# 宇宙開発事業団技術報告

ラグランジュ点近傍の軌道力学

1997年3月

宇宙開発事業団

# 宇宙開発事業団技術報告

NASDA Technical Memorandum

ラグランジュ点近傍の軌道力学

Orbital Mechanics Near Lagrange's Points

## 歌島 昌由 Utashima, Masayoshi

技術研究本部システム技術研究小型衛星研究室 Small Satellite Laboratory, Systems Engineering Department, Office of Research and Development

## 1997年3月

March 1997

## 宇宙開発事業団

National Space Development Agency of Japan

| · · · · · · · · · · · · · · · · · · · | рата на поста и на                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 和 文 抄 録                               | 1978年に最初のハロー軌道への探査機 ISEE-3 が打ち上げられた後、暫く後続<br>ミッションが無かったが、1995年末に ESA/NASA が太陽観測衛星 SOHO をハロ<br>ー軌道に打ち上げた。ハロー軌道は、太陽観測、より遠くの天体観測、地球に接<br>近の可能性のある小天体観測、月の裏側との通信、等のミッションに適したポイ<br>ントであり、今後、重要性が次第に増して来ると考えられる。<br>本資料は、ラグランジュ点を利用したこれらのミッションの検討に必要な軌道<br>力学の基本的な事柄を記述している。第1章の「はじめに」に続いて、第2章で<br>は、ラグランジュ点を利用した各種ミッションの軌道力学に関する文献調査の結<br>果を整理する。第3章では、最も基礎的な事柄である円制限三体問題の導出を行<br>い、第4章で5つのラグランジュ点の導出を行う。第5章では直線解近傍の運動<br>を解析的及び数値的に扱い、リサジュ軌道、ハロー軌道にも触れる。第6章では<br>正三角形解近傍の運動を解析的及び数値的に扱う。 |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 和文キーワード                               | ラグランジュ点、円制限三体問題、直線解、正三角形解、線型運動方程式、<br>安定性、ハロー軌道                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### Abstract

The first libration-point satellite ISEE-3 (International Sun-Earth Explorer-3) was launched in 1978. Though, no libration-point satellites were realized after the launch of the ISEE-3, NASA launched the ESA's Solar and Heliospheric Observatory (SOHO) spacecraft into the halo orbit in the Sun-Earth system in late 1995. The halo orbit in the Sun-Earth system is adequate for missions such as solar observation, astronomical observation, NEO (Near Earth Objects) observation, communications with the far-side of the moon, etc.. Therefore, the importance of the halo orbit will become larger in the near future.

This document describes the basic orbital mechanics required for studies on the missions utilizing the Lagrange's points. After the introduction in Chapter 1, investigation of papers on orbital mechanics for the missions utilizing the Lagrange's points is shown in Chapter 2. The equations of motion for the circular restricted threebody problem are derived in Chapter 3, and the positions of the five Lagrange's points are obtained in Chapter 4. Motions near the collinear points are explained in both analytical and numerical ways in Chapter 5. Besides, Lissajous and halo orbits are described in that chapter. Motions near the equilateral-triangle points are explained in both analytical and numerical ways in Chapter 6.

#### Keywords

Lagrange's Points, Circular Restricted Three-Body Problem, Collinear Points, Equilateral-Triangle Points, Linear Equations of Motion, Stability, Halo Orbit 図、表リスト

|     |     | -        |
|-----|-----|----------|
| Ξ.  | _   | <u> </u> |
| = - | -   | 20       |
| чυ  | - 5 | 2.       |

| 1. はじめに ・・・・・・・・・・・・・・・・・1                             |
|--------------------------------------------------------|
| 2. ラグランジュ点近傍の軌道力学の文献調査 ·····2                          |
| 2.1 過去・現在のプロジェクト及び将来の構想                                |
| 2.2 リサジュ軌道及びハロー軌道の設計・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・3   |
| 2.3 L4, L5 点近傍軌道の設計 ·······4                           |
| 2.4 ハロー軌道の保持・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       |
| 2.5 L4, L5 点近傍軌道の保持 ·······5                           |
| 2.6 ハロー軌道への投入 ・・・・・ 5                                  |
| 2.7 L4, L5 点近傍軌道への投入 ······· 5                         |
| 3. 円制限三体問題 ····································        |
| 3.1 運動方程式(慣性系)                                         |
| 3.2 運動方程式(回転系) ・・・・・・・                                 |
| 3.3 ヤコビ定数とゼロ速度線図 · · · · · · · · · · · · · · · · · · · |
| 4. ラグランジュ点の導出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・      |
| 4.1 直線解の数値解 ・・・・・・13                                   |
| 4.2 直線解の解析解 ・・・・・・・・・・14                               |
| 4.3 各天体系でのラグランジュ点(直線解)の位置 ・・・・・15                      |
| 5. 直線解近傍の運動 ・・・・・ 16                                   |
| 5.1 線型運動方程式 ••••••••••••••••••••••••••••••••••••       |
| 5.2 一般解                                                |
| 5.3 周期解(xy 面内)·······20                                |
| 5.4 数値解(リサジュ軌道)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・22   |
| 5.5 八口一軌道                                              |
| 6. 正三角形解近傍の運動                                          |
| 6.1 線型運動方程式 •••••••••••27                              |
| 6.2 XY 面内運動の解析解 ···································    |
| 6.3 数值解 ···································            |
| 7. おわりに ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 37            |
| 8. 参考文献 · · · · · · · · · · · · · · · · · · ·          |

