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Analysis of Fatigue Fractographic Data of a Rod
End Housing Using Monte Carlo Simulation*

Toshiyuki SHIMOKAWA*! and Yoshiaki KAKUTA*!

ABSTRACT

This paper presents a new method using Monte Carlo simulation to estimate a life distribution
of fatigue crack propagation on the basis of crack length versus striation spacing data. Moreover,
to compare with the results obtained by this method, simple stochastic crack growth models using
Monte Carlo simulation and other probabilistic methods without a simulation procedure provide
the life distributions. The proposed method uses the distributions of two parameter estimates of a
regression line with a reasonable correlation between the two parameter estimates. One cycle of
the Monte Carlo scheme generates a set of the two parameter estimates and they give a life of crack
propagation. In this study, these methods are applied for the striation spacing-data measured on the
fatigue fracture surface of a rod end housing of a hydraulic actuator used for a main landing gear
of a transport aircraft. The life distributions predicted are discussed and compared to clarify the
features of each method. The proposed method approximates the true fatigue life as the B allowable
life when the initial crack length is assumed to be 0 mm.

Keywords: Fractography, SEM observation, Fatigue crack propagation, Regression analysis, Monte
Carlo simulation, Stochastic process models, Life distribution, Reliability analysis,
B-allowable life.
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Symbols Used b, = location parameter of b in Type-I extreme-
a = crack length value distribution

a, = initial crack length b = scale parameter of b in two-parameter
a, = final crack length Weibull distribution

b = striation spacing C = a parameter of a and b relationship
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E = afunction of R

f{(-) = probability density function

F(+) = cumulative distribution function for Type-1
extreme-value distribution

F,(-) = cumulative distribution function for two-
parameter Weibull distribution

k = sample size

m = a parameter of a and b relationship

n = number of load cycles

N = life of crack propagation

N* = deterministic life of crack propagation

N, = B allowable life or 90% confidence limit
of N

N,, = median life from averaged log-life

N,,. = median life by ranking

g(a) = scale parameter of b at a in Type-I extreme-
value distribution

R = reliability

u = standard normal variable

o = shape parameter of b in two-parameter
Weibull distribution

n = coefficient of variation of b

M, = equivalent coefficient of variation of b in

Type-1 extreme-value distribution
u(a) = mean or median of b at a
Y, (a)= mean of log b at a
o(a) = standard deviation of b at a
o(-) = standard deviation
o, = standard error
o, = log standard deviation
0,(a)= standard deviation of log b at a
o°(+) = variance
G, = error variance

1. Introduction

Each striation spacing observed by a scanning
electron microscope (SEM) on a fatigue fracture
surface is widely recognized to represent the increment
of crack length by one load cycle. However, this spac-
ing is only the result of one-point observation in a
wide area of the fatigue fracture surface. Moreover,
striation spacing b versus crack length a data are
plotted on one graph, the data points are not distributed
on a single line but in a wide band, even if they are
obtained from one fracture surface. This means that
there is, at least locally, no deterministic relationship
between crack length and striation spacing.

On the other hand, the purpose of measuring
striation spacing on the fracture surface formed in an
actual structure is to get information on the relation-
ship between crack length and the number of load
cycles, life of fatigue crack propagation, stress
intensity factor at arbitrary crack length, etc. For
these purposes, the data points distributed in a wide
band are generally assumed to have a deterministic
relationship and can be approximated by a single
linear regression line on double logarithmic graph
paper. Statistical and probabilistic analyses can also
be applicable for this kind of data and provide
probabilistic prediction with respect to crack propa-
gation. The following concepts are acceptable for
practical probabilistic and statistical analyses.

(1) b occurs as a random variable at arbitrary
crack length a. (2) If the a and b data are approxi-
mated by a regression line, the estimates of the two
parameters have statistical distributions respectively.
In the latter case, two ideas are effective, namely, (2a)
the slope parameter of a regression line is regarded
as deterministic because of the small scatter in its
estimates, and only the estimates of the intersection
parameter have a statistical distribution, and (2b)
each of the two parameter estimates has a statistical
distribution.

Concept (1) described above was used in the
stochastic crack growth models proposed by Virkler
et al. [1, 2], Yang et al. [3, 4], and Artley {5], the
features of these models were clarified to some
extent. On the other hand, on the basis of concept
(2a), the relationship between stress intensity factor
and crack growth rate was discussed by Besuner and
Tetelman [6], Harris and Lim [7], and Shimokawa
and Hamaguchi [8]. The studies by Yang et al. [3,
4] included this concept also. Since the authors are
not aware of any research reports which analyze
fatigue crack propagation using concept (2b), the
analysis using this concept is considered to be a new
proposal. Since the life of crack propagation can not
be analytically solved on the basis of concepts (1)
or (2b) without an approximation, Monte Carlo
simulation is indispensable.

