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A Residual Strength Analysis of a Cracked Stiffened Panel
with Stochastic Factors in Fastener Flexibility*

Hirokazu SHOJI*'

ABSTRACT

In this report, a residual strength analysis of a cracked stiffened panel was conducted on the basis of the dis-
placement compatibility method, which is generally used as a handy tool. Stochastic factors in fastener
flexibility are considered in the analysis by Monte Carlo simulation. The report outlines the displacement
compatibility method, a method of taking in stochastic factors into account, some resuits of differences in sto-
chastic distribution models in fastener flexibility, and some results of the analysis. The author shows that the
stochastic flexibility coefficients in rivet fastening affect the residual strength estimation of a cracked stiffened

panel considerably.

Keywords: Damage Tolerance Design, Residual Strength, Crack, Stiffened Panel, Stochastic Factor, Fastener,

Monte Carlo Simulation
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1. Introduction

The design of a transport category airframe requires the evalu-
ation of damage tolerance in compliance with present
airworthiness standards, such as FAR25.571". Before the damage
tolerance of an airframe can be certified, we have to show that any
damage initiated by fatigue, accident, manufacturing defects or
corrosion will be detected before catastrophic failure™ . Thus, an
engineering evaluation considering crack propagation rates and
residual strength limits is made by the manufacturer, and inspec-
tions are carried out by the operatorz’. The evaluation must be
made with tests and analyses, but the tests are expensive and
labor-intensive. Therefore, if we can substitute some analyses

for some tests, we can save time and cost.

In general, deterministic values, which are usually mean vai-
ues, of material properties and geometry are used in analyses of
airframe structures. In practice, however, real airframe structures
have stochastic factors, such as degradation of material proper-
ties owing to corrosion, initiated crack locations and sizes,
fastener flexibility, etc., so that a lot of tests are required for the
evaluation. Thus, we analyze them with uncertain values and
evaluate the results, although we have to study methods of analy-
sis and evaluation. If the analyses show good results in
simulating real airframe structures, it may be possible to substi-
tute an analysis for a test. As the first step of accomplishing this
substitution, a residual strength analysis on a stiffened panel,
which is broadly used in airframe structures, with considering

stochastic factors in fastener flexibility is carried out.

* received 25 December 1995
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When a residual strength analysis was performed for a cracked
stiffened panel, the finite element method (FEM) or the displace-
ment compatibility method (DCM) is usually chosen. In this
paper, the DCM is chosen because it is a handy tool owing to its
small matrix size, which is due to its analytical formulation using
fracture mechanics methodology. It was originally proposed by

4.5

Poe ' and Swift™"' made it practical by including fastener flexi-

8.9

bility and stiffener bending. Sasaki et al.” = made a program

which can calculate with various conditions by expanding Poe’s

methods. Nishimura'"”’

expanded its applicability to include a
multiple-cracked stiffened panel. Yeh" applied it to a stiffened
orthotropic sheet. Now Swift’s formulation is used with ignoring
stiffener bending and considering stochastic factors in fastener
flexibility because it is elegant and easy to consider them.

In this paper, an outline of Swift’s formulation is shown. A
method of considering stochastic factors in fastener flexibility by
a Monte Carlo simulation method, and a study of differences in
distribution models of stochastic factors are proposed. The
results of residual strength analyses of a cracked stiffened panel
are reported. The author also shows that stochastic factors in fas-
tener flexibility take effects in an estimation of residual strength

of a cracked stiffened panel considerably.

2. Description of Formulation

2.1 Description of an Analytical Model

In damage tolerance design, a two-bay skin crack with a bro-
ken center stiffener at limit load is considered and is certified to
survive. This large damage capability is necessary to be simulat-
ed in case a fast fracture occurs from a shorter crack which might
have been overlooked on regular inspections, and discrete source
or foreign object damage as in the case of an engine disintegra-
tion”. Now, we consider a two-bay pane} with a broken center

stiffener (Fig. 1).

