極超音速希薄空力特性に及ぼす表面モデルの影響 小澤宇志,鈴木俊之,藤田和央 宇宙航空研究開発機構

Effects of Surface Accommodation on Hypersonic Rarefied Aerodynamics

by

Takashi Ozawa, Toshiyuki Suzuki and Kazuhisa Fujita (JAXA)

ABSTRACT

At Japan Aerospace Exploration Agency (JAXA), a hypersonic rarefied wind tunnel (HRWT) has been developed for the purpose of studying rarefied gas dynamics. In accordance with our previous work, this wind tunnel is capable of producing 25-mm hypersonic rarefied core flows with a Mach number greater than 10 and a Knudsen number greater than 0.1 with a 5-mm model. In this work, we first investigate a measurement system for surface accommodation parameters by measuring the displacement of sphere pendulous models, and discuss the capability to determine surface parameters of various materials.

1. 目的および背景

大気圈再突入宇宙機,惑星探查機,超低高度衛星(Super Low Altitude Test Satellite: SLATS)等,様々なミッション において極超音速空力特性の高精度評価が重要な課題と なっている.これまで連続流領域においては、風洞試験 と CFD(Computational Fluid Dynamics)による双方の空力評 価が可能であり、その評価技術手法が確立されてきた. しかし,希薄度が高く,連続流の仮定が破綻するような 領域では,基本的に空力予測は自由分子流理論や DSMC(direct simulation Monte Carlo)¹⁾法等による数値解析 に依存している. そのため, 解析精度の評価方法が現状 では乏しい状況である.また、希薄度が高くなるにつれ て空力特性の表面熱適応係数依存性が高くなる 2)3).しか しながら、表面熱適応係数のデータベースも現在のとこ ろ構築されていない.一方,最近では超低高度衛星⁴⁾の 開発にともなって極超音速希薄流領域における機体の空 力特性評価の高精度化が重要となってきており、希薄空 力検証システムの開発が必要である.このような背景の もと、JAXA では極超音速希薄風洞(Hypersonic Rarefied Wind Tunnel: HRWT)を開発し、極超音速希薄空力の直接 計測システムの確立および表面熱適応係数評価手法の確 立を目指している.

これまで JAXA では、HRWT における極超音速希薄流 の特性を実験と数値計算により総合的に評価してきた. 風洞試験によって得られる気流情報は限定的であるため、 数値解析により気流情報を補填し、マッハ数、クヌーセン数等の気流環境を特定する.希薄風洞試験では、吊り 下げ式球模型を用いた動圧計測⁵⁾、ピトー管を用いた圧 力分布計測を実施し、CFD/DSMC 連成数値計算による気 流評価⁶⁾と融合することにより HRWT 気流検定精度を向 上させてきた.その結果、45 度コニカルノズルを使用す ることによって HRWT 計測部の気流条件は、コア直径 25 mm、マッハ数 10 以上、クヌーセン数 0.1 以上を達成 していることが判明した⁷⁾.

ミッションの実現に向けて空力予測誤差は 10%以下が 望ましいが,希薄領域では表面熱適応係数依存性のため 高精度に予測することが困難である.そのため空力予測 精度を高めるためには,表面熱適応係数の決定精度を高 める必要がある.これまでの研究から球模型を用いた場 合,球形状の特性により表面は拡散反射モデルのほうが 鏡面反射モデルよりも一様に変位が大きくなることが判 明している.そのため,この特性を活かして変位差から 熱適応係数を決定できる可能性がある.従って本稿では, 球模型計測・数値計算融合解析手法を用いることにより, 表面熱適応係数計測システムの確立を目指す.

2. HRWT 計測手法

JAXA に設置されている HRWT の基本構成(図 1 参照) は、真空チャンバー、真空排気系、気流供給系、気流加 熱装置、ノズル部、模型支持部、計測装置である. 試験 気流は流量計を通った後に気流加熱装置内に流れ込み、 その後ノズル部通過時に加速・膨張し、左右と下部に観 測窓が設置された直径 lm、長さ 1.5m の真空チャンバー 内に流れる. HRWT の真空排気系は 3 台のターボ分子ポ ンプ(ULVAC UTM-3303FH, 排気速度 1 台当り 3,300 L/s) と 1 台のドライ真空ポンプ(ULVAC LR300, 排気速度 6,000 L/min)から構成されている. ノズル部はスロート径 1.632mm、出口径 100mm (開口比 3755) 、半頂角 45 度 の銅製コニカルノズルである. ノズルスロート上流の淀 み部において、気流の全温度と全圧を K 型熱電対とキャ

図 1: JAXA100mm 極超音速希薄風洞の写真(上)とその概 要(下).