The data analyzed in this study were measured by
SEM observation of a fracture surface which
emerged in a rod end housing of a hydraulic actuator
used for a main landing gear of a transport aircraft.
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This part is made of a 7075 forged aluminum alloy. The
stochastic and other probabilistic analysis procedures
mentioned above including the authors’ proposal are
described and formulated. The data is analyzed by
linear regression. A deterministic crack growth
approach predicts a deterministic life of crack propa-
gation. Using the results of the regression analysis,
the life distributions of crack propagation are
predicted by the described methods and the obtained
results are discussed and compared. Furthermore, the
probabilistic methods on the basis of concepts (2a)
and (2b) compute B allowable lives on the assump-
tion of an initial crack length of 0 mm. These B
allowable lives are compared with the true life of the
rod end housing.

2. Relationship Between Crack Length and
Striation Spacing
The relationship between crack length a and
striation spacing b can empirically be expressed by

b = Ca" 1)

where m and C are treated as constants when argued
in a deterministic crack growth approach. By trans-
forming Equation (1) into logarithm, then

logh = logC + m loga. (2)

In other words, the relationship between a and b
is a straight line on double logarithmic graph paper.
If b is considered to be the crack propagation rate,
Equation (1) corresponds to Paris-Erdogan’s law [9]
for a panel infinitely wide with a central crack. This
is shown in the appendix.

3. Observation of a Fracture Surface of a Rod

End Housing

Figure 1 depicts the external appearance of the
hydraulic actuator for a main landing gear of a
transport aircraft. Figure 2 shows the location of
fatigue fracture surfaces. Figure 3 presents an outline
of the variation of internal pressure acting on the rod
end housing in one flight cycle. Other hydraulic
pulsating pressure may occur other than this pressure
change. Figure 4 is an example of photographs taken
by a field-emission type SEM. Since the load history
of Figure 3 suggests that one pair of two coarse
striations are formed in each flight cycle, the striation

spacing in one flight cycle is defined as shown
in Figure 4, i.e., the interval at every pair of coarse
striations. Figure 5 indicates the observed a and b
data and the regression line determined later. Equa-
tion (2) reasonably approximates these data points.

Relief valve

Rod end housing

o L) =

A hydraulic actuator for a main landing
gear.

Crack

Figure 1

Final static failure

Fatigue crack (part A}

Fatigue crack (part B)

Saw cut

Figure 2 Fracture surface of a rod end housing.
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Figure 3 Pressure variation of the hydraulic actuator
in one flight cycle.
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R

Figure 4 Striations observed by SEM.

4. Estimation of Crack-Propagation Life and Its
Distribution from the Crack Length Versus
Striation Spacing Data
The life of crack propagation, N, and its distribu-

tion can be derived from the data shown in Figure

5. Principally, this is effective only in the interpolated

region of crack length in which striations were

observed. Let the initial crack length be @, and the
final crack length to failure be a - The symbols of
parameters, estimators, and estimates are not distin-

guished for simplicity of the expression later. A

summation symbol >¥ is simply written as ..

4.1 Deterministic Crack Growth Approach

A deterministic crack growth approach yields
only the deterministic life N*. At first, a regression
analysis determines the relationship between a and
b using their measured data. In this case, a is treated
as an independent variable. The estimates of m and
C in Equation (2) are calculated by

Zlogai -logh; —k . loga - logb

2. (loga,)* -  (Toga )?

C =exp,, (logh —m - loga), @

m

, 3

where k is the number of observations, exp,, (x) =107,

loga = (X loga )/k, ®))
and

logh = (X logh)/k, (6)
Then let n be the number of load cycles and

b = daldn. @)

0.01

0.001 |

Striation spacing b, mm

0.0001 - =
0.1 1 10 100

Crack length a, mm

Figure 5 Observed striation spacing versus crack
length.

By using Equations (1) and (4), N* can be led to

l-m__ _ 1-m
N = _ 4 ~% , (m# 1)
C{—-—m) ®
_ In(a;/ay) ’ (m=1)
C

In the following argument, the case m = 1 is not
discussed for simplicity of discussion.