Fig. I. Schematic diagram of an analysis model for a cracked
stiffened panel

75 T E TR Ze s 1283 T4

In Fig. 1, the analysis model is a cracked panel with fastened
strip stiffeners, which are used for simplicity, subjected to the
uniaxial remote stress . The forces are transferred into the stiff-
eners from the sheet through the fastener system and
redistributed into the intact stiffeners as the crack propagates. As
required by equilibrium, the fastener forces act in opposite direc-
tions on the sheet and stiffeners. It is assumed that the center of
the crack is located symmetrically underneath the mid-line of the
broken center stiffener and the crack is perpendicular to the load-
ing direction and extends equally on both sides of the center
stiffener; therefore, the fastener forces act symmetrically with
respect to the crack. The coordinate system is as follows: the x-
axis is parallel to the direction of propagation of the crack, the
y-axis is parallel to the direction of loading or the stiffeners, and
the origin is the center of the crack. We consider the area of three
stiffeners only because additional outboard stiffeners have little
effect on a crack within two bays®.

We solve the problem by the compatibility of the displacement
between the sheet and the stiffeners; that is, we make an equilib-
rium equation relating to the compatibility with fastener forces as
unknown quantities. We acquire the results of a residual strength
analysis of the cracked stiffened panel from the crack tip intensi-
ty factor calculated by unknown fastener forces. Because the
crack and the structure are symmetrical, we may consider only
the part of two stringers, the center stiffener and the one outer
stiffener, above the x-axis. In Fig. 1, P;s are unknown fastener
forces on the broken center stiffener and Fs are forces on the
intact outer stiffener. We analyze the problem with considering
fastener flexibility, which is expressed as linear coefficients of

fastener forces, as stochastic factors.

2.2 The Outline of the DCM
As mentioned above, we use Swift's formulation of the DCM.

An outline of this formulation is contained in references 6 and 7.

2.2.1 Sheet Displacements

For this analytical model the cracked sheet displacements are
obtained by superposition of the four cases shown in Fig. 2.
Sheet displacements resulting from the four cases are defined as
follows:

v,; displacement anywhere in the cracked sheet caused by the
applied gross stress,

v,; displacement in the uncracked sheet resulting from the
outer intact stiffener fastener loads,

v,; displacement in the uncracked sheet resulting from the cen-
ter broken stiffener fastener loads,

and

This document is provided by JAXA.
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(a)

-
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Fig. 2. Displacements that are superimposed to determine total sheet displacement

v,; displacement in the cracked sheet resulting from stress
which is applied to the crack face to be equal and opposite to the
stresses caused by fastener loads.

For plane stress. the y-component of the sheet displacement is
given by Westergaard’s'" complex stress function approach as

follows

v=[2ImZ-(1+v)yRe Z|/E )

For an infinite, biaxially loaded cracked sheet, the following

Westergaard’s'" complex stress function Z that would satisfy the
equilibrium and compatibility for a two-dimensional elastic

problem and the boundary conditions for an infinite panel
Z=o0z/\zi-a’=o0z(z2-a?) "’ (2)

where z = x + iy, Z is the first integral of Z, Im and Re are the
imaginary and real parts of Z, n and E are Poisson’s ratio and
Young's modulus of the sheet, respectively, and a is a half crack
length.

The displacement v, is obtained by substituting Eq. (2) into Eq.

(1) and applying a compressive stress in the x-direction to cancel
out the x-component of tension stress. Thus, v, is given by the
following equation for displacement in a uniaxially loaded

cracked sheet,

Y A [9,+93] {1+ v)yr
V= 0T, sin | —5— |- g

P4

lcos[G—ﬁ';i”-FVy}/E 3

where unknown nomenclatures are defined in Fig. 2 (a).
The displacement v, is obtained from the work of Love'”. The
stress distribution anywhere in an infinite plate resulting from a

concentrated force F can be determined as follows
O, = [Fy[L+v)/dm (x2+ ) [ {[3+V)/(T+v]]- {222/ (x* +2]]} (4)

where t is the thickness of the sheet. The displacement v,

resulting from force F is given by

[ +v)x?
1 ,2+r2+(—,~
og [x?+y7)+ £ Y0

F{l1+v] {3_\,

\’F:‘W 2 }+C (5)

where C is a constant of integration. However, this equation

contains a singularity at the load center. Thus, we avoid the sin-

This document is provided by JAXA.