パシタンスマノメータを用いてそれぞれ計測する.ノズ ル壁面温度は、ノズル壁面近傍の冷却水温度を K 型熱電 対で計測することにより決定する.HRWT の試験条件は、 質量流量と全温度を設定する事により決定される.

HRWT の変位計測システムは 2 台の CCD カメラで構成される.真空チャンバーの右側と下側の観測窓にそれぞれ CCD カメラが設置されており,画像処理法により模型の 3 方向(x,y,z)の変位量及び偏揺れモーメントによる回転角度を測定することができる(図 2 参照).本研究では図 3 のように吊り下げ方式を用い,模型は直径 5 mmの球形模型を使用する.模型は真空チャンバー上方の自動ステージから直径 20 μ m,長さ 220 mmのステンレス製細糸で吊り下げられており,3 軸制御が可能である.球模型の変位は,図 4 に示されているように抗力と横力による $\Delta x \ge \Delta y$ を計測する. HRWTの試験条件は,質量流量 と全温度を設定する事により決定される.本研究では、窒素ガスのみを使用し、質量流量 0.08 g/s の条件において試験を実施した.

3. 数值解析手法

HRWT における気流は、ノズル膨張部において希薄化 が進むことにより連続流から非連続流へと遷移するため、 本研究では連続流領域は CFD コードを使用し、希薄流領 域では DSMC 法に基づく解析コードを使用する CFD-DSMC 連成計算を行う. CFD 計算は現在 JAXA で開発中 の JONATHAN(JAXA's Optimized Nonequilibrium Aero-Thermodynamic ANalysis (JONATHAN)コードを用い、 DSMC 計算は MOTIF(Modeling Of Transitional-Ionized Flows)コードを使用する. 両解析コードの詳細について は文献 8)に与えられているため本稿では省略する.

図 2: HRWT 変位計測システム : 側面 CCD カメラ(上), 底面 CCD カメラ(下).

CFD-DSMC 連成計算の計算領域の一例を図 5 に示す. まず, CFD ノズル流計算を行い, 非連続領域において DSMC 計算を行う. CFD 計算における試験ガス流量,全 圧, 全温度などの流入境界条件は計測値を使用し, DSMC 流入境界条件は収束した CFD 解析結果をもとに与 えられる.図5に見られるように、CFD-DSMC境界は、 ノズルスロート部をわずかに過ぎたノズル拡張部のクヌ ーセン数が 0.01 付近に設定し、結果が境界に依存しない ような境界を選定する.本稿の数値解析では、気流は窒 素ガス 100%とし,窒素の回転・振動モードは考慮する. しかし、化学反応や電子励起等は気流温度が 1,000 度以 下であるためその影響は無視でき、本稿では考慮しない. CFD 計算では、ノンスリップ拡散反射モデルをノズル壁 面に用い, DSMC 計算では Maxwell 完全拡散反射モデル を気体とノズル表面の相互作用に用いる. DSMC 計算で は R-T(Rotation-Translation), V-T (Vibration-Translation)エ ネルギー遷移は, BL(Borgnakke -Larsen)モデル⁹⁾で考慮し, 温度依存の回転,振動衝突数を用いる.

本研究では、球模型の変位予測精度を向上させるため、 模型と極超音速ノズル流を融合した DSMC 数値解析を行う.計測・計算融合手法として球模型計測では2 自由度 (*dx*, *dy*)を評価し、計測結果と比較することにより、表面 熱適応係数決定手法の確立を目指す.気流方向を *x* 方向 とし、希薄風洞の計測部は、ノズル出口から約 100 mm の領域である.計測部におけるマッハ数とクヌーセン数 のノズル半径方向の分布を図 6 に示す.図に見られるようにノズル出口から 17 mm より下流ではマッハ数が徐々に高くなっていることがわかる.コア直径は約 25 mm でクヌ ーセン数(代表長 5 mm)も下流にいくほど高くなり、ノズ

Z Vertical) C Ver

図 4: HRWT 球模型 2 自由度計測イメージ図.