i

|   |     |     | 円制限三体問題の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                           |                 |
|---|-----|-----|-------------------------------------------------------------------------------------------|-----------------|
|   |     |     | 地球ー月系のゼロ速度線図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                         |                 |
|   |     |     | 月近傍のゼロ速度線図・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                            |                 |
|   |     |     | C₀=3.288 の等高線 ······                                                                      |                 |
|   |     |     | C₁=3.1897 の等高線 ······                                                                     |                 |
|   |     |     | C <sub>2</sub> =3.1733 の等高線 ······                                                        |                 |
|   |     |     | C₃=3.0123 の等高線 ······                                                                     |                 |
| 义 | 3.8 | 8   | C₄=2.998 の等高線・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                         | 11              |
|   | 4.1 |     | <i>ℓ</i> <sub>1</sub> 、 <i>ℓ</i> <sub>2</sub> の定義 ······                                  |                 |
| X | 4.2 |     | 直線解の場合の探査機位置×の定義 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                     |                 |
| 义 | 4.3 | 3   | 直線解の存在範囲・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                              | 13              |
| 义 | 5.1 | 1   | 直線解近傍の座標系 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                            | 16              |
| X | 5.2 | 2 i | 直線解近傍の周期運動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                           | 20              |
| 义 | 5.3 | 3   | L1 点近傍の周期運動(太陽-地球系) 線型解の初期速度を使用(x₀=1500km) ·······                                        | 22              |
| 义 | 5.4 | 4   | ∟1 点近傍の周期運動(太陽-地球系) 修正した初期速度を使用(x₀=1500km)・・・・・・・                                         | 22              |
| ¥ | 5.5 | 5   | L1 点近傍の周期運動(太陽-地球系) 線型解の初期速度を使用(x₀=150km) ・・・・・・・                                         | 23              |
| ¥ | 5.6 | 5 1 | _1 点近傍の周期運動(太陽-地球系) 修正した初期速度を使用(xo=150km)・・・・・・・                                          | 23 <sup>.</sup> |
|   |     |     | _1 点近傍の準周期運動(太陽-地球系) z 方向運動も付加                                                            |                 |
|   |     |     | _1 点近傍の準周期運動(太陽一地球系) z 方向運動も付加 ・・・・・・・・・・・・・・・・・・・・                                       |                 |
|   |     |     | ハロー軌道設計(初期見積もりの未知パラメータの場合)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                            |                 |
|   |     |     | ハロー軌道設計( $\varepsilon$ =10 <sup>-5</sup> 、約2周回分表示)····································    |                 |
|   |     |     | ハロー軌道設計( $\varepsilon$ =10 <sup>-8</sup> 、約3周回分表示)····································    |                 |
|   |     |     | ハロー軌道設計( $\varepsilon$ =10 <sup>-14</sup> 、約3.5周回分表示)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |                 |
|   |     |     | ハロー軌道設計(図 5.12 の yz 面図) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                               |                 |
|   |     |     | 正三角形解近傍の座標系 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                          |                 |
|   |     |     | Ⅰ乗項が消える座標系・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                            |                 |
|   |     |     | <b>密標変換 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</b>                                          |                 |
|   |     |     | E三角形解近傍の周期運動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                          |                 |
|   |     |     | .4 点近傍のλ₁モード周期運動(X₀=0.005) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                            |                 |
|   |     |     | .4 点近傍のλ₁モード周期運動(X₀=0.005、初速誤差 +1m/s) ・・・・・・・・・・・・・・・・・                                   |                 |
|   |     |     | -4 点近傍のλ₁モード周期運動(X₀=0.005、初速誤差 -1m/s)・・・・・・・・・・・・・・・・・・・                                  |                 |
|   |     |     | -4 点近傍のλ₁モード周期運動(Ҳ₀=0.05) ······                                                          |                 |
|   |     |     | 4 点近傍のλ₁モード周期運動(X₀=0.05、初速=線型解×0.99)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                   |                 |
|   |     |     | _5 点近傍のλ₁モード周期運動(X₀=0.05、線型解の初速を使用) ・・・・・・・・・・・・・                                         |                 |
|   |     |     | _4 点近傍から出発したλ2モード周期運動(X0=0.005) ······                                                    |                 |
| X | 6.1 | 2 L | _4 点近傍のλ₂モード周期運動(X₀=0.0005) ······                                                        | 36              |