6 AT HIEM TS 1283 T 5

gularity by assuming that the concentrated force F is distributed
uniformly over the fastener diameter d and integrating the effect
over the fastener diameter.

Therefore, the displacement v, for the system of four forces

like Fig. 2 (b) is given by superposition as follows

Fili+v)(3-v] (X, +1)+7,2
¥y Xl,_\,.XJ..\)]—' 167E1 *I[X,‘“l]logm
P LLERLUGLFS NI [ Ry
X, =10 +Y, [(Xg+1)+¥,
~[Xg-1)log U(A.B—M”»”"'; (6)
(Xg—1)+Yg
+4{1‘V‘] Y, tan”' —,—2}'—‘,—}+YAlan" ,2};‘, ]
J-vip AR Yo+Xp -1
~Ygtan! ﬁ—zyiﬁ— —}’Blan‘1(1—2y”f~]l
Yo+Xi-1 Yo+ X -1l

where

X,=(2/d) (Xi‘xj]s
Xp=(2/d)(x;+x)),
Y =(2/d) (v~} and
Yg=(2/d)(y;+y,)

Subscripts i and j represent the point of the displacement influ-
enced from the force and the point of the fastener force,
respectively.

The displacement v, for the system of two forces P like Fig. 2

(c) is given in the same way as Eq.

(5) by

t%ﬂ}:)’i.
D) T

?‘H] +1§[

PU#Y]3-v) Jllr

X, 11 §?
2| 41,
i d ] ! 2.[, 0
Tkl l?".] -|v+1 lo

a Vo] d ©
%H]H‘;

“‘ ‘I:' .\'7' .‘[i = I(]g

+4‘H] ¥ tan”!

R ‘
+)’Blan"{% l ;
{Y;}«k ) 7

d-

The displacement v4 is obtained by applying an equal and
opposite stress distribution over the crack face to cancel out the
stress caused by the fastener forces Fjs and Pjs. Furthermore, the
stress distribution along the x-axis, o, (x, 0), on an uncracked
sheet resulting from a system of forces like Fig. 3 can be obtained

from Eq. (3) by transfer of axis.

O, (x, 0)=—|{1+V)y;/2m||F;e(x; v, b)+P; By, b)] (8)

;F,- 1

Oy(x,

Y]
UJ\:

bbb

H
1

Fig. 3. Stress distribution at y = 0 owing to fastener loads

where

1 1

_3+v I
(E-x) 4y (E+x) 4y

T1l+v

@ {x; ¥ ¢)

9
2(&-x)° B 2(&+x)’
|[§—x,-]2+yf|2 I[‘§+Xf]2+yjzlz

2£2

1
(§2+y5)2l (a0

2 ,2
& +y;

Bl &)=(31Y)

1+v

and £ is the distance from the origin to a loading point on the
crack surface. The displacement caused by this stress distribu-
tion is obtained from Eq. (1) by using the following complex
stress function given by Irwin'® for the condition with four sym-

metrical concentrated forces on a crack face as in Fig. 4.