4.2 Stochastic Crack Growth Models

In considering crack growth by stochastic
process models, this study employs the following
simple concepts. Namely, (a) one striation spacing
b formed at the crack tip of arbitrary crack length a
by one load cycle appears randomly and independ-
ently of the previous load history. One load cycle
means one flight cycle in the later discussion. (b)
The distribution of b follows one of the four
distribution models, i.e., normal, log-normal, Type-I
extreme-value, and two-parameter Weibull distribu-
tions. (c) The median of b at a is defined as p(a),
which is represented by Equation (2) and the
estimates of m and C obtained by the regression
analysis. (d) Concerning the scatter in b, the coeffi-
cient of variation m is assumed to be constant
regardless of a. This means that the log-standard
deviation 0, in the log-normal distribution, the
equivalent coefficient of variation 1, in the Type-I
extreme-value distribution, and the shape parameter
o in the two-parameter Weibull distribution are
constant independently of a. Figure 6 shows the
concept of crack growth by a stochastic process
model. As additional information of correspondence
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Distribution of b(a)
a-——  »
Crack
— u(@)—+
——b(a)—|

Figure 6 Concept of crack growth by a stochastic
process model.

in the distributions of the normal group and the
Weibull group, the normal distribution corresponds
to the Type-I extreme-value distribution and the log-
normal distribution to the two-parameter Weibull
distribution {10].

4.2.1 Normal crack growth rate model

In the case of a normal random process model,
the probability density function of b at arbitrary crack
length a, f(b), is written as

f(b)z—l——exp -

J2n @

where U(a) and o(a) are the mean and standard

{b-u(a)}2 9
—*——‘2{0(0)}2 - (9)

deviation of b at a respectively. Since the median
agrees with the mean in the case of the normal
distribution, p(a) is given by Equation (1) and the
estimates of m and C determined by the regression
analysis. The coefficient of variation m is

n = o(a)/u(a). (10)

From the assumption described above 7 is constant
regardless of a.

Denote crack length after the number of load
cycles j as a, and crack growth by one load cycle
after j cycles as b(a}). In the case of the normal
random process model, b(a) is given by

b(aj) = u(aj) (1+1- uj.+l), (1+7m - uj+]>0)
11
=0 (1+n-uMSO) }( )

where p(aj) = Ca';,'. When 141 - ”MS 0, the crack
does not grow; however, one cycle is added to the

total load cycles. If the value of u,, is given as a
normal random number by Monte Carlo simulation,
crack growth follows a normal random process.
Hence, the relationship between 4, and a, is writ-
ten as

a =a_+ Caj"i] (1+m -uj). (12)

The relation between crack length and number of
load cycles is calculated by adding the crack growth
from a, to g, at the j-th cycle. The life of crack propa-
gation, N, is defined by j when a, exceeds a, for the
first time. Accordingly, the distribution of N can be
led by the repetition of this procedure.

4.2.2 Log-normal crack growth rate model

In the case of the log-normal random process
model, the probability density function of logb at a,
fllogb), is given by replacing b by logb, pn(a) by
u,(a), the mean of logh, and c{(a) by G,(a), the
standard deviation of logb, in Equation (9). The
antilogarithm of |, (a) becomes the median p(a).
o,(a) is constant independently of a according to the
assumption described above. In this case, b(aj) is
represented by

bla) = p(a) exp (0, u,).  (13)
Therefore,

a=a_+ Ca’;’_l-exp o(O, uj). (14)

Using these equations, the relation between crack
length and number of load cycles and the life of
crack propagation can be calculated in a manner
similar to that of the normal random process model.
Equation (14) agrees with that proposed by Yang et
al. [3, 4], though the form of the equation is different.

4.2.3 Type-I extreme-value crack growth rate
model
In the case of the Type-1 extreme value random
process model, the cumulative distribution function
of b at a, F,(b), is represented by

b-b, (@)
— ], (15
g(a) H (4

Fo(b)=1 —exp{~ exp

where b (a) and g(a) are the location and scale
parameters of b at a respectively. Since the relation-
ship between a and b obtained by the regression
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analysis is regarded as the median relationship, b (a)
becomes

b(a) = W(@) - ga) - In (In2).  (16)

In the Type-1 extreme-value distribution, the
equivalent coefficient of variation, 11, is defined as

N, = gl@)p(a), (17)

where 1, is constant regardless of a. Let R be
reliability and
E, =In{In(l/R, )} - 1n(1n2). (18)

Then

b(a}.) = p(aj) - (4, - Ej+1)’ (1+m, - E,-+1 >0) (19)
=0, (I+m,-E,  <0)

When 147, E <0, a crack does not grow as in
the case of the normal random process model. This
equation leads to

a=a._ + Ca}"i1 (I+m, - Ej). (20)

Monte Carlo simulation generates a pseudo ran-
dom number and gives it to R. Equation (18)
presents the value of E; and Equation (20) provides
the relationship between crack length and the number
of load cycles and the life of crack propagation.

In comparing Equation (19) with Equation (11) or
Equation (20) with Equation (12), it is clarified that
M, corresponds to 1, and E} to u,.

4.2.4 Weibull crack growth rate model

In the case of the two-parameter Weibull random
process model, the cumulative distribution function
of b at a, F (b), is written as

b
b(a)

Fu(b)y=1-exp {—l

ala}
} » (21)

where b (a) and o(a) are the scale and shape para-
meters at a, respectively. o is constant regardless of
a according to the assumption mentioned before.
Since the relatiohship between a and b obtained by
the regression analysis is regarded as the median
relationship, b (a) becomes

be(a)= W (a)-exp (22)

In(In2) |-
——a .