## 図、表リスト

| 表 5.1∷各天体系の ν 値 ・・・・・・・                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\mathcal{L}_{\mathrm{exp}} = \{ (1, 2, \dots, 2^{n}) : 1 \leq i \leq n \}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\sum_{i=1}^{n} \sum_{j=1}^{n} \left( \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\sim 20$ . The second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $(A_{ij}) = (A_{ij}) + (A_{ij}) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\frac{\partial f_{ij}}{\partial t} = \frac{1}{2} \left( \frac{\partial f_{ij}}{\partial t} + $ | $\left  \left( \frac{1}{2} + \frac{1}{2} $ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ði veri er                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $(1,1,2,\dots,n_{n-1}) = (1,1,2,\dots,n_{n-1}) + (1,1$                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $(1,2)$ , the set of $\frac{1}{2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | na se tente e constante tente para persoas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $= \sum_{i=1}^{n} \frac{1}{2} \left( \frac{1}{2} - \frac{1}{2} + \frac{1}{2} +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\sum_{i=1}^{n} \frac{1}{2} \sum_{i=1}^{n-1} \frac{1}{2} $                                                                                                                                                                              |
| "你们的吗?""你说,你们就是我的                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 人名德尔 人名英格兰人姓氏德尔特的变体 医外外的 化分子子                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | en general in the first presentation of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| All states and states and states and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| na sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| an an an Araba an Araba.<br>Tara an an Araba an Araba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | an tanàna mandritra dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kao<br>Ny INSEE dia mampikambana dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina dia kaominina di                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

## 記号表

A, :第二天体の公転面内で、第一第二天体を結ぶ方向に垂直な方向のハロー軌道の半径

Az : 第二天体の公転面に垂直な方向のハロー軌道の半径

C :ヤコビ定数

Cv1 : ラグランジュ点近傍の線型楕円運動の長軸短軸比

G :万有引力定数(=6.672×10<sup>-11</sup>m<sup>3</sup>/(kg s<sup>2</sup>))

- ℓ<sub>1</sub> :探査機と第一天体との距離
- m1:第一天体の質量
- m2 : 第二天体の質量
- n :第一第二天体の重心回りの公転角速度
- p::直線解の点と、それに近い天体との無次元距離
- R :第一天体と第二天体の距離
- r :探査機の位置ベクトル
- r<sub>1</sub>:第一天体の位置ベクトル
- r<sub>2</sub>:第二天体の位置ベクトル
- T : 第一及び第二天体の公転周期
- U:ポテンシャル
- W:擬似ポテンシャル

△V<sub>HOI</sub>:ハロー軌道への遷移軌道において、ハロー軌道に達した時に必要な速度増分

- ΔV<sub>11</sub>:L1点への遷移軌道において、L1点到着時に必要な速度増分
- Ψ :擬似ポテンシャルの相乗項を消すための座標軸の回転角
- と :第一第二天体の重心を通る回転座標系の第三成分
- n:第一第二天体の重心を通る回転座標系の第二成分
- λ。:直線解近傍の線型運動の角振動数
- λ<sub>1</sub>:正三角形解近傍の線型運動の短周期モードの角振動数
- λ。:正三角形解近傍の線型運動の長周期モードの角振動数
- μ :第二天体の無次元質量
- と :第一第二天体の重心を通る回転座標系の第一成分

## 1. はじめに

1978年に最初のハロー軌道への探査機 ISEE-3(International Sun-Earth Explorer-3)が打ち上げられた後、暫く 後続ミッションが無かったが、1995年末に ESA/NASA が太陽観測衛星 SOHO(Solar and Heliospheric Observatory)をハロー軌道に打ち上げた。ハロー軌道は、太陽観測、より遠くの天体観測、地球に接近の可能性 のある小天体観測、月の裏側との通信、等のミッションに適したポイントであり、今後、重要性が次第に増して来る と考えられる。因みに、太陽-地球系のL2点に、次世代の光・赤外線天文衛星を投入する事が日本<sup>11</sup>及び米国で 検討されている。米国の計画は、Next Generation Space Telescope (NGST)というもので、最大で口径 8m の望遠 鏡が検討されている。これらの天文衛星から見た太陽-地球系のL2点の利点を以下に掲げる。

(1)太陽-地球系のL2 点は地球から約150万 km 離れているために、衛星への熱入力が減少し、放射冷却の みでもかなりの低温を実現できる。

(2)天文観測にとって邪魔になる太陽と地球の方向が一方向に限られるため、広い範囲が観測可能となると共

に、長時間の積分時間を確保できる。

また、ラグランジュ点近傍は重力傾度が小さい事を利用する計画も検討されている。それは、複数衛星を相対位 置誤差 1cm 程度で保持し、更に衛星内部で光路長を微調整する事で 10nm 程度の光路差精度を実現して、光 干渉計として使用するものである<sup>2)</sup>。

