ヒドラジン/二酸化窒素同軸噴流の特異な二重火炎構造

谷洋海

宇宙航空研究開発機構情報・計算工学センター

寺島洋史

東京大学大学院工学系研究科航空宇宙工学専攻

越光男

横浜国立大学大学院 大門優

宇宙航空研究開発機構情報・計算工学センター

Double flame structure of hydrazine/nitrogen dioxide coaxial jets

by

Hiroumi Tani(JAXA), Hiroshi Terashima(The University of Tokyo), Mituo Koshi(Yokohama National University)

and Yu Daimon(JAXA)

ABSTRACT

Hydrazine (N_2H_4) /nitrogen dioxide (NO_2) co-flowing plane jets were simulated to explore the flame structures in hypergolic N_2H_4 /nitrogen tetroxide (N_2O_4) bipropellant thrusters. The Navier-Stokes equations with a detailed chemical kinetics mechanism were solved in a manner of direct numerical simulation to reveal the interaction between fluid dynamics and the distinct chemical reaction, i.e. hydrogen abstraction by nitrogen dioxide (NO_2) and the thermal decomposition of N_2H_4 . The combustion flames uniquely comprised two types of flames, the diffusion flame and the decomposition flame. The diffusion flame came from the oxidization by NO_2 . The decomposition flame was caused by the heat transfer from the diffusion flame and a high rate of heat release from the thermal decomposition of N_2H_4 . Owing to the decomposition flame, the decomposition products such as NH_3 , N_2 and H_2 became the major constituents of the downstream combustion gases.

1. 序論

ヒドラジン(N₂H₄)と四酸化二窒素(N₂O₄)を燃料と酸化剤 とする二液式化学スラスタは、惑星探査機や軌道上の人工 衛星に至るまで多くの宇宙機に搭載され, 軌道変換や姿勢 制御に使用される. N₂H₄/N₂O₄の組み合わせが採用される理 由は宇宙空間のような非常に低温低圧な環境であっても, 接触・混合するだけで自着火するほど反応性が良く、 点火 器が不要なことが挙げられる.また,10ミリ秒オーダで着火 /消火を繰り返すパルス作動を行えることも利点である.し かし、スラスタ燃焼器内部はFig.1に示すように液体ジェッ ト衝突微粒化,液相反応,気相反応など直径数 cm の空間に 複雑現象が複合しており,一連の着火過程や火炎構造につ いては未解明な点が多い. そこで, 越らは N₂H₄/NO₂ 気相反 応(気相では N2O4 が分解されほぼ NO2 となる)の詳細化学反 応機構の構築[1]から始め、低温低圧環境下の自着火には "NO₂による N₂H₄の水素引き抜き反応"(以降,水素引き抜 き反応と記す)が重要な役割を持つことを明らかにした. さ らに,森井ら[2]によって,この詳細化学反応機構と流体計算 とを効率的に連成する数値解析手法が提案された. 著者ら はその画期的な解析手法を用いることで N₂H₄/NO₂ から成 る同軸ガスジェットの自着火過程の数値シミュレーション [3]を実現し、ジェット混合形態と着火位置・着火遅れ時間 との関係を明らかにした.

本研究は、これを発展させて自着火後に形成される N₂H₄/NO₂火炎構造の特徴について調査したものである.特 徴的な水素引き抜き反応に加えて、着火後の高温環境下で

Fig. 1: Schematics of complicated multi-physics phenomena in N_2H_4/N_2O_4 bipropellant thrusters.

は N₂H₄自身の発熱自己分解反応(NH₃, N₂, H₂に分解)が顕著 となるため、この分解反応が火炎構造へ及ぼす影響に着目 した.解析対象は自着火の数値シミュレーション[3]でも引 用した宮島ら[4]の N₂H₄/NO₂ 同軸ガスジェットの燃焼試験 とした.本研究では実スケールの燃焼場に対して 100 以上の 素反応からなる大規模反応機構を直接計算しており、その 観点からも画期的といえる.

2. 解析手法

支配方程式は各化学種保存式を加えた 2 次元圧縮性 Navier-Stokes 方程式である. 流体と反応を分離し, 時間方向 に交互に解き進める時間分離解法を採用した.このとき、体 積と内部エネルギーが一定と仮定した反応方程式を用いた. 流体方程式の数値流束評価には HLLC/HLL hybrid 法[5]を用 い、時間積分には 3 次精度 TVD Runge-Kutta 法[6]を用いた. 粘性係数や熱伝導率,物質拡散係数には簡易経験式を用い た. 詳細は文献[3]を参照いただきたい. 化学反応機構として は越ら[1]が提案した 39 化学種 261 素反応の詳細反応機構 を縮退せずに採用した.反応方程式の時間積分には森井ら [2]により提案された Extended Robust Explicit Numerical Algorithm (ERENA)を用いた. ERENA は大規模反応機構を高 速かつロバストに時間進行できる手法である.後述する2 次元平行ジェットの解析では,反応方程式の強力かつ高速 な陰解法の一つである VODE 法[7]を用いた場合と比較して, 計算時間を4倍高速化することができた.