Therefore, b(aj) is given by
b(aj) = u(aj.) - eXp (EM/OL). (23)
This equation leads to

a=a_ + Caj"j] (Ej/(x). 24)

Equation (24) provides the relationship between
crack length and the number of load cycles and the
life of crack propagation.

In comparing Equation (23) with Equation (13) or
Equation (24) with Equation (14), it is clarified that
1/o. corresponds to 6, and E, to u

4.3 Application of Distributions of Parameter
Estimates of a Regression Line
A proposed method is presented and a con-
ventional probabilistic method assuming m to be
deterministic is described as a special case of the
proposed method. The life and parameters discussed
here refer to the estimates.

4.3.1 In case of distributions of both m and C
estimates considered

When the data plotted in Figure S are approxi-
mated by a regression line on the basis of Equation
(2), the estimates of m and logC can be statistically
analyzed. These results can be applied for prob-
abilistic inference. If the distribution of the
combinations of both parameter estimates can be
obtained, this distribution leads to the life distribu-
tion of crack propagation. However, Monte Carlo
simulation is necessary to give the distribution of the
sets of both parameter estimates.

Since the estimates of m and logC are correlated,
it is difficult for any simulation to directly give a
proper set of both parameter estimates. Hence, let a
Monte Carlo scheme generate the combination of the
estimates of m and logb, because logb is independent
of m. Then logC is calculated using Equation (4).
f@ in Equation (4) is a deterministic value
determined by the method of measurement. Thus a
set of the properly correlated estimates of m and logC
can be obtained. Equation (4) indicates the correla-
tion between the two estimates of m and logC.

A regression theory provides an unbiased error
variance O, as
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) Z(logbi —logC—m-loga;)?
ol = T . (25)

Unbiased variances of m and logb, 6*[m] and
c?[logb], are given as

o’[m] = o}/{Z(log a)*~ k (loga)’}, (26)
o?[logb] = 62 /k. (27)

The estimate of m or fog—bcalculated from the data
1s known to follow a r-distribution. However, its
population should be a normal distribution of infinite
sample size. Therefore, in this Monte Carlo simula-
tion the populations of m and logb are considered to
be normal. With respect to m, the mean is defined
by Equation (3) and the variance by Equation (26).

As to logb, the mean is represented by Equation (6)
and the variance by Equation (27). One cycle of the
Monte Carlo scheme generates a set of m and logh
values, then Equation (4) gives the value of C using
the loga observed. Thus, these values of m and C

present a life N of crack propagation with given
values of a, and a, using Equation (8). Repetition of
this procedure provides a distribution of N.

The distribution of N derived in this manner is
strictly based on the data of & observations. As the
sample size k becomes larger and the observed region
of crack length expands, m and logh converge to their
means in their populations regardless of the value of
o, due to Equations (26) and (27). Accordingly, N
converges to the value estimated by a deterministic
crack growth rate approach. In other words, the
scatter of N predicted here is dependent on the
amount of scatter in each of the two parameter
estimates and does not mean the variability of the life
inherent to the material. However, in reality it is
impossible to obtain ideal data regarding the sample
size and the measured region of the crack length. In
this context, this proposal is an analytical method
which uses Monte Carlo simulation to compensate
the insufficient measurements.

4.3.2 1In case of deterministic m assumed

If in Equation (26) the region of a is fully wide
and the number of observations k is sufficiently large,
o[m] becomes small and the scatter in m is not
considerable. In other words, only C has scatter,

though the value of m is defined as that obtained by
the regression analysis. From this assumption, the
scatter in lives of crack propagation can be obtained.
Equation (8) leads to the standard deviation of logN,
ollogh], as

oflogN] = c[logCl. (28)

In other words, the standard deviation of logN agrees
with that of logC. Furthermore, if the distribution
form of logC is normal, log/N also follows a normal
distribution.

On the other hand, the following two cases with
respect to C can be considerable. Those are (a) C
obtained by a regression analysis with deterministic
m, and (b) C in Equation (1) with deterministic m.

(a) C given by a regression analysis with
deterministic m
The variance of logC is given by Equations (4)
and (28) as

o?[logC] = o?*(logh] = c*[logN] = ci/k. (29)

Therefore, the variances of logC, logb, and logN are
equal to each other. Since 6; of Equation (25) is an
unbiased estimator independent of sample size k,
each variance in Equation (29) is macroscopically
in inverse proportion to k. Consequently, N is
estimated as a deterministic value for very large k.
The unbiased variance of loghN is given by
Equation (29) and the mean of N is calculated by
Equation (8) using the m and C values estimated by
the regression analysis. The content described above
is the discussion about N given by the regression
analysis.