ル出口から 17 mm 以上下流の領域ではクヌーセン数が 0.1 以上となっている.そこで本研究では球模型の初期位 置は、ノズル出口から 17 mm とする.横方向(y)は中心線 から 0-10 mm とし、上下(z)方向には模型の対称性を維持 するため、z=0 の位置に模型を配置する.

DSMC 計算では、サンプリングタイム∆t における模型 への空力を各 DSMC 粒子衝突による運動量輸送の総和として式(1)で計算する.

$$\mathbf{F} = \sum_{p} \left[(m \mathbf{v}_{p}^{pre} - m \mathbf{v}_{p}^{post}) F_{num,p} \right] / \Delta t \cdot$$
(1)

ここで p は粒子をあらわす.式(1)で求めた空力と吊り下 げ糸の張力との釣り合いから模型の初期変位を以下の式 で計算する.

$$\theta = \tan^{-1}(F/m_t g), \ \Delta L = L_{st} \sin \theta, \tag{2}$$

$$\varphi = \tan^{-1}(F_y / F_y), \ \Delta x = \Delta L \cos \varphi, \ \Delta y = \Delta L \sin \varphi$$

模型の変位変化が収束するまで、反復アルゴリズムを用 いて模型の釣り合い位置を計算する.気体と模型表面の 相互作用には CLL(Cercignani-Lampis-Lord)¹⁰反射モデル を用い、本稿では法線運動量適応係数、接線運動量適応 係数、熱適応係数は同一と仮定して、1 変数 a の依存性 を評価する.また、模型表面温度は 290 K と仮定する. さらに、衝突セルに関しては多階層構造を導入し、本稿 では 2 階層で計算を行う.マクロパラメータのサンプリ

図 5: CFD-DSMC 連成計算領域.

図 6: HRWT 計測部におけるマッハ数とクヌーセン数の分 布.

ングは定常状態に達したタイムステップから開始する. タイムステップ,セル幅,ドメインサイズ,粒子数は, 計算結果がこれらのパラメータに依存しない適した値を 用いた.

また、本稿では球模型の抗力係数クヌーセン数依存性 をブリッジング関数(Bridging Formula: BF)を用いて評価す る. BF 関数は、下記の半経験式で評価し、正弦二乗モデ ルを適用する.

$$C = C_{CNT} + (C_{FM} - C_{CNT})\sin^2 \phi, \qquad (3)$$

[0, if $Kn < 10^{-a/b}$

$$\phi = \begin{cases} \pi(a + b\log_{10} Kn), & \text{if } 10^{-a/b} \le Kn \le 10^{(1-2a)/2b}. \\ \pi/2, & \text{if } Kn > 10^{(1-2a)/2b} \end{cases}$$
(4)

式中の C は空力係数であり,下付き文字の CNT, FM は それぞれ連続流(Continuum),自由分子流(Free-Molecular) を意味する.パラメータ a, b は通常それぞれ 3/8,1/8 で あるが,本稿では空力予測精度を高めるため,DSMC 結 果に最小二乗法を用いてこれらの係数を決定する.自由 分子流における球模型の鏡面反射抗力係数は以下の式で 与えられる.¹¹⁾

$$C_{D,S} = 2\left(1 + \frac{1}{s^2} - \frac{1}{4s^4}\right) erf(s) + \frac{2s^2 + 1}{\sqrt{\pi s^3}} \exp(-s^2) .$$
(5)

式中のsは速度比である. 拡散反射モデルの抗力係数は, 気流温度 T_{∞} の壁面温度 T_w に対する比に依存する項を追加した以下の式で与えられる.

$$C_{D,D} = C_{D,S} + \frac{2\sqrt{\pi}}{3s_W}, \ s_W = s_V \frac{T_\infty}{T_W}$$
(6)

連続流領域での球抗力係数は0.9212)を使用する.