Fig. 4. Concentrated forces applied to the crack face
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(1n

By substituting sy (x,0) td€ for P and integrating with respect
to & over half the crack length, the displacement v, is obtained in

general as follows

(1+v

2 Er

Vy=—

e e Bets 98 Bl 1ot 945 2

where e is the following
(a?= &)+ (a2 &3 (BC + AD) +ryry
(a 5]—{9’“52]][2(BC+AD)+HF2

n+v)(e2-€)'"
r1r2r32r42

€(x; ¥ &) = log

w

(13)
{{x;2= & =y} [x:[AC - BD) + y, (BC + AD}|

-2xy; |x;(BC+ AD) -y, (AC - BD)|}

where
A=(r,+x-a)'?
B={r,-x,—a)'?%,
C={r2+x,»~a]”2,
=(r,-x-a)'’?,

and r,, 1,, 1,, and r, are defined in Fig. 4. Eq. (12) is integrated
numerically.
Therefore, the total sheet displacement vT is given as the fol-

lowing:

VPSSV RV vty (14)

2.2.2 Outer Intact Stiffener Displacements

Outer intact stiffener displacement §, from direct fastener
loads is given by

‘ 2a
5Di=[1/AsES)j=;+]ijj-l»(yj./AjES]j:iHFj (15)

where A_and E_ are a cross-sectional area and Young’s modu-
lus of the stiffener, respectively, and n is the number of fasteners
on a stiffener in analysis domain.

Outer intact stiffener displacement §,, resulting from gross

stress is given by

85,= oy, / E, (16).

2.2.3 Center Broken Stiffener Displacements
In this case, stiffener displacement 8, by direct fastener loads

is as follows

i n-1
60 - 1 /A E ; Pj(“"n-yf] + “ /AS‘ES]J.=;" ! Pj(yn—yj] (17)
2.2.4 Fastener Displacements
The elastic i-th fastener displacement d,, in shear is given by

the following empirical relationship'”

d. d
5F,_=(F,‘/Ea')|c,+c2(7+z}] (18)
where W, X are applied the i-th fastener load and thickness of
stiffener, respectively, and C,, C, are constants determined by
17

Swift’s experiments . A diagram of fastener displacement is

shown in Fig. 5.

2.2.5 Compatibility of Displacements

The DCM is based on displacement compatibility between the
cracked sheet and the stiffener plus the fastener. Thus, the stiff-
ener displacement plus the fastener displacement is equal to the
sheet displacement. Therefore, the following relationship on the

i-th fastener is obtained,

vy =0p + 0, + O, (19).

By considering the directions of fastener loads and having a
different relationship on the displacement compatibility of each
stiffener, there are the following relationships on the i-th fastener

point; for the center broken stiffener

o
) A Y L S PR E AR A A T P o i

J=atl

i{\ (r Yo ¥ : [Xf').l

= ST ERA AR

slnlnoe il o),

+ (SF,, - (Sf, - (SD, =N lxl‘ }‘:1_ Y [Xn‘ .vn]

Fastener
Stiffener
e | ah—L
T \ 11—
Fastener Displacement 85— w— Sheet

Fig. 5. Schematic diagram of fastener displacement
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and for the outer intact stiffener

2n

j=;+ A2 (X X X 3+ va (X i X5 35))

Or. +6p. —

21

+ },; {"3 [Xh Yo )‘j] +vy {X;» Yis X yi)}=vilx yi) - 56,—
However, in Eq. (20), the n-th fastener point is selected as a
reference point of extension. For the n-th fastener point, that is, i

= n, though both sides of Eq. (20) equal zero, we can find the fol-

lowing force equilibrium equation
L P= oA, (22)
I

On the right of Eqgs. (20) and (21), the displacements are
derived from the remote gross stress o; on the left of Egs. (20)
and (21), they are derived from the fastener loads Ps and Fs.
Therefore, we can make Eqgs. (20) and (21) into a matrix form as

follows

VIH{E} = Vo) (23)

where V and V_are a2 x 2n matrix and a 2n x 1 vector derived
numerically from Eqgs. (20), (21), and (22), and P, F are unknown
fastener loads n X 1 vectors. Thus, solutions of these unknown

fastener loads are obtained by inverting the matrix V.