(b) In case of C with deterministic m in
Equation (1)

In a deterministic crack growth approach, m and
C are considered to be material constants. Here, let
only m be deterministic and C have scatter inherent
to a material. In this case, the measured data is
assumed to be a sample from the population. Then
Equation (2) leads to the scatter of logC equivalent
to that of logb. Consequently, together with Equa-
tion (28), the following equation

o°[logN] = 6’[logC] = o’[logh] = 67  (30)
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is formulated. Because the expected value of o7 does
not depend on k, that of c[logN] is also estimated
free from k. Then this is regarded as a material
constant. This idea is also a special case of a
stochastic crack growth rate model described in the
introduction of this paper, i.e., crack growth by one
load cycle is completely correlated with that by
previous load cycles [3, 4]. The mean of logN is
regarded as the life calculated by m and logC which
are estimated by the regression analysis.

Every study assuming deterministic m described
in the introduction is based on idea (b) written above.
The investigation on the basis of idea (a) indicated
above is not discussed yet.

5. Calculated Results and Considerations

The results calculated by the procedures described
above are presented below. The true life of the rod
end housing was 9,176 flights.

5.1 Parameter Estimates from the Observed
Data and Life Estimated by Deterministic
Crack Growth Rate Approach

A regression analysis for the observed data shown
in Figure 5 gave the parameter estimates and their
standard deviations as indicated in Table 1. The

estimate of the standard error ¢, is about 0.08.

Table 2 presents the lives of crack propagation
calculated by a deterministic crack growth rate
approach using m and C listed in Table 1. In this
calculation, the initial crack length a, was taken as
three kinds, ie., 0, 001566, and 0.28mm. When

Table 1 Parameters and standard deviations estimated
by a regression analysis.

k* m C G o[m)

. o Nk
43 0.6937 0.0006731 0.07829 0.02723 0.01194

*Number of observations.

Table 2 Crack-propagation life calculated by parameter
estimates obtained by the regression analysis.

a, a, N*
0 12.58 10533
0.01566 12.58 9176
0.28 12.58 7250

a,. a,= initial, final crack length (mm).

a,=0.01566 mm, the estimated deterministic life
agrees with the true life. a;=0.28 mm was the
minimum crack length at which striations were
observed. The final crack length, af=12.58 mm, was
the maximum length at which striations were
observed. Around the crack initiation point of the rod
end housing no material defect or damage was
observed. a =0.01566 mm is fairly small but not
zero. When a,=0 mm, the estimated life of 10,533
flights is approximately 15% longer than the true life.

5.2 Distribution of Striation Spacing

A distribution of striation spacing b at arbitrary
crack length a is estimated as follows. The distribu-
tion form of b is assumed to be independent of a and
the coefficient of variation 7 of b to be invariant to
a. Invariant 1} means that the standard deviation of
logb, o, the equivalent coefficient of variation in a
Type-1 extreme-value distribution, 1), and the shape
parameter of a two-parameter Weibull distribution,
., are also constant independently of a. On the basis
of this assumption, a residual of logb is defined by

A(logb), = logb, ~ log(Ca") (31

and it has the same variance regardless of a. Then,
the values of A(logb), are collected and analyzed.
Figure 7 presents the obtained results of A(logh)
plotted on log-normal graph paper with the median
ranks. The four distribution lines are depicted by the
parameter estimates, which were calculated by the
least-squares method for the plotted data with the
median ranks on each probability paper. This figure
indicated the Type-I extreme-value distribution to be
the best fit, followed by the two-parameter Weibull,

99.9 TW ]

99 + o Extreme-value

R
w

1 —— 2P-Weibull
g Q0 + —— Normal
8 + e Log-normal
2 1
& S50t
[}
2 +
3 107
£
3 11

0.1 t t f t ¥
-0.4 -0.2 0 0.2

A(logb)
Figure 7 Distribution of residuals of striation rspacing.
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normal, and log-normal distributions. According to
the assumption described above, the distribution of
residuals in this figure agrees with the distribution
of b at any a. Among the four stochastic crack growth
rate models the Type-I extreme-value crack growth
rate model is the most realistic. This result is different
from that reported by Yang et al. [4] who stated that
crack growth rates measured from striation spacing
with an SEM follow a log-normal distribution well.

5.3 Life Distributions Predicted by Stochastic
Crack Growth Models

Using the parameter estimates from the data, the
four kinds of stochastic crack growth rate models
simulated crack propagation and led to the life
distributions. The initial crack length a, is set to be
0.001 mm instead of 0 mm, because the calculation
is impossible for a ;=0 mm. Table 3 presents the
results for the normal group models and Table 4 for

Table 3 Central tendency and scatter of crack-propagation lives simulated by two kinds of
stochastic crack growth rate models in the normal group and Monte Carlo simulation.

