

航空プログラムグループ公募型研究報告会2012

松野 隆(鳥取大学工学研究科 機械宇宙工学専攻)

発表内容

- 研究背景と研究目的
- 研究計画
 - 研究全体の計画
 - 本年度実施事項
- プラズマアクチュエータ適用風洞試験
 - 外翼単体試験
 - 半裁・全翼模型試験
- まとめ
 - 得られた知見
 - 残されている問題点
 - 今後の研究について

大阪木江		
(A)	風洞試験条件	
42 deg	一様流速度, U _{inf}	10 m/s
(B) (2 49) (A)	迎角, Angle of Attack	0 ~ 32 degree
66 day Section A-A	レイノルズ数, Re _{mac}	A) 0.99 × 10 ⁵
e		C) 3.07×10 ⁵
(C) 5 day 5 cclion A-A	プラズマアクチュエ-	-夕駆動条件
	誘電体材質	PTFE
	誘電体厚	1.08 mm
	電極材質	Copper
	印加電圧, V _{ac}	19.2 kV _{pp}
T_2	PWM 駆動周波数, f _{mod}	200 Hz
$\begin{array}{c} & & & T_{mod} = 1/1_1 [\Pi Z \\ DC = T_2/T_1 \end{array}$	Duty Cycle, <i>DC</i>	0.3, 0.5

