非協力的ターゲットへの接近ストラテジ

Approach Strategy to a Non-Cooperative Target

○山元 透, 村上尚美, 山中浩二(宇宙航空研究開発機構) OToru Yamamoto, Naomi Murakami, Koji Yamanaka (JAXA)

デブリの積極的除去のために、接近し何らかの推進系を取り付ける必要がある。デブリのような非協力的タ ーゲットへの接近には、ISSのような協力的ターゲットと比較して、事前の軌道情報(NORAD TLE)の精度が 低い、相対航法の継続性・安定性の確保が困難、といった技術的課題がある。これらの技術的課題を考慮し た接近ストラテジの検討状況について紹介する。まず、非協力的ターゲット接近シナリオの全体像と必要技 術を概観する。また、事前の軌道情報の精度の調査結果を示すとともに、相対航法センサシステムの概念的 検討を示す。さらに、カメラによる相対航法においてキー技術となる、Angles-only navigation の簡易的検討 結果を示し、可観測性と衝突安全を考慮した接近軌道設計の考え方を示す。最後に、今後の課題と技術開 発プランについて述べる。

Approach Strategy to a Non-Cooperative Target 非協力的ターゲットへの接近ストラテジ

22 Jan 2013 Space debris workshop

Toru Yamamoto, Naomi Murakami, Koji Yamanaka Guidance and Control Group Japan Aerospace Exploration Agency

Outline

- Introduction
 - What is a "non-cooperative target" ?
 - Why approach to a non-cooperative target is challenging ?
- Structure of approach operation and necessary technologies
- Key technical issues
 - Orbit prediction accuracy of LEO space debris
 - Relative navigation sensors for space debris
 - Angles-only navigation
 - Trajectory design to avoid a collision with a target
- Approach case study by numerical simulations
- Conclusions

2

1. Introduction

What is a "non-cooperative target" ?

- Non-cooperative target is
 - A rendezvous target which does not have any cooperative functionalities to support approach guidance, navigation and control
- Features of non-cooperative targets
 - Orbit determination by R&RR, GPSR is not available
 - No target markers or laser retroreflecters for vision/laser sensors are available
 - Knowledge about optical property (specular/diffuse reflectance, etc.) is limited
 - Attitude is not known and it is not controlled but in natural motion

1. Introduction

Why approach to a non-cooperative target is challenging ?

- Approach to a non-cooperative target is mandatory for active debris removal (ADR), but it is NOT EASY
- Poor knowledge of a target orbit
 - Accurate orbit data by R&RR, GPSR is not available
 - Orbit data by radar tracking (TLE, etc.) is available but poor
- Poor knowledge to design S/N of relative navigation
 - Poor knowledge of optical property of surface and attitude
 - Wide range of lighting condition (Solar illumination, Earth albedo)
 - Difficult to confirm stable relative navigation
- Poor knowledge of location of target center of mass
 - Location of target center of mass should be known to establish stable relative orbit keeping
 - Estimation of target center of mass in the target body is not easy

This document is provided by JAXA.

3.1 Key technical issues - Orbit prediction accuracy of LEO space debris

Orbit prediction accuracy of LEO space debris

- TLE is important apriori knowledge of target orbit
 - Orbit prediction accuracy of TLE/SGP4 is investigated by several authors
 - Aida S., Kirschner M., "Collision Risk Assessment and Operational Experiences for LEO Satellites at GSOC", 22nd ISSFD, 28 Feb. - 4 March 2011, Sao Jose dos Campos, Brazil (2011)
 - 倉田育枝, 足立学, 矢里秀作, 亀山雅也, 松田郁未, 廣瀬史子, 工藤伸夫, "スペースデブリ軌道精 度評価", 第54回宇宙科学技術連合講演会, 17 Nov., 静岡県コンベンションアーツセンター (2010)
- Typical TLE/SGP4 performance of LEO debris:

	1 day pro	pagation	7day propagation		
	Radial Cross-Track	Tangential	Radial Cross-Track	Tangential	
High solar activity	0.5 - 1 km	2 - 10 km	0.5 - 2 km	15 - 50 km	
Low solar activity	0.5 - 1 km	1 - 2 km	0.5 - 2 km	2 - 8 km	

- During high solar activity period tangential errors after long propagation become large
- Low altitude debris tend to have larger tangential errors after long propagation
- Radar Cross Section (RCS) has sensitivity to accuracy of TLE
- Other radar tracking stations (ex. FGAN, Kamisaibara) have great functionalities to provide target orbit data timely

3.1 Key technical issues - Orbit prediction accuracy of LEO space debris

Example: TLE/SGP4 prediction accuracy of ADEOS-II

■ ADEOS-2(803km), 2003/5/20, F10.7 flux = 117.1

■ GPS orbit determination data is used as reference

This document is provided by JAXA.