Simulation conditions

Initial crack length = 0.001 mm, Final crack length = 12.58 mm
C = 0.0006731, m = 0.6937, Sample size = 50, Deterministic life = 9949

Normal random process

Log-normal random process

no] Mean n{N]  Mean invalid Median

% life % cycles oflog b] life ollog N]

5 9954 0.0551 0 0.01 9951 0.000109
10 9955 0.111 0 0.05 9890 0.000582

*18.2 9957 0.205 0 *0.0783 9797 0.000883

20 9958 0.226 0 0.1 9698 0.00114
30 9960 0.343 4 0.3 7855 0.00345
50 9924 0.564 227 0.5 5154 0.00985
80 9586 0.718 1014 0.7 2793 0.0268

n{-] = coefficient of variation, o©[-] = standard deviation,

*indicates the values calculated from the data.

Table 4 Central tendency and scatter of crack-propagation lives simulated by two kinds of
stochastic crack growth rate models in the Weibull group and Monte Carlo simulation.

Simulation conditions

Initial crack length = 0.001 mm, Final crack length = 12.58 mm
C = 0.0006731, m = 0.6937, Sample size = 50, Deterministic life = 9949

Type-1 extreme-value random process 2-P Weibull random process
ng[b]  Median M. [N]  Mean invalid Median
% life % cycles o[b] life o[N]
2.5 10006 0.0249 0 1 6915 98
5 10059 0.0531 0 2 9356 222
10 10168 0.117 0 4 10022 464
*13.1 10236 0.145 3 6 10095 633
20 10383 0.208 47 *6.98 10099 730
40 10615 0.409 585 10 10086 1028
60 10491 0.512 1283 20 10038 1968

M, [*] = equivalent coefficient of variation in Type-I extreme-value distribution,
a[*] = shape parameter, *indicates the values calculated from the data.
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the Weibull group models. The scatter of striation
spacing calculated from the data indicates the value
with a symbol*. To investigate the effect of this
scatter on life distribution, the parameter to indicate
the scatter of b are changed in wide regions. Since
the scatter in simulated lives is very small, the
simulation provided 50 lives for each case. Tables 3
and 4 indicate that the scatter of N is one or two
orders of magnitude smaller than that of b. In other
words, the scatter of life derived by the stochastic
process models in this study is very small. This
tendency is the same for the necessary number of flight
cycles to arbitrary crack length.

The predicted properties of the mean or median
life are as follows. The mean of N in the case of the
normal random process model agrees well with the
estimate by a deterministic crack growth approach
in general, though as the coefficient of variation of
b takes larger values, invalid cycles at which crack
does not grow increases. For the coefficient of
variation of b to be 80% the mean of N slightly
dropped. These results come from the symmetric
distribution of b. On the other hand, in the case of
the log-normal random process model, the median
life (i.e., the antilogarithm of logN) becomes shorter
as the scatter of b becomes larger. This can be
explained by the unsymmetric distribution of b. The
facts described above indicate that the scatter of b
influences not the scatter of N but the mean or median
life. In the case of the Type-I extreme-value random
process model, the median life is close to the estimate
by the deterministic approach, though as the equiva-
lent coefficient of variation of b becomes larger, the
median of N becomes slightly larger. When the
invalid cycles increase, the median life shows a little
decrease. In the case of the two-parameter Weibull
random process model, as the shape parameter o is
larger, the amount of scatter is smaller. When a[b]
is equal to one, the median life becomes very small.
For a[b] larger than or equal to 2, the median life
becomes slightly larger then decreases, but remains
very close to the deterministic life estimate. This ten-
dency is due to the shape of the distribution of b. The
above results show that the stochastic crack growth rate
models present the effect of the distribution form and
scatter of » on the mean or median life. In this context,
these models are not effective in practical terms.

Though the log-normal random process model of
crack growth proposed by Virkler et al. [1,2] is different
to some extent from that in this study, their results, i.e.,
very small scatter in lives and the predicted lives very
close to the life estimate by the deterministic ap-
proach, are similar to those described above.

5.4 Application of Distributions of Parameter
Estimates of a Regression Line

5.4.1 In case of deterministic m assumed

According to ideas (a) and (b) described in 4.3.2,
the standard deviation of logN is given by Equations
(29) and (30), respectively, and their estimates are
given in Table 1.

5.4.2 Distributions of both m and C considered

The proposed Monte Carlo simulation generated
200 sets of m and C. These 200 sets were used for
every case of the different three initial crack lengths.
Table 5 presents the median lives and standard
deviation of logN calculated from the 200 sets of m
and C. The median lives agree well with those listed
in Table 2 obtained by the deterministic approach.
When a= 0.28 mm, N was calculated in the inter-
polated region of crack length. o[logN] is slightly
larger than the value of GE/\/Z in Table 1. This comes
from the additional scatter of m. When the extra-
polated region is included especially extended to
small crack length, such as a,=0 and 0.01566 mm,
o[logN] becomes larger.

