed without any particular order. Thus,
all types of cell described above can be treated by this flow solver
as a general case. A major advantage of the unified approach is
that the code can be streamlined, and no modification is
necessary when other types of cells are to be used in the future.

The code takes advantage of the existing codes in UPACS,
particularly the flow solver for structured grid, which serves as a
reference.® Some of the codes in UPACS are also reused where
possible, for example, the routines for parallelization.

At its present state, both explicit and implicit methods are
available for time integration, whereas for flux computation, Roe

and AUSMDV methods are used. To achieve second order
accuracy, the solution at cell center is extrapolated to cell face.
The flow solution gradient is computed using a least square
method, which is particularly well suited for unstructured grid
containing cells of irregular shape.”

4. Data Structure and Programming Aspects

As mentioned above, the grid contains cells of arbitrary shape,
which is especially true due to the presence of cut cells. This
necessitates that connectivity is explicitly stored, as shown in Fig,
6. As a result, more memory is required per cell, as compared to
structured grid. In return, we have a high degree of flexibility in
grid generation.

~ Volume, center

neighbor '_—(cell ‘—1 Arca,

face center,

normal
node ,_J

Coordinate

Fig. 6 Main data structure

In the process of grid generation, different data structures are
used, depending on the cell type. In the case of Cartesian grid,
octree data structure is used, because it naturally facilitates grid
refinement. In the case of prismatic grid, a semi-structured
approach is used, due to the advancing layer method. The grid is
unstructured within a layer, following the body surface
discretization, and structured in the advancing direction. This
choice may have to be re-evaluated later for the case of more
complicated body surface, where a simple advancing layer
method may fail. At the end of grid generation, these data
structure is converted to the unstructured one.

Arbitrary cell shape implies that memory allocation for a cell
is not known in advance. Clearly, a programming language that
supports dynamic memory allocation is needed for an efficient
implementation. This capability ensures both code simplicity and
low memory requirement, because allocation can be made just
enough and just in time to match the demand. In this development,
Fortran 90 is chosen, not only for the reason mentioned above,
but alse, and perhaps more importantly, to be able to reuse a large
amount of existing code developed in-house.

5. Visualization

Grid and flow visualization are carried out using an existing tool
called UPACS-GL, which is an implementation of OpenGL
library in UPACS. The existing low level routines, such as that to
draw line and polygon, can be used directly. High level routines,
such as that to draw cell and grid, are being developed, because
the existing ones are for structured grid.

6. Concluding Remarks

The present development status in hybrid grid method has been

described. The grid consists of prismatic, Cartesian, and cut cells.

Although yet to reach application level, the key concepts that will

make the method unique can be identified as follows:

(1) Capability to generate different set of grids suitable for
different types of geometry {smooth or highly irregular), and
different types of flow (inviscid or viscous). This will allow
user to employ a single tool to automatically generate grid
for a specific need.

(2) The method accepts a grid cell as general polyhedron. This
provides a unified treatment of cells of any shape, and thus
allows the use of other types of cells in future development.

Thic dociiment i nrovided hv JAXA

252

L 22 5 DR I 2L BT R B RIS T 5

References

1))
2)

3)

4

3)

6)

7

Kallinderis, Y., “Hybrid Grids and Their Applications,”
Handbook of Grid Generation, CRC Press, (1998), ch. 25.
Ito, Y. and Nakahashi, K., “Unstructured Hybrid Grid Gene-
ration based on Isotropic Tetrahedral Grids,” AIAA-2002-
0861, (2002).

Leatham, M., Stokes, S., Shaw, J.A., Cooper, J., Appa, I.,
and Blaylock, T.A., “Automatic Mesh Generation For Rapid-
Response Navier-Stokes Calculations,” AIAA-2000-2247,
(2000).

Lahur, P. and Nakamura, Y., “Anisotropic Cartesian Grid
Adaptation,” AIAA-2000-2243, (2000).

Wang, Z.J., Chen, R.F, Hariharan, N., and Przekwas, A.L.,
“A 2N Tree Based Automated Viscous Cartesian Grid Metho-
dology for Feature Capturing,” AIAA-~99-3300, (1999).
Yamane, T., Yamamoto, K., Enomoto, S., Yamazaki, H.,
Takaki, R., and Iwamiya, T., “Development of A Common
CFD Platform — UPACS —,” Proc. Parallel CFD 2000 Conf,
Elsevier Science, (2001), p. 257-264.

Aftosmis, M., Gaitonde, D., and Tavares, T.S., “Behavior of
Linear Reconstruction Techniques on Unstructured Meshes,”
ATAA T, Vol. 3, No. 11, (1995), p. 2038-2049.

10 layers 20 layers

30 layers 40 layers

Fig.7 Prismatic grid around ONERA M6 wing.

Leading edge

Root Tip

Trailing edge

Fig. 8 Close-up view of prismatic grid.

z

hid

Fig.9 The whole computational domain.

Refinement box

Z

iz

*!Iq“'
e
i

Yok

o
o
7

-

it
7

-

%

,.,.
i
X

R

Epuexes

X

%
G

£est
o e,
i
ey
RSy
‘
TS,

.‘

2

T
5

o
e
i

e

ey

o

e
i
R

AR
7

v
iz
i

7k

Fig. 11 The hybrid grid.

Thic dociiment i nrovided hv JAXA