2.2.6 Crack-tip Stress Intensity Factor

Crack-tip stress intensity factor with concentrated forces was
derived by Paris'”. Crack-tip stress intensity factors K caused
by each pair of center stiffener-fastener loads, as shown in Fig. 6

(a), are given by

207+ (3+ V) Y/}
[a2+Yf]3/2

Pj.ﬁ]

Kol iz 2

and K __ caused by each set of outer stiffener-fastener loads, as

shown in Fig. 6 (b), are given by

x——i

(2) In the case of center stiffener fasicoer loads (b) In the case of outer stiffener fastener kads

Fig. 6. Schematic diagram of fastener loads in a cracked stiff-
ened panel

2F Y, v@a ,
osj=[ J;;l, ]|{3;\)11*‘[1+V“2 (25)
where
L=yy WY +a—x ) +ax?y | (26)
,1:I(az”"‘l:]}/l*[‘]:'lnzlzlf*xlzyll(yll‘az*"ﬂ en

2)’,]’|[Y12 +03—.r|3]2+4x12 lel e

2 2)2 5 2y2 1/2
y= J7 Y2 +a=x ey (Y +a-x ) +ax 2y F |7 (28)
and x,, Y, are horizontal and vertical distance from crack cen-
ter to fastener load, respectively. Therefore, gross crack-tip stress
intensity factor K, in the cracked stiffened panel is derived by
considering the directions of fastener loads as follows

2n

n
Kop=0vma + ,};1 K- 2 K,

j=n+1 /

(29)

where 0Vra is a crack-tip stress intensity factor of cracked
unstiffened sheet. In the DCM, if a half crack length a is given,
K, is calculated, and residual strength analysis of a cracked stiff-

ened panel is given by using K ...

2.3 Description of a Method of Considering Stochastic Factors

In a residual strength analysis of a cracked stiffened panel,
there are many uncertainties regarded as stochastic factors. In
this paper, however, only fastener flexibility is considered as a
stochastic factor.

From Eq. (18), a fastener displacement &, has a linear rela-
tionship to a fastener load F .. Thus, Eq. (20) can be written in the

form
8= C,xF, (30)
where
Cf=[1/5d]‘cl+cz[§+g]| 31

In Eq. (31), C1 and C2 are empirical constants. Therefore, fas-
tener flexibility constant C, is determined empirically. In
practice, however, fastening conditions are not deterministic
because they are influenced by some uncertain factors such as
fastening force magnitude, fastener hole defects, and fastening
relaxation, etc. Thus, C_represents a mean value of experimental

data, that is to say, we can consider that Cr is a random variable in
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accordance with a probabilistic distribution. Because so many
experiments are needed to make sure of its distribution, it is very
difficult to find the distribution. Accordingly, we assumed that
the distribution is a normal distribution. In this paper, many data
of C, in accordance with a normal distribution are generating by
the Monte Carlo method. Then the distribution of K, is given by
assembling calculations with each C, data. Effects of stochastic
factors to residual strength are shown by investigating results

from it.

3. A Study of Differences in Distribution Models of
Fastener Flexibilitym

3.1 Description of Models
Now, in order to choose the distribution model of fastener flex-
ibility, three models are investigated here. They are as follows:

Model 1: Every fastener has the same C, value in the same case
and C, values make up one normal distribution.

Model 2: Every fastener has different C, values from each
other in the same and different cases the total C, val-
ues make up one normal distribution.

Model 3: Only the closest fastener on the center broken stiff-
ener to the crack has a C, value in accordance with
one normal distribution but the other fasteners have a

determined C, value.

Model 1 is a simulation of the case in which the C, value itself
is uncertain, Model 2 is a simulation of the case in which the fas-
tening system is uncertain, and Model 3 is proposed to

investigate the contribution of only the most effective fastener.