Figure 8 presents the 200 sets of m and C derived
by the simulation. A coarse line described by Equa-
tion (4) represents the relationship between m and C
well on average. A fine line is derived by the least-
squares method with m as an independent variable.
Equation (4) almost agrees with this relationship.

Table § Medians and scatter of crack-propagation lives
predicted by the proposed Monte Carlo simulation.

h* ao** a/** NM*** NMR**** cllog N}
200 O 12.58 10541 10525 0.02932
200 0.01566 12.58 9160 9144 0.01798
200 0.28 12.58 7237 7232 0.01281

*sample size, **a ,a = initial, final crack length (mm),
***median life from averaged log-life, ****median life
by ranking.
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Figure 8 200 sets of m and C values given by
Monte Carlo simulation and their mean
theoretical relationship and regression
line.

Moreover, this figure indicates the correlation
between m and C.

Figure 9 indicates the life distributions of crack
propagation calculated by the 200 sets of m and C
for three kinds of @, plotted on log-normal prob-
ability paper. For q=0.28 mm, i.e., the interpolated
region of crack length, the distribution form fits well
with a log-normal distribution. When an extra-
polated region is included, namely for a,=0 and
0.01566mm, the distribution form deviates from a
log-normal distribution and the tail of the longer life
region distributes in a much longer life region than
those predicted by the log-normal distribution. This
tendency comes from the accumulation of load
cycles in the small crack length region.

Figure 10 shows the measured data of a and &
plotted in Figure 5 again and the regression line as
a coarse line and two fine lines drawn by the sets of
m and C which predicted the maximum and
minimum lives for g =0 mm among 200 sets. The
value of b on the line which gives the maximum life
is small in the short region of a. This relation is
reversed on the line which gives the minimum life.
This suggests that the distribution form is convex
upward when the extrapolated region is extended in

the smaller crack length. If a4, is changed, the

0
different set of m and C gives the maximum or

minimum life.
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Figure 9 Distributions of crack-propagation lives.
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Figure 10 The regression line and the relation-
ships of a and b to present the mini-
mum and maximum lives among 200
relationships, where initial crack length
assumed to be 0 mm.

Crack length a, mm
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0 2000

Figure 11 Crack propagation curves of first 30
trials, where initial crack length
assumed to be 0 mm.

Figure 11 presents 30 curves of crack propagation
for a;= 0 mm depicted by the first 30 sets of m and
C generated by this simulation in order to show
the intersections of these curves. The reason to limit
30 curves is to make a clear distinction between
these curves. A lot of intersections can be recognized.
If m is deterministic as described before, these curves
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do not intersect each other and broaden toward the
end.

5.4.3 B allowable life

If the true life can be predicted on the basis of
a,=0 mm, this is of practical value. Thus, the
investigation was conducted to determine if it can
predict the true life as B allowable life [11] (one-
sided tolerance limit for probability of survival = 0.9
and confidence level = 0.95).

Table 6 gives the calculated results. Table 6(a)
shows the results for the case of deterministic m and
the scatter of logC as the estimate by Equation (29).
The term “B allowable” seems not to be appropriate
in this case; thus, the confidence limit of the mean
is calculated. Accordingly, this value should be
called as the confidence limit of N. The deviation of
this value from the true life is fairly large to the
unconservative side. Table 6(b) presents the results
for the case of deterministic m and the scatter of logC
as the estimate by Equation (30). The B allowable
in this case is conservative but too small in
comparison with the true life. Table 6(c) lists the
results of B allowable lives by the Monte Carlo
simulation on the basis of the distributions of both
the m and C estimates. There are two kinds of
estimates. One is calculated assuming a log-normal
distribution of N by the use of the one-sided tolerance
timit factor for the sample size k=200 [12]. The other

Table 6 B values and 90% confidence
value of crack-propagation life.

(@) m = constant, o{logC] = o, Nk
N, =90% confidence value

DOF a a N,

0 i B

41 0 12.58 10163

(by m = constant, ¢[logC] = o,
N, = B value

DOF a, a, N,
41 0 1258 7774

(¢) Monte Carlo simulation

DOF a, a4 NF N
9554 9529

199 0 12.58

DOF = degree of freedom, a, a = initial,
final crack length (mm),

*B value for the log-normal distribution,
**B value from 13/200 (rank/observations)
for unknown distribution.

is estimated by a non-parametric method for an
unknown distribution. The thirteenth ascending
order of observations corresponds to the B allowable
for k=200 [11]. These B allowable lives are very
close to the true life of 9,176 flights. The procedure
proposed in this paper predicted closely the true life
as the B allowable for a ;= 0 mm.