3. 解析条件

解析対象は宮島ら[4]の燃焼試験を参考にした系である. 彼らの試験は内側から N₂H₄が流れ, その周囲から NO₂が 流れる同軸ジェット(N₂H₄/NO₂ ジェットと記す)である.本 解析では,これに加えて内側から NO₂が流れ,周囲から N₂H₄が流れるジェット(NO₂/N₂H₄ ジェットと記す)も解析 対象とした.また,実際の解析は計算コストを削減するため 2次元平行ジェットとした.同軸ジェットと比べて全体と しての混合比が異なるが,噴流構造や火炎構造の差異は無 いと考える.解析対象の概要を Fig. 2に示した.噴射条件は

Fig. 2: Computational domain, boundary and initial conditions

Table 1: Injection conditions.

Pressure	Temperature	$V_{\rm N2H4}$	V_{NO2}	Mole fractions of NO ₂ and N ₂ O ₄
0.01	400K	50	50	0.990 : 0.010
MPa		m/s	m/s	

Table 1 に示す通りで, 試験にて着火することが確認された 常温・低圧条件である. 酸化剤はほぼ NO₂ であるが, 流入 境界では N₂O₄との化学平衡状態として与えた. 噴射速度は 宮島ら[4]の試験と同様に燃料/酸化剤の速度差は無いもの とした. 噴孔高さと噴射速度から算出するレイノルズ数は 両ジェットともに 2000-2500 程度である. 空間の初期条件 は Fig. 2 に示す通り, 外側のジェットと同様の条件で流れ ている状態とした. 流入境界は圧力・温度・濃度・速度固 定とし, 流出境界は静圧固定とした. また, 計算領域上下辺 も静圧固定とした. ただし, 下流及び上下辺の境界は内部の 流れ場に影響を与えない遠方に置いた.

計算格子は X-Y 軸方向にそれぞれ 911 点×411 点の構造 格子を用いた. 混合層付近の格子解像度は高めに設定して おり,最小格子幅は 0.14 mm (0.02h)である. 格子収束性につ いては,格子解像度を X-Y 軸方向それぞれに $\sqrt{2}$ 倍ずつ増 減させた 2 種類の格子で計算を行い,火炎構造に影響が無 いことを確認した.

4. 化学反応機構

流体計算と連成させる事前検討として、 N_2H_4/NO_2 混合ガ スの 0 次元着火解析を実施した. 具体的には定積条件下で 当量比 1 の予混合ガスの時間変化を計算した. 圧力温度条 件は Table 1 と合せて 0.1 気圧, 400K である. Fig. 3 上図は 温度と発熱量の時間履歴である. 約 1.8msec 後に自着火が 起きるが, その着火前に徐々に昇温される予熱領域が見ら れる. Fig. 3 下図は主要成分のモル分率の時間履歴である. 予熱領域で N_2H_2 , HONO の濃度が上昇することが確認でき る. これは水素引き抜き反応が混合ガスを予熱しているこ とを示す[3]. HONO の濃度が着火直前に減少するのは, HONO の濃度が上昇すると HONO 同士が反応し, H_2O と NO が生成されるためである. もう一方の生成物である N_2H_2 は増加しつづけ,着火直後にほぼ全て消費される. N_2H_4 は予熱中の水素引き抜き反応でほぼ消費されるため, 発熱自己分解反応で生成される NH_3 はほとんど現れない.

次に N₂H₄のみの 0 次元着火解析を実施した. 圧力温度条 件は 0.1 気圧, 1000K である. 前述の混合ガスの初期温度

Fig. 3: Time history of the temperature, heat release rate and mole fractions of the major species of the N_2H_4/NO_2 pre-mixture ignition under the stoichiometric condition.

Fig. 4: Time history of the temperature, heat release rate and mole fractions of the major species of the N_2H_4 thermal decomposition.

400K よりも高温であるのは、低温では自己分解反応が進ま ないためである. Fig. 4 上図は温度と発熱量の時間履歴であ る. 混合ガスの燃焼に比べると燃焼ガス温度は 2500K 前後 とやや低いものの、発熱量は高いことがわかる. Fig. 4 下図 は主要成分のモル分率の時間履歴である. 着火前から NH₃ の増加が顕著であり着火直後にピークを迎える. その後 NH₃ と入れ替わるように N₂ と H₂が増加する. 1000K の条 件下では NO₂ との混合ガスと同様に数ミリ秒オーダの着火 遅れ時間となった.