4. 結果と考察

4. 1. ステンレス球模型変位計測による表面係数の評価

2 方向 CCD 画像処理法によりステンレス球模型の 2 自 由度変位(Δx, Δy)計測を行った. 模型の直径は5 mm, 初 期位置は, x₀=17 mm, y₀=10 mm に設定した. 本稿ではヒ ーターは使用せず, 質量流量を 0.08 g/s に固定して変位計 測を行った.その結果を図 7 に示す.流れ方向の変位 Δx は約 14 mm, 横方向の変位 Δy は約 2.3 mm であった.数 値解析では球模型を融合した DSMC 計算を行い,2 自由 度変位の表面熱適応係数依存性を評価した. その結果を 図 7 において計測結果と比較する. 鏡面反射(a=0.0)と拡 散反射(a=1.0)の結果を比較すると、ステンレス球の場合、 流れ方向の変位では約2.4 mm 程度の変位差があり、拡散 反射の方が、変位が大きい.また、 Δx の変位変化は α の 増加とともにほぼ一様に変位が大きくなっていることが わかる.一方,横方向の変位に関しては依存性が比較的 小さい. 従って、Δxの変位変化と計測結果を比較するこ とにより表面熱適応係数を決定することが可能であり, ステンレス球模型のαは 0.9±0.1 であることが判明した. すなわち,ステンレス球模型の表面は拡散反射に近いこ とがわかる.

次に,球模型抗力係数のクヌーセン数依存性を評価する.DSMC 計算において,温度と速度は希薄風洞の計測 環境と同条件の値に固定し,密度のみを変化させること により,クヌーセン数を 0.01 から 10 の間で変化させ, 抗力係数を計算する.球の直径は5 mm,表面状態は完全 鏡面反射と完全拡散反射の 2 ケースで計算を行い,それ ぞれブリッジング関数を求める.その結果を図 8 に示す. 拡散反射モデルを用いた場合,ブリッジング関数の係数 *a*,*b*はそれぞれ 0.375, 0.125 であった.鏡面反射モデルを 用いた場合,これらの係数はそれぞれ 0.41, 0.20 であった. 図に見られるように,すべての領域において拡散反射モ

図 7 ステンレス球模型の変位(*△x*,*△y*)と表面係数の相関 性(*y*₀=10 mm).

図 8 ステンレス球模型抗力係数のクヌーセン数依存性の 計測結果と解析結果の比較.

デルの方が鏡面反射モデルの場合より高い抗力係数を予 測することがわかる.また,クヌーセン数が高くなるほ ど両ケースの抗力係数の差は大きくなる.ただし,希薄 度が高くなりすぎると抗力も小さくなるため,両表面モ デルの変位計測における差は小さくなる.さらに,希薄 風洞の計測結果は上記の検討で判明したとおり,拡散反 射モデルの場合と良い一致を示している.

4. 2. 球模型による表面係数物質依存性評価

前節においてステンレス球模型による変位計測を行ったところ、表面熱適応係数の評価が可能であることが判明した.そこで本節では、模型でよく使用するアルミニウム、カーボン系の3素材(等方性黒鉛、SiC、複合材炭素繊維強化炭素複合材料)においても表面熱適応係数が評価可能か検討する.それぞれ直径5 mm の球形状、模型の初期位置 x_0, y_0 はそれぞれ 17 mm,0 mm とし、表面熱適応係数 α は 0.2 刻みで計算し、流れ方向の変位 Δx の変化を評価した.

まず,エアロシェル模型等で使用されるアルミニウム 模型の結果を図 9 に示す.アルミニウム球模型のほうが ステンレス球模型に比べて軽いため,変位が全体的に大 きくなっているが,ステンレスの場合と同様に熱適応係

図 9 アルミニウム球模型の変位と熱適応係数の関係.

図 10 等方性黒鉛球模型の変位と熱適応係数の関係.

数が増加するにつれて変位もほぼ一様に大きくなってい ることがわかる. 拡散反射モデルの変位が約 31.6 mm で あるのに対して, 鏡面反射モデルの変位は約 27.4 mm で あり,変位差は4.2 mm と大きくなっている. 従って,ス テンレス球の場合よりも高精度に熱適応係数が計測でき る可能性がある.