As mentioned before, according to the methods
used for Table 6(a) and 6(c), if the number of
observations is increased in all regions of crack
length, the lives estimated will distribute in a narrow
range and will reach the deterministic life. Moreover,
it ought to approach the true life of the article
discussed. However, in order to get the estimate very
close to the true life, the striation spacing data are
necessary in the very small crack length region. This
is difficult because of the limitations inherent in SEM
performance. In other words, the accuracy of life
estimation by the measured data of striation spacing
is dependent on the number of cycles to crack
initiation, identification of the initial defect size, or
crack growth rate in very small crack length region;
all of these factors are very difficult to discuss
clearly.

At least the behavior of crack growth predicted by
the proposed method is considered to be reasonable
after a crack grows to some extent and striation
spacing is observed. This kind of analysis can be
effective to determine the inspection schedule in
maintenance activities of aircraft.

6. Conclusions

On the basis of the crack length and striation
spacing data, a new method using Monte Carlo
simulation was proposed to predict the life dis-
tribution of crack propagation. Stochastic and other
probabilistic methods including the proposed one
were applied to the data obtained by SEM observa-
tion of the fracture surface of a rod end housing. The
life distributions were predicted by these methods
and were discussed. Major conclusions obtained are
as follows:

(1) The crack length a versus striation spacing b
data analyzed were approximated with a straight line
on double logarithmic graph paper.

(2) The standard error o, of logb was estimated
to be about 0.08.
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(3) The life of crack propagation N estimated by
the deterministic crack growth approach, assuming
an initial crack length of a,=0 mm, was approxi-
mately 15% longer than the true life.

(4) The distribution of the residuals with respect
to logb fitted best with a Type-1 extreme-value
distribution among the four kinds of distribution
models. This suggests that the distribution of b at
arbitray a fits well with this distribution form.

(5) The median lives of crack propagation pre-
dicted by the four kinds of stochastic crack growth
rate models were very close to the life estimated by
the deterministic crack growth approach except for
the cases of the large scatter of b in the log-normal
and two-parameter Weibull random process models.
The deviation of the median life from the deter-
ministic life is dependent on the unsymmetrical
distribution of b in the two models. The scatter of N
obtained by each of the four models was one or two
orders of magnitude smaller than that of b.

(6) If m is determinstic, the distribution form and
variance of logN are equal to those of logC. When
the unbiased variance of logC is calculated by a
regression analysis, it is equal to that of logb, i.e.,
©,/k. Therefore, as k becomes larger, N converges
to a certain value regardless of the value of 6. On
the other hand, when the scatter of logC is taken as
a material constant, the variance of logC is equal to
that of logb, i.e., G;.

(7) If the measured region of a is extended and k
is increased, the variances of m and logC used in the
proposed Monte Carlo scheme will converge to zero.
Thus, the lives of crack propagation given by this
scheme wili converge to a certain value at the same
time.

(8) The median life (the antilogarithm of logN or
the median by ranking) obtained by the 200 sets of
m and C generated by the simulation approximately
agreed with the life estimated by the deterministic
approach. The standard deviation of logh was a
slightly greater than the value of o, N k when load
cycles were integrated in the interpolated region of
crack length measured. Though, the standard
deviation of logN become larger as the extrapolated
region of crack growth was extended to shorter crack
length. The distribution form of N fitted a log-normal
distribution well in the interpolated region of a.

When this region was extended to shorter crack
length, the distribution form deviated from the log-
normal and presented the convex curve upward on
log-normal probability paper.

(9) The averaged relationship between m and C
given by the simulation was approximated well by
Equation (4) determined by the regression analysis
for the measured a vs. b data. This equation agreed
well with the regression line calculated from the data
of m and C, also."

(10) The relation between a and b to give the
minimum life in the simulation is that b is large in
the region of small a. Conversely, the relation to give
the maximum life is that b is small in the region of
small a.

(11) There appeared intersections among the
crack propagation curves derived by the simulation.

(12) On the assumption of a0=0 mm, the
proposed Monte Carlo simulation approximately
predicted the true life of the rod end housing as the
B allowable life.
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Appendix
Correspondence of Equation (1) to Paris-
Erdogan’s Law

For a sheet infinitely wide with a central crack
Paris-Erdogan’s law [9] of crack growth rate is
represented by

da/dn = C - AKM
= C, AS¥ n™2g™?, (al)
where da/dn is the crack growth rate, AS is the stress

range, AK is the stress intensity factor range, and C;
and M are constants. Then, let

b = da/dn (a2)
C=C,ASM"? (a3)
m = M/2. (ad)

Equation (al) is transformed as
b=C.am (ad)

This equation agrees with Equation (1). Accordingly,
Equation (1) is shown to correspond to Paris-
Erdogan’s law.
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