5. 解析結果

Fig. 5 は N₂H₄/NO₂ ジェット火炎が十分発達した後の温 度および主要化学種モル分率の瞬時分布である.火炎は Y 軸に対して対称に形成され、火炎基部はほとんど動かなかった.火炎基部から 3000K 以上の高温領域が存在し、これは N_2H_4/NO_2 の拡散火炎と見なすことができる.拡散火炎に対応するように H_2O の高濃度領域が見られる.内側の N_2H_4 ジェットのコア領域は火炎基部を通過するとすぐに消費され、2000K 程度のやや高温領域が形成される.この高温領域内の上流側では NH_3 濃度が高いことから、 N_2H_4 の自己分解反応の発熱によって形成されていると考えられる.拡散火炎基部よりも下流に存在することから、拡散火炎からの熱伝達によって N_2H_4 ジェットコアの温度が上昇し、自己分解に至ったと考察される.0 次元解析の傾向と同様に、 NH_3 の高濃度領域の下流には H_2 の高濃度領域が現れる.

Fig. 5: Instantaneous contours of the temperature and major species of the N_2H_4/NO_2 co-flowing jet after the flame reached steady state.

Fig. 6: Lateral profiles of the time-averaged temperature and major species of the N₂H₄/NO₂ co-flowing jet.

より詳細に火炎構造を調査するために, 噴射面からの距 離を変えて、主要化学種モル分率と温度の Y 方向分布を Fig. 6 にプロットした. プロット値は火炎が十分に発達し た後に4ミリ秒間を時間平均したものである.各グラフの 噴射面からの距離については Fig. 5のグラフ上の黒色破線 を参照されたい. Fig. 6(a)は火炎基部より上流のプロット である. N₂H₄/NO₂の混合層内では混合ガスの0次元解析の 予熱時間帯に見られた水素引き抜き反応生成物 HONO, N₂H₂の濃度が比較的高いことがわかる.また同時に, HONO 同士の反応によって生成される H₂O と NO も現れ る. 火炎基部より下流である Fig. 6(b)では HONO や N₂H₂ はほとんど消費されてしまい、中央部の N₂H₄ ジェットの コアと周囲流の NO₂との間に拡散火炎が形成される. N₂H₄ ジェットの左右には高濃度の NH3 が存在していることか ら,一部の N₂H₄ は拡散火炎からの熱伝達によって自己分 解し始めていることがわかる. Fig. 6(c)は N₂H₄ ジェットの コアよりも下流のプロットである.中央に存在していた N₂H₄ジェットのコアは全て NH₃に自己分解し, 2000K 前後 の自己分解火炎が存在する. この NH3と周囲流の NO2との 間には拡散火炎で生じた 3000K 以上の高温ガスが存在す る. さらに下流の Fig. 6(d)では, 拡散火炎の燃焼ガスからの 熱伝達によって中央部の NH₃はさらに分解されるため, N₂ と H₂の濃度が高くなることがわかる.以上のように, N₂H₄/NO₂ジェット火炎は、一般的な同軸拡散火炎とは異な り、拡散火炎の内側に N₂H₄の熱分解火炎が形成されると いう2重火炎構造となることがわかった.

次に N₂H₄/NO₂の噴射パターンを逆にした NO₂/N₂H₄ジ エットの結果を示す. Fig. 7 は NO₂/N₂H₄ジェット火炎の温 度および主要化学種モル分率の瞬時分布である. N_2H_4/NO_2 ジェットと同様に火炎基部から 3000K 以上の拡散火炎が 形成されるが,特徴は周囲流 N_2H_4 の自己分解火炎である. 自己分解火炎の発端は拡散火炎からの熱伝達であるが,分 解反応自身の発熱によって上下に燃え広がるため,自己分 解火炎の火炎帯は非常に厚くなる.また,中央部の NO_2 ジ ェットは火炎基部より下流でもしばらくコア領域を残し, 徐々に拡散火炎に消費される.これは N_2H_4/NO_2 ジェット の短い N_2H_4 コアと対照的である.