Relative navigation sensors for space debris

- Visible Camera is low cost and available in long distance, but not available at night and sensitive to lighting conditions
- Infrared Camera is available at night and not sensitive to lighting conditions, but available distance is medium
- Laser sensors are available at night and stable, but need high power and high cost

		e .	Ran	ange <u>ő</u>		4			
		Attitu	Far	Near	LOS An	Nigh	Pros	Cons	Examples
Visible Ca	mera	0	×	0	0	×	Low cost Long distance High resolution	Not available at night Sensitive to lighting conditions Poor range accuracy	So many on-board visible cameras are flying in space
Infrared Camera		0	×	0	0	0	Available at night Robust to lighting conditions	Low resolution Available distance is medium Poor range accuracy	Planet-C, ALOS-2, Hayabusa-2, Orbital Express, Space-X Dragon
Laser Sensor	Laser Range Finder	×	0	0	×	0	Available at night Long distance Accurate	LOS angles NOT measured High power consumption High cost (?)	Hayabusa-1/2, SELENE, Orbital Express
	SCAN LIDAR	Δ	0	0	0	0	Available at night Long distance Accurate	High power consumption High cost (?)	XSS-11
	FLASH LIDAR	0	×	0	0	0	Available at night Attitude can be measured	Short distance only High power consumption High cost (?)	Space-X DRAGON

3.2 Key technical issues - Relative navigation sensors for space debris

Mathematical modeling of relative navigation sensors

- Visible camera detects reflection (both specular and diffuse) of sunlight from target surface
- Infrared camera detects thermal radiation from target surface
- Laser range finder detects reflection (both specular and diffuse) of transmitted laser pulses from target surface
- "Modified Phong model" is used as reflection model

3.2 Key technical issues - Relative navigation sensors for space debris

Case study: Infrared camera detectability

- Detectability strongly depends on temprature and infrared emissivity of target ⇒ This is just a case study!
- Infrared camera may detect target from 15km
- Infrared camera is rather stable against solar lighting conditions

- Why angles-only navigation is necessary ?
 - A target is seen as a tiny point from long distance
 - If laser sensors are not available, a chaser must approach to a target using only direction information until target shape can be seen on a camera image
- Features of angles-only navigation
 - No direct 3D position information
 - Trajectory should ensure visibility and observability
 - Proper maneuver execution stimulates observability in tangential direction

3.4 Key technical issues - Trajectory design to avoid a collision with a target

Trajectory design to avoid a collision with a target

- Tangential (Along-track) direction of a target is dangerous zone
 - Relative navigation to a non-cooperative target is unstable
 - Knowledge of tangential relative distance by angles-only navigation is poor
- Three basic principles to design safe trajectory
 - 1: Propagated trajectory should be safe even if a maneuver is cancelled
 - 2: Propagated trajectory should be safe even if navigation errors are considered
 - 3: Opportunities to be at the same height with a target should be minimized

4 Approach case study by numerical simulations

Approach case study by numerical simulations

- A sample approach scenario has been designed
- Navigation simulation from far-range to medium-range phase
- Main interest is investigation of Angles-only navigation performance

This document is provided by JAXA.

This document is provided by JAXA.

4 Approach case study by numerical simulations

Summary of navigation case study simulation

- Angles-only navigation may provide navigation data with sufficient accuracy to connect from TLE/SGP4 navigation to vision-based navigation using size of the target.
- Detectability of visible camera depends on beta angle.
- Detectability of visible camera strongly depends on sunlight direction. Measurements of visible camera are available in a limited portion of an orbital revolution.
- Infrared camera can be great stable navigation source in medium range.
- Direct range information from laser range finder dramatically improve navigation accuracy in tangential direction.
- Optical property of the target is the key factor of detectability and this case study strongly depends on it.

Conclusions

- Approach to a non-cooperative target is not a easy task
- Poor knowledge of target optical property and motion is the key factor of the difficulty
- Rendezvous system for active debris removal should be able to absorb wide dynamic range of these uncertainties
- High fidelity modeling of target optical property, motion, and sensor hardware is important, but it may be challenging to be precise enough on ground
- The most important point is flexibility of rendezvous system and operation plan to be able to absorb remaining uncertainties during actual flight