3.2 Details of the Panel Model

The cracked stiffened panel is assumed to be the same panel as
in reference 6 except for the different section geometry of the
stiffeners, which are strip stiffeners in this paper and are hat sec-
tion stiffeners in reference 6. The material of the panel is 2024
T3 and that of the extended stiffeners is 7075 T6. The fasteners
are NAS 1097 DD6 rivets. So the cracked stiffened panel model
has the following data; b = 0.2032 m, p = 0.03175 m, d =
0.0047625 m, E = 7.17 x 10" MPa, t = 0.0018 m,n = 0.3, E_=
7.10x 10" MPa, t = 0.0018 m, A_=0.000353 m", C, = 5.0, and
C, = 0.8 where b is a stiffener spacing and p is a fastener spacing.
The number of considered fastener points is 15 because, accord-
ing to reference 6, no advantage can be gained by increasing this
problem size beyond 15 fasteners on each side of the crack in
each stiffener. Therefore, nis 15 in Egs. (15).(17), (20)-(22) and
(29), and the size of the matrix in Eq. (23) is 30 x 30.

3.3 Results and Discussion

Data for y are generated by the Monte Carlo method under the
normal distribution, the mean value of which is the determined z
value and standard deviations of which are 10 % or 20 % of the
determined C, value. In practice, data for C_are given by the fol-

lowing relation:
Cr=Cpll+a, a (32)

where C is the determined C, value which is given by Eq.
(31), a, = is a value of the standard normal distribution which is

20y

given by the Box-Muller method™, and a_ is a weight coeffi-
cient. That is, if the data for C, have a standard deviation of 10
%. a_is 0.1 because, ideally, for the distribution of &, the mean
value is 0 and the standard deviation is 1. For Model 1 and
Model 3, the number of data for C, is 1000. For the distribution
of a,, therefore, the mean value is — 0.057596 and the standard
deviation is 0.97962. While for Model 2, because the number of
fasteners is 30, the number of data for C, is 30000. For the distri-
bution of a, therefore, the mean value is — 0.0071218 and the
standard deviation is 0.99994,

The results of each model are shown in Tables 1-4. Where in
the tables, a/b is obtained by dividing a half crack length by the
stiffener spacing, B is obtained by dividing K ;. gross crack-tip
stress intensity factor in the cracked stiffened panel, by ovra,
which is a crack-tip stress intensity factor of cracked unstiffened
sheet, with using the deterministic C, value from Eq. (32, u [B],
s [B,) are a mean value and a standard deviation, respectively.
M1-10 % means Model 1 in the case of 10 % standard deviation

of C, and so on, 4B, (0.9!.) means the deviation between S, and

Table 1. Results from Model 1 in the case of 10% standard
deviation of C,

ab B | MIB):MII0% j SIBJMII0% | 44,09C) L 45,(11C)

00625| 25187 | 25219 | 0030332 [ +0032 | -00291
P(+00032) ¢ (1.20%) | ?
1
025 | 1.6544 16548 0.0040152 | +00042 | -0.0039
(+0.0004) ©24%
0.50 | 13651 13650 0.00031292 | 00004 | -0.0003
|
(+0.0001) ©02% |
: S S
075 ' 1.1968 1.1965 0.0022586  +0.0024 | -0.0022
i (+0.0003) J 0%
101088411 | 088284 | 0012189 -001286 | +00117
‘ L (-0.00127) (138%
j | |
125 1064350 1 064280 0015050 ; 001579 | +0.01466
: (<0000 Q3% | B
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Table 2. Results from Model 1 in the case of 20% standard
deviation of C;
ahb [} w(B1MI20%  S[B]:MI20% - Aﬁ\(O.SC,.) Aﬂ(l.ECi)
0.0625 25187 25283 0.063005 +0.0677 ~0.0555
(+ 0.0096) (249 %)
025 16544 1.6555 0.0081918 +0.0088 -0.0075
(+0.0011) (0.49 %)
050  1.3651 1.3650 0.00062593 +0.0007 -0.0006
(+0.0001) (0,05 %)
075  1.1968 1.1962 0.0045769 +0.0049 © -0.0043
(+ 0.0006) (0.38 %)
10 0.88411 0.88033 0.025310 -0.027t +0.0224
(-0.00378) (2.88 %)
1.25  0.64330 0.63950 0.030812 -0.03286 - +0.02834
(- 0.004) (4.82%)
Table 3. Resuits from Model 2 and 3 in the case of 10% stan-
dard deviation of C;
ab b " [p"j'.MZ»IO‘} s{ﬁJ:ME-lO% u lﬂl]:.\i.’x—lO‘T( s{ﬁ_\]:.\B-IO‘T{
0.0625 25187 25204 0.037787 25231 0.037547
(+0.00t7 (1.50 %) (+ 0.0044) (1.49 %)
0.25 1.6544 1.6548 0.0047575 1.6548 0.0031157
(+0.0002) 10.29 %) (+ 0.0004) 0.19%)
0.50 1.3651 1.3650 0.0013372 1.3651 0.000489
(+0.0001) (0.10 %) (£0.0) (0.04 %)
0.75 1.1968 1.1966 0.0010132 1.1968 0.000134
(+ 0.0002) (0.08 %) (£ 0.0 (0.01 %)
1.0 0.88411 0.88322 0.0067228 0.88412 0.0000363
(- 0.00089) (0.76 %) (+ 0.00001) (0.004 %)
125 0.64350 0.64249 0.0083406 +  0.64350 (.0000036
(-0.00101 (1.30 %) (+0.0) (0.0005 %)