Fig. 8 は主要化学種モル分率と温度の Y 方向分布である. プロット値は4ミリ秒間の時間平均値である.各グラフの 噴射面からの距離については Fig. 7上の黒色破線と対応す る. 火炎基部より上流の Fig. 8(a)では N₂H₄/NO₂ジェットと 同様に水素引き抜き反応の生成物(HONO, N₂H₂, H₂O, NO) が先行していることがわかる.次に火炎基部下流の Fig. 8(b)を見ると,既に左右の N₂H₄の発熱自己分解が開始して おり, y/h=±6付近に高濃度の NH3が存在する. さらに, こ の NH₃と中央部の NO₂ジェットとの間には拡散火炎で生 じた高温ガスが流れる.したがって, NO2ジェットに隣接し て 3000K 近くの高温領域があり、その左右には自己分解火 炎の 2000K 前後の領域が階段状に現れるという特徴的な 温度分布が形成される. さらに下流の Fig. 8(c)では中央部 の NO2 ジェットコアは全て拡散及び消費されてしまい, 既 燃ガスとして N2, H2, H2O が残る. また, 左右の NH3 は拡散 火炎の燃焼ガスからの熱伝達がほとんど無いため、さらに N₂と H₂に熱分解されることなく高濃度な状態を保つ. 既 燃ガスの温度分布にも中央部が 3000K 近い高温となり, そ の周囲が 2000K 近いやや高温となる特徴が残っている.

Fig. 7: Instantaneous contours of the temperature and major species of the NO_2/N_2H_4 co-flowing jet after the flame reached steady state.

Fig. 9 は宮島ら[4]の報告に記載されている無次元化した時間遅れのグラフに本解析結果をプロットしたものである.彼らは定常化した火炎に対して,噴射面から火炎基部までの距離を計測し,それを平均噴射速度で除した値を時間遅れと定義している.本解析結果は実験値と比較してやや低めであるものの,実験と噴射パターンが共通である

N₂H₄/NO₂ ジェットはばらつき内に収まっているため, 解析 の妥当性を確認できる.

6. 結論

N₂H₄/NO₂から成る2次元平行ジェットを対象に,数百の 素反応から成る反応機構を用いた非定常反応性流体解析 を実施し,火炎構造の特徴を調査した.

Fig. 8: Lateral profiles of the time-averaged temperature and major species of the NO_2/N_2H_4 co-flowing jet.

その結果,一般的な同軸拡散火炎に加えて N_2H_4 の発熱 自己分解火炎からなる 2 重火炎構造を形成することが明 らかとなった.火炎基部付近では N_2H_4 と NO_2 の拡散火炎 が支配的となるが,その火炎からの熱伝達によって N_2H_4 の自己分解反応が誘起され、2000K 前後の自己分解火炎が 形成された.その結果, N_2H_4 が内側のジェットの場合はジ ェットコアが非常に短くなり,逆に N_2H_4 が外側のジェッ トの場合は自己分解火炎が周囲に燃え広がり、非常に厚い 火炎帯が形成された.さらに自己分解反応によって生じた 高濃度の NH_3 は、下流に移行すると N_2H_4 と NO_2 間の高温 燃焼ガスからの熱伝達により N_2 と H_2 へ分解された.以上 のように、低温着火過程とは異なり、 N_2H_4 の発熱自己分解 反応が火炎構造や下流の燃焼ガス分布に強く影響するこ とが明らかとなった.

参考文献

- Daimon, Y., Terashima, H., Koshi, M., (in press) Chemical Kinetics of Hypergolic Ignition in N₂H₄/N₂O₄-NO₂ Gas Mixtures, *J. Propulsion and Power*.
- Morii, Y., Terashima, H., Koshi, M., Shimizu, T., (2014) Robust Explicit Time Integration Method for Stiff Chemical Kinetic ODEs, 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.
- Tani, H., Terashima, H., Daimon, Y., Koshi, M., (2014) Hypergolic Ignition Mechanism of Hydrazine/nitrogen tetroxide Co-flowing Jets at Low Tempearture, 10th International Symposium on Special Topics in Chemical Propulsion & Energetic Materials.
- Miyajima, H., Sakamoto, H., (1973) Technical Note Gas Phase Ignition of Hydrazine with Nitrogen Dioxide, *Combust. Sci. and Tech*, 8 (4), pp.199–200.

- 5) Kim, S. D., Lee, B. J., Lee, H. J., Jeung, I.-S., (2009) Robust HLLC Riemann Solver with Weighted Average Flux Scheme for Strong Shock, *J. Comp. Physics*, 228 (20), pp.7634–7642.
- Gottlieb, S., Shu, C. W., (1998) Total Variation Diminishing Runge-Kutta Schemes, *Comput. of the American Math. Society*, 67 (221), pp.73–85.
- Brown, P. N., Byrne, G. D. and Hindmarsh, A. C., (1989) Vode: A Variable Coefficient ODE Solver, SIAM J. on Sci. and Statistical Comput., 10 (5), pp.1038–1051.