本資料は、ラグランジュ点を利用したこれらのミッションの検討に必要な軌道力学の基本的な事柄を記述している。第2章では、ラグランジュ点を利用した各種ミッションの軌道力学に関する文献調査の結果を整理した。第3 章では、最も基礎的な事柄である円制限三体問題の導出を行ない、第4章で5つのラグランジュ点の導出を行なった。第5章では直線解近傍の運動を解析的及び数値的に扱い、リサジュ軌道、ハロー軌道にも触れた。第6章 では正三角形解近傍の運動を解析的及び数値的に扱った。

- 1 -

## 2. ラグランジュ点近傍の軌道力学の文献調査

本章では、ラグランジュ点を利用するミッションの検討に必要な軌道力学についての文献調査の結果を整理する。

#### 2.1 過去・現在のプロジェクト及び将来の構想

#### 2.1.1 過去・現在のプロジェクト

(1) ISEE-3 (International Sun - Earth Explorer - 3)

#### 目的<sup>3)</sup>

1972 年に計画実施を決定し、1978 年 8 月 12 日に打ち上げられた。地球の磁気圏内で磁気圏を観測する ISEE-1, ISEE-2 に対して、太陽-地球系 L1 点に留まって地球磁気圏への入力である solar wind や solar flare 等 を観測する事を主目的とした。衛星はスピン安定型である。

#### <u>打上げウインドウと遷移軌道 3)</u>

地球から見て月が太陽と約±90 度の方向に有る数日間が打上げウインドウであった。 遷移軌道の初期のフェーズにおいて姿勢決定に月を必要とした事がその理由である。約100日かかる slow transferを採用し、midcourse #2(打上げ 25 日後に実施)と Halo Orbit Insertion 制御を合わせて約37m/sを使用した。

## ミッション軌道と軌道保持4)

Sバンド・ダウンリンクへの太陽雑音を避けるために衛星を太陽方向から3.5度以上離す必要があり、またスピン 軸が黄道面垂直に保持される衛星に固定されたアンテナのビーム幅の制約から、地球から見て黄道面から6度 以内に位置保持される必要があった。これらの制約を満足する軌道として、サイズの小さいリサジュ軌道とサイズ の大きいハロー軌道が候補であった。以下の理由から、Ay=67万キロのハロー軌道を選定した。Ayは黄道面内で 太陽・地球ラインに垂直な方向のハロー軌道半径であり、ハロー軌道の最大サイズを与える。

①リサジュ軌道は比較的大きな面外制御が必要である。

②ミッション軌道への投入制御量がサイズの大きいハロー軌道の方が少ない。

ISEE-3 は、平均 2m/s の保持制御を平均 82 日間隔で 15 回行なって約 4 年間ハロー軌道に保持された<sup>5.6</sup>。

## (2)SOHO (Solar and Heliospheric Observatory)

## <u>目的</u>

太陽-地球系の L1 点にて、太陽表面、コロナ、太陽風を連続的に観測するのが目的である。打上げ時質量は 1875kg、ペイロード質量は 640kg である。ノミナル 2 年寿命であるが、燃料は 6 年分搭載している。太陽指向精度 は 10 秒角であり、15 分間の姿勢安定性は 1 秒角である。

## <u>打上げウインドウと遷移</u>軌道 <sup>7)</sup>

ISEE-3 と同様、slow transfer を選択している。SOHO では、ISEE-3 で問題となった姿勢決定のための月の位置の制約は無く、打上げウインドウはほぼ毎日存在するが、毎月約1週間はウインドウが閉じる。その時、SOHO は月の近くを通過するため、月の重力が影響して、遷移軌道投入誤差の正確な除去ができないのが理由である。 ミッション軌道と軌道保持

ISEE-3 とほぼ同じ Ay = 69 万キロのハロー軌道を選定している。SOHO はミッション機器が小さい保持制御を要 求しており、保持制御量を極力小さくする事を考えている。正確な太陽系モデルの下で準周期解(厳密な意味で のハロー軌道(周期軌道)は存在しない)を数値的に正確に求め、それからのずれを抑える制御を行なう方針であ る。解析では、SOHO の4年間の保持を17回の制御で行ない、使用ΔVは計1m/s程度である。ISEE-3の1/10 以下である。

#### (3)RELICT-2(正式名称は不明)<sup>8)</sup>

目的

太陽-地球系の L2 点にて、宇宙背景放射と地球磁気圏尾部の二つの観測をミッションとするロシアの計画。計画が続行されているか、キャンセルされたか、既に飛行しているかは不明である。打上げ時質量は 1120kg、搭載燃料は 60kg である。スピン安定型の衛星である。