Table 4. Results from Model 2 and 3 in the case of 20% stan-
dard deviation of C,

ab B a[fIM20% <[B]:M210% w[B]:M310% s[B]:M}-10%
0.0625 25187 25256 0.078593 25325 0.079211
(+0.0069) (3.11 %) (+0.0138) (3.13%)
025 1.6544 1.6553 0.0098529 1.6555 0.0065376
(+0.0009) (0.60 % (+0.0011) (0.39 %)
050 13651 1.3649 0.0027735 1.3652 0.0010260
(+0.0002) (0.20 %} (+0.0001) (0.08 %)
075 1.1968 1.1960 0.0021247 1.1968 0.00028130
(+0.0008) (0.18 %) (£0.0) (0.02 %)
1.0 0.3841] 0.88041 0.014306 0.88413 0.0000762
(- 0.0037) (1.62 %) (+0.0002) (0.009 %)
125 0.64350  0.63931 0.017449 0.64350 0.0000757
(- 0.00419) (273 %) (£0.0) (0.01 %)

#1283 T &

one which is obtained by substituting 0.9 C, for C,, the other ASs
mean in the same way, and % values are obtained by dividing s
[B,] by u [B,] on each a/b.

Common results in three models are as follows: every y (5]
has a slight deviation to ,30 on eacha/band s [8,] in the case of 20
% standard deviation are not twice as much as that of 10 %; that
is, the relationship between s 8] and the assumed standard devi-
ation of C_is not linear. Results from each model are as follows:
for Model 1, results from a constant C, changed simply by 10 %
in magnitude are different from those assuming a 10 % standard
deviation, and stochastic factors in fastener flexibility affect the
crack-tip stress intensity factor when the crack length is very
short or close to a two-bay crack and longer; for Model 2, sto-
chastic factors affect the crack-tip stress intensity factor the same
as in Model 1; and for Model 3, stochastic factors in fastener flex-
ibility affect the crack-tip stress intensity factor only when the
crack length is very short.

We infer from these results that, in the case of a very short
crack, stochastic factors in the first fastener on the center broken
stiffener dominate the results, and in the case of close to a two-
bay crack and more, Model 1 affects the results easier than Model
2 because all fasteners have the same C, in Model 1 and every
fastener has a different C in Model 2. Therefore, the deviation of
C, in Model 1 is more effective than that in Model 2.

4. Results and Discussion of Residual Strength Analysis W

In this paper, the residual strength of a cracked stiffened panel
is defined as the stress where the residual strength of the sheet is
equal to the outer stiffener strength criterion because, in the event
that the former is higher than the latter, a fast fracture could not
be arrested by the outer stiffeners.