次に、実際の熱防護材としてよく使用されるカーボン 系素材である等方性黒鉛を用いて球模型変位計測を行っ た. その結果を図 10 に示す. 図に見られるようにカーボ ン系素材に対してもほぼ同様の結果が得られた.また, 黒鉛の方がアルミニウムよりも密度が低いため、変位差 も大きくなり、拡散反射モデルと鏡面反射モデルの場合 で約 5 mm 程度の変位差が生じる.従って,密度が軽い ほど熱適応係数の決定精度が高くなる可能性がある. さ らに、図 11 に希薄風洞における拡散反射モデルと鏡面反 射モデルの場合の変位差と模型密度の相関性を示す.図 に見られるように密度が軽いほど表面モデルによる変位 差が大きくなることがわかる.特に,C/C や黒鉛は変位 差が約 5 mm と大きいため、表面熱適応係数を決定しや すい可能性がある.しかし、金属と比べてカーボン系素 材の表面加工は困難であるため,表面の粗さによる計測 誤差への影響も評価すべき点である. 今後は実際にそれ

図 11 希薄風洞における拡散反射モデルと鏡面反射モ デルの場合の変位差と模型密度の相関性

ぞれの素材の球模型を製作し,数値解析結果と比較検証 を行い,表面熱適応係数計測精度の向上を目指す.

5. おわりに

本研究は、極超音速希薄風洞において球模型に及ぼす 希薄空力変位計測を行い、球模型計測・数値計算融合解 析手法を用いることにより、表面熱適応係数の決定手法 を検討した.まず、ステンレス球模型変位計測と数値解 析により、球形状では拡散反射モデルの方が鏡面反射モ デルの場合より常に変位が大きくなる特性を活かして、 表面熱適応係数の評価が可能であることを実証した.次 に、アルミニウムやカーボン系素材等の球模型変位特性 を解析し、表面熱適応係数計測手法の物質依存性を評価 した.今後、実際にそれぞれの素材の表面熱適応係数計 測を行い、解析結果との比較検証を行うことにより、表 面熱適応係数計測システムの確立を目指す.

謝辞

本研究は科研費(25820414)の助成を受けたものである.

参考文献

- Bird, G. A., Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon, Oxford, England, U.K., 1994.
- Fujita, K., Inatani, Y., and Hiraki, K., "Attitude Stability of Blunt-Body Capsules in Hypersonic Rarefied Regime," *Journal of Spacecraft and Rockets*, Vol. 41, No. 6, 2004, pp. 925–931.
- 3) Ozawa, T., Takayanagi, H., Suzuki, T., and Fujita, K., "Analysis of Rarefied Aerodynamic Effects for Mars Entry Missions," AIAA Paper 2012-3101, 43rd AIAA Thermophysics Conference, New Orleans, Louisiana, June 25-28, 2012.
- Fujita, K. and Noda, A., "Rarefied Aerodynamics of a Super Low Altitude Test Satellite," AIAA Paper 2009-3606, 2009.
- Suzuki, T., Ozawa, T., and Fujita, K., "Coupling Particle Simulation with Aerodynamic Measurement in Hypersonic Rarefied Wind Tunnel in JAXA," 28th International Symposium on

Rarefied Gas Dynamics (AIP Conference Proceedings), Vol. 1501, pp. 1213-1219, 2012.

- Ozawa, T., Suzuki. T., and Fujita, K., "Analysis of Rarefaction Effects in the Hypersonic Rarefied Wind Tunnel," AIAA Paper 2013-0192, 2013.
- 小澤宇志,鈴木俊之,藤田和央, "極超音速希薄風洞流 れ場の粒子計算解析," 宇宙航空研究開発機構特別資 料 JAXA-SP-13-011, 2013, pp. 47-52.
- Ozawa, T., Suzuki, T. and Fujita, K., "Experimental and Numerical Studies of Hypersonic Flows in the Rarefied Wind Tunnel," AIAA Paper 2010-4513, 2010.
- Borgnakke, C. and Larsen, P. S., "Statistical Collision Model for Monte Carlo Simulation of Polyatomic Gas Mixture," *Journal of Computational Physics*, Vol. 18, No. 4, 1975, pp. 405–420.
- Hedahl, M. O. and Wilmoth, R. G., "Comparison of the Maxwell and CLL Gas/Surface Interaction Models Using DSMC," NASA TM-110205, Dec. 1995.
- Cook, G. E., "The Aerodynamic Drag of Near Earth Satellites," Aeronautical Research Council, C. P. No. 523, 1960.
- 12) Masson, D., J., Morris, D. N., and Bloxsom, D. E., "Measurements of Sphere Drag from Hypersonic Continuum to Free-Molecule Flow," U.S. Air Force RM-2678, 1960.