#### 打上げウインドウと遷移軌道

ミッション軌道の制約からサイズの小さいハロー軌道が要求され、ハロー軌道投入制御量を抑えるために Lunar swingby を利用する。そのため、打上げウインドウは月に2,3日である。Lunar swingby を利用する事で、ハロー軌道投入制御量はゼロとなる。Lunar swingby 時の誤差 50km に対して、必要な補正 Δ V は 3m/s 以下である。 ミッション軌道と軌道保持

磁気圏尾部の観測において、尾部に入っての観測と尾部から出ての観測を考えており、ISEE-3 の様に大きな ハロー軌道では困る。 $A_y < 25$  万キロ $\sim$ 30 万キロのハロー軌道の要求となっている。ハロー軌道投入制御量は、  $A_y$ が小さいほど大きくなり、 $A_y=0$ の時、約 280m/s 必要である。 $A_y = 80$  万 km でほぼゼロとなる。そのため、Lunar swingby を計画している。

#### 2.1.2 将来の構想

2.1.1 節のミッション例では、太陽観測、太陽地球間の空間観測、背景放射観測があった。その他のミッションと しては、太陽-地球系 L2 点ハロー軌道に数個のクラスタ衛星を投入して数キロ離して正確に(1cm オーダー)衛星 間隔を保持し、光干渉計システムを構成して遠くの惑星系を見つけようという計画が ESA<sup>2)</sup>にある。NASA は 2000 年初頭に New Millennium 計画(超小型衛星計画)の三番手として同様のミッションを考えている<sup>9)</sup>。

文献 10, 11, 12)等では、地球-月系の L2 点ハロー軌道を月裏面と地球との通信に利用する構想を提示している。

文献 11, 13)では、国際宇宙基地(ISS)の次の基地として、火星等への探査のための中継基地を太陽-地球系の L1 点等に設置する事を提案している。

## 2.2リサジュ軌道及びハロー軌道の設計

L1, L2 点近傍軌道の内、それらの点からの距離が小さいものは、線型方程式で近似できる。その運動は、第二 天体の軌道面内における運動と面外の運動に分離でき、どちらも第二天体の軌道周期の約 1/2 の周期運動とな る。ところが二つの運動の周期が僅かに異なるため、リサジュ軌道となる。リサジュ軌道において第一第二天体を 結ぶ線からある程度離す軌道を実現するには、定期的な面外制御が必要になる。

L1, L2 点からの距離を大きくすると非線型効果が周期にも生じて面内と面外の周期を一致させる事ができる。これがハロー軌道である。円制限三体問題のモデルでは、完全なハロー軌道を設計できるが、第二天体が楕円軌道であり、第三天体以降の存在や太陽輻射圧などの摂動が有ると、完全なハロー軌道(周期軌道)は存在しない。 SOHOでは、ノミナル軌道でさえ、僅かな制御を組み込んで設計している。

円制限三体問題のモデルにおいては解析的なハロー軌道の設計も行われている。ISEE-3の打上げ時には、3

次までの項でノミナル軌道を設計している。11次までの項を扱った軌道と3次の軌道を比較すると、数千キロの 違いがある。離心率の影響や第三天体の影響もあるので、円制限三体問題であまり高次の計算をしても意味が 無い。現実モデルの下でのノミナル軌道構築は、parallel shooting method<sup>6,14)</sup>や sequential shooting method<sup>5,6)</sup> 等の数値的方法が使われている。

ISEE-3やSOHOのハロー軌道よりも更にサイズの大きいものには、制限三体問題の下で安定なものが存在する <sup>15,16,17</sup>。このハロー軌道の中心はL1又はL2点と第二天体とのほぼ真ん中にあるが、サイズが大きいために第二 天体にもかなり接近する。第二天体の非球対称重力の影響を受けるものと思われる。現実モデルのもとでこの軌 道を解析した論文は未だ見た事が無い。

## 2.3 L4, L5 点近傍軌道の設計

これらの点への具体的なミッション計画はまだ無いが、地球ー月系のL4, L5点は近くに邪魔な天体が存在せず、 地球からそれほど遠くないために、天体観測ミッションとしての利用が想定されている。これらの点は、円制限三 体問題の平面問題では質量比  $\mu$  (=m<sub>2</sub>/(m<sub>1</sub>+m<sub>2</sub>)) < 0.0385...(m<sub>1</sub>:第一天体の質量、m<sub>2</sub>:第二天体の質量)の範囲 では、linearly stable であるが、3 次元問題では Arnold diffusion もあり僅かに不安定である<sup>14)</sup>。現実のモデルでも 不安定性は小さい。現実の地球ー月系のL4, L5点に対して 10 年以上もの期間、これらの点から4 万キロ以上離 れない軌道が設計されている<sup>14)</sup>。軌道設計期間を数日間隔に分割し、各区間に初期軌道を与え、区間の終点 で次の区間とマッチングする条件と、各区間の初期軌道の修正量が最小という条件を組み合わせて数値的に解 いている(parallel shooting method with minimum norm)。保持燃料は、僅かである。これらの点も、不安定である ため、惑星間ダストが集積している恐れはなく、天体観測には都合が良い。