The residual strength of the sheet o, and the outer stiffener
strength criterion F__are shown to have the following relation-

ships

Kep _ 0Kc
Boma ~ Kgp

Op= (33)

where !Q is obtained from Eq. (29), K, fracture toughness of
the sheet material, which is 2024 T3, is 211.4 MN/m*? and

K
Bo= Giam (34)
and
Fssr = FUS g: (35)
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where F, ., the ultimate strength of the outer stiffener material,

us?
which is 7075 T6, is 583.3 MN/m’ and o_ is the outer stiffener
stress.

From section 3.3, Model 1 has the most effective results of the
three models. Model 2, however, represents the best practical
case because it is difficult to consider all fasteners as having the
same C, as in Model 1, and only one fastener has the uncertainties
like Model 3, and it is reasonable to consider of every fastener as
having various fastener flexibility. Therefore, in the residual
strength analysis, Model 2 is adopted as the model of stochastic
factors in fastener flexibility. Regarding the panel model, the
same model as in section 3 is used here. In this analysis, data for
C, are generated by the Monte Carlo method, as in Model 2 in
section 3.3.

The results of analysis are shown in Figs. 7 and 8 as the rela-
tion of a/b to strength (MPa) at about 10 % and 20 % standard
deviation for C, respectively. In these figures, the ERSS line is
the calculated expectation line of the residual strength of the
sheet 0, obtained from Eq. (33), and the ESSC line is that of the
outer intact stiffener strength criterion E ., obtained from Eq.
(35). + 3s means the expectation value plus three times the cal-
culated standard deviation, and — 3s means the same as + 3s
except minus three times the calculated standard deviation. That
is, the probability that o', and E . are in the region from — 3s line
to + 3s line 15 99.7 % in each case. In an analysis by determinis-
tic values; that is, using the ERSS and ESSC lines; in the region
a/b < 1.2, if the strength is under Point B, the panel never frac-
tures. However, if the strength is beyond Point B, the sheet

will fracture. For example, if a/b equals 0.5 and the strength is
at Point A, a fast fracture will occur and stop at Point C. Then
increasing stress to Point E, at that point the outer intact stiffener
will break and the strength of the panel will fall rapidly and the
panel will fracture. Therefore, in the deterministic analysis, Point
E shows the residual strength point and the residual strength is
344MPa. On the other hand, in this analysis, the residual strength
has an interval from Point D to Point F in each case. The proba-
bility that the residual strength is in the interval is 99.7 %, and the
intervals are from 336MPa to 353MPa in the case of Fig. 7 and
from 324MPa to 360MPa in the case of Fig. 8. Thus, the ratios of
those intervals to the deterministic residual strength are 4.9 % for
Fig. 7 and 10.5 % for Fig. 8. We infer from these results that sto-
chastic factors in fastener flexibility affect the residual strength
of the panel considerably and can not be ignored because the
residual strength is one of the standards of a panel design in dam-

age tolerance design.

600 ———— ERSS
-—————  ERSS+3s
= NN P ] e ERSS-3s
a
g 500 ESSC
'go ------- ESSC+3s
=
g EICTEEE ESSC-3s
(7]
400-—-_‘ LY
~ 7
\1; VRS
E
3 D
300 \
A C
B
200
0 0.5 1 1.5

a/b

Fig. 7. Residual strength diagram in the case of 10 % standard
deviation for C,

700 r
-
ERSS
wm—————  ERSS+3s
(70 (0 ¢ SN S— OSSR ERSS-3s |

Strength (MPa)

200

0 0.5 1 1.5
a/b

Fig. 8. Residual strength diagram in the case of 20 % standard
deviation for C;

5. Conclusions

The differences in stochastic distribution models for fastener
flexibility are shown. It is shown that stochastic factors in fas-
tener flexibility affect the residual strength of the cracked

stiffened panel considerably and can not be ignored in designing
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stiffened panels in damage tolerance design. Hereafter, in order
to be more practical, this work ought to be continued with many
considerations; for example, the effects of stiffener bending, non-
linearity in fastener flexibility, fastener failure criterion,
reliability analysis, and other stochastic factors should be includ-
ed.
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