## 2.4 ハロー軌道の保持

ハロー軌道の保持方法として、以下の3つを文献から見つけた。

①重み付き最小二乗法によるもの18)

② Linear-Quadratic Control を使うもの 5)

③局所不安定多様体を利用するもの19

#### 2.4.1 重み付き最小二乗法によるもの

軌道保持中のある時点  $t_0$ で軌道決定が行なわれたとする。 $t_0$ 以後の2つの時点  $t_1, t_2$ を事前に決めておき、 $t_0$ の軌道決定を受けてt(文献 18)では、 $t=t_0$ )で制御し、 $t_1 \ge t_2$ でのノミナル軌道からのずれと制御量の重み付き 二乗和を最小にする方式である。得られる  $\Delta$  Vが、事前に設定する  $\Delta$  V<sub>min</sub>より小さい時は制御を延期する。なお、 制御間隔には最小値の制限がある。 $t_1 \ge t_2$ でのノミナル軌道からのずれは、遷移行列を使って算出する。 $t_1 \ge t_2$ の設定、最小にする量の重みの設定など、事前に決めておく量が多く、スマートな方法とは言い難い感がある。 実際の太陽系モデル、制御誤差、軌道決定誤差などを考慮したシミュレーションを 6.3 年分行ない、平均制御間 隔 86 日の 25 回の制御でノミナルからの位置のずれ 200~300km 以下の保持ができている。合計の  $\Delta$  V は約 3m/s であった。ノミナル軌道と遷移行列を計算しておけば、後は行列計算のみで制御計画ができる。

#### 2.4.2 Linear-Quadratic Control を使うもの

状態量の変化を遷移行列を使った線形方程式で近似し、各点における状態量のノミナル値からのずれと制御

- 4 -

This document is provided by JAXA.

量の二乗和を最小にする方式。文献 5)では 20 日間隔の離散型 LQC 制御を使用して SOHO の軌道でシミュレ ーションを行ない、6 年間の軌道保持を 1.44m/s で実現している。シミュレーション期間中のノミナル軌道からのず れは、20~30km である。2.4.1 節の手法を一般化したものと考えられる。

#### 2.4.3 局所不安定多様体を利用するもの

ハロー軌道の1周後の遷移行列を monodromy 行列と言い、その固有値を計算すると以下の様になる。

 $\lambda_1 > 1$ ,  $\lambda_2 = 1/\lambda_1$ ,  $\lambda_3 = \lambda_4 = 1$ ,  $\lambda_5 \ge \lambda_6$  は大きさ 1 の共役関係

λ<sub>1</sub>に対応した固有ベクトル e<sub>1</sub>(0)方向が最も軌道が拡大する方向である。速度ベクトルのノミナル値との差の e<sub>1</sub>(t) (e<sub>1</sub>(0)を遷移行列で時刻 t に伝播したもの)方向成分が不安定に関係しているので保持制御で取り除く。e<sub>1</sub>(t)ベク トルは黄道面内にあり、y 方向よりはx 方向(第一第二天体を結ぶ方向)の制御が効率的である。太陽-地球系では 制御が 2 週間遅れると燃料は 2 倍必要となり、地球-月系では 1.4 日遅れると 2 倍となる。

SOHO軌道に対して、実太陽系モデルで4年間の保持制御のシミュレーションを行なうと、17回の制御が必要となり、計 1m/s 以下の増速量で十分であった。

特殊な例として、火星-フォボス系の L1 点に保持するシミュレーションを行なった文献がある<sup>20)</sup>。1 日当たり 1.5m/sの保持制御量が必要であるが、フォボスの質量等のモデル誤差が大きい場合を想定して、真のL1点の位 置もオンボードで推定しながら保持するアルゴリズムを提出している。

## 2.5 L4, L5 点近傍軌道の保持<sup>14)</sup>

L4, L5 点の近傍軌道は mild な不安定なので地球-月系の場合でも年に数回制御すれば良い。制御計画作 成法として、2.3 節に述べた parallel shooting method with minimum norm が使える。2.3 節の軌道設計の場合は 初期位置も未知数であったが、保持制御の場合は、初期位置は given であり初期速度は未知数のまま解く。得ら れる初期速度と実際の速度の差が増速ベクトルとなる。

### 2.6 ハロー軌道への投入

L1, L2 点への遷移軌道には、slow transfer と fast transfer の2つがある。太陽-地球系 L1 点の場合、fast transfer は約 35 日で移行し約 340m/s の $\Delta$  V<sub>L1</sub> ( $\Delta$  V at L1)が必要であるが、slow transfer では約 110 日かかる が約 280m/s の $\Delta$  V<sub>L1</sub>で済む<sup>4)</sup>。L1, L2 点でなく、その回りのハロー軌道に直接投入する事で大幅に $\Delta$  V<sub>HOI</sub>(Halo Orbit Insertion)を減らす事ができる。 $\Delta$  V<sub>HOI</sub>はハロー軌道の最大サイズ A<sub>y</sub>にほぼ線型に依存している。A<sub>y</sub>=0 の 時に $\Delta$  V<sub>HOI</sub>=280 m/s、A<sub>y</sub>=80 万 km の時に $\Delta$  V<sub>HOI</sub>=0 m/s となる<sup>8)</sup>。小さい A<sub>y</sub>が必要なミッションの場合は、 $\Delta$  V<sub>HOI</sub>が大きくなる。その場合は、月フライバイを利用する事で $\Delta$  V<sub>HOI</sub>をほぼゼロにできる。但し、フライバイ前の微 調整に数十 m/s 必要であるが大幅な $\Delta$  V<sub>HOI</sub>低減に変わりはない<sup>8)</sup>。打上げウインドウは狭くなる。

## 2.7 L4, L5 点近傍軌道への投入<sup>14)</sup>

地球ー月系のL4, L5 点への遷移軌道(地球静止トランスファ軌道(GTO)からの遷移を前提とする)として、direct transfer と Lunar swingby 利用の2つが考えられる。direct transfer は Hohmann 軌道と bi-elliptical 変換が考えられる。Hohmann 軌道では約1500m/s で7日間で遷移でき、bi-elliptical 変換では一旦地球から100万 km 以上の点まで移行する必要があるが、1350m/s で行ける。L4 点でΔ V を付加して逆行積分すると、1回の Lunar

swingby 後に5万 km×40万 km の楕円軌道になる事が判明し、GTO からこの軌道へ投入すれば良い。35日、1150m/s で遷移できる。2. Lunar swingby、5 マヌーバでは 60 日、900m/s で遷移可能である。

- 6 -

## 3. 円制限三体問題<sup>21)</sup>

地球と太陽の様な天体の両方からの重力がほぼ同じオーダーの場所で探査機を運動させる場合に便利な近 似モデルが制限三体問題である。探査機の質量は、二つの天体の質量に比べて無視できる程小さく、探査機の 存在が、二つの天体の運動に与える影響は無視できる。よって、制限三体問題では、二つの天体の運動は事前 に与えられており、その重力場の中を test particle としての探査機が運動すると考える。二つの天体の運動を、両 者の重心回りの円運動と近似した問題が、円制限三体問題である。

#### 3.1 運動方程式(慣性系)

二つの天体の質量をm<sub>1</sub>、m<sub>2</sub>とし、探査機の質量をmとする。探査機の慣性系における運動方程式は、次式で 表わされる。原点は、第一天体と第二天体の重心である。

$$\ddot{\mathbf{r}} = -\frac{\partial U}{\partial \mathbf{r}}$$

$$U = -G\left(\frac{m_1}{|\mathbf{r} - \mathbf{r}_1|} + \frac{m_2}{|\mathbf{r} - \mathbf{r}_2|}\right)$$
(3.1)

ここで、

U: ポテンシャル

r<sub>1</sub>:第一天体の位置ベクトル

r<sub>2</sub>: 第二天体の位置ベクトル

 $m_1 > m_2 \gg m$ 

である。図 3.1 を参照。

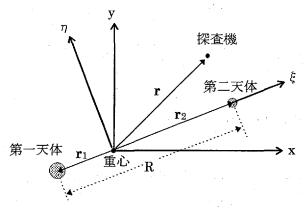



図 3.1 円制限三体問題の説明

#### 3.2 運動方程式(回転系)

ここでは、第一天体と第二天体の重心を原点とし、角速度nで回転する系( $\xi \eta \zeta \Lambda$ )で運動を考える。nは両 天体の重心回りの公転角速度であり、次式で与えられる。

- 7 --

$$n = \sqrt{\frac{G(m_1 + m_2)}{|\mathbf{r}_2 - \mathbf{r}_1|^3}} = \sqrt{\frac{G(m_1 + m_2)}{R^3}}$$
(3.2)

慣性系での i を回転系で表現すると22)、

$$\ddot{\mathbf{r}} = \frac{D^2 \mathbf{r}}{D t^2} + 2\mathbf{n} \times \frac{D \mathbf{r}}{D t} + \mathbf{n} \times (\mathbf{n} \times \mathbf{r})$$

$$\frac{D}{D t} \mathbf{k}, \quad \square 転系 \ \mathcal{C}O 微分$$
(3.3)

となる。(3.3)式の各項を成分表示すると、

$$\frac{D^2 \mathbf{r}}{D t^2} = \begin{pmatrix} \xi \\ \dot{\eta} \\ \dot{\zeta} \end{pmatrix}$$
$$2\mathbf{n} \times \frac{D \mathbf{r}}{D t} = 2n \begin{pmatrix} -\dot{\eta} \\ \dot{\xi} \\ 0 \end{pmatrix}$$

This document is provided by JAXA.

(3.4)

(3.5)

$$\mathbf{n} \times (\mathbf{n} \times \mathbf{r}) = -n^2 \begin{pmatrix} \xi \\ \eta \\ 0 \end{pmatrix}$$

であり、(3.1)式を回転系で書くと、以下のようになる。

$$\ddot{\xi} - 2n\dot{\eta} - n^{2}\xi = -\frac{\partial U}{\partial \xi}$$
$$\ddot{\eta} + 2n\dot{\xi} - n^{2}\eta = -\frac{\partial U}{\partial \eta}$$
$$\ddot{\zeta} = -\frac{\partial U}{\partial \zeta}$$

上式の左辺の第3項は位置による項であり、右辺に回してポテンシャル Uと合わせて考える。

$$\ddot{\xi} - 2n\dot{\eta} = n^{2}\xi - \frac{\partial U}{\partial\xi} = \frac{\partial}{\partial\xi} \left( \frac{1}{2}n^{2}\xi^{2} - U \right)$$
$$\ddot{\eta} + 2n\dot{\xi} = n^{2}\eta - \frac{\partial U}{\partial\eta} = \frac{\partial}{\partial\eta} \left( \frac{1}{2}n^{2}\eta^{2} - U \right)$$
$$\ddot{\zeta} = \frac{\partial}{\partial\zeta} \left( -U \right)$$

以下の擬似ポテンシャル W

$$W \equiv \frac{1}{2}n^2\left(\xi^2 + \eta^2\right) - U$$

を定義すると、(3.7)式は次のように表わされる。

$$\ddot{\xi} - 2n\dot{\eta} = \frac{\partial W}{\partial \xi}$$
$$\ddot{\eta} + 2n\dot{\xi} = \frac{\partial W}{\partial \eta}$$
$$\ddot{\zeta} = \frac{\partial W}{\partial \zeta}$$

次に、(3.9)式を無次元化する。無次元化のための基準量は、以下の通り。

Tは、第一及び第二天体の公転周期

無次元化された量を□'で表現すると、

$$\xi = R\xi' \qquad \eta = R\eta' \qquad \zeta = R\zeta'$$
  

$$\dot{\xi} = \frac{d\xi}{dt} = nR\frac{d\xi'}{dt'} \qquad \dot{\eta} = nR\frac{d\eta'}{dt'} \qquad \dot{\zeta} = nR\frac{d\zeta'}{dt'}$$
  

$$\ddot{\xi} = n^2R\frac{d^2\xi'}{dt'^2} \qquad \ddot{\eta} = n^2R\frac{d^2\eta'}{dt'^2} \qquad \ddot{\zeta} = n^2R\frac{d^2\zeta'}{dt'^2}$$

となる。Wを同様に、無次元化すると、

$$W = \frac{n^2 R^2}{2} \left( \xi'^2 + \eta'^2 \right) + \frac{G(m_1 + m_2)}{R} \left( \frac{m_1'}{|\mathbf{r}' - \mathbf{r}_1'|} + \frac{m_2'}{|\mathbf{r}' - \mathbf{r}_2'|} \right)$$

となる。ここで、

$$\frac{G(m_1 + m_2)}{R} = \frac{G(m_1 + m_2)}{R^3}R^2 = n^2R^2$$

であるので、

(3.6)

(3.8)

(3.9)

$$W = n^{2}R^{2}\left[\frac{\xi'^{2} + \eta'^{2}}{2} + \left(\frac{m_{1}'}{|\mathbf{r}' - \mathbf{r}_{1}'|} + \frac{m_{2}'}{|\mathbf{r}' - \mathbf{r}_{2}'|}\right)\right] = n^{2}R^{2} W'$$

となる。(3.10), (3.11)式を使って、例えば(3.9)式の第一式を変形すると、

$$n^{2}R\frac{d^{2}\xi'}{dt'^{2}} - 2n^{2}R\frac{d\eta'}{dt'} = n^{2}R\frac{\partial W'}{\partial \xi'}$$

となり、(3.9)式は、以下のように無次元化される。

$$\frac{d^{2}\xi'}{dt'^{2}} - 2\frac{d\eta'}{dt'} = \frac{\partial W'}{\partial \xi'}$$
$$\frac{d^{2}\eta'}{dt'^{2}} + 2\frac{d\xi'}{dt'} = \frac{\partial W'}{\partial \eta'}$$
$$\frac{d^{2}\zeta'}{dt'^{2}} = \frac{\partial W'}{\partial \zeta'}$$

本資料のこれ以降では、□ ・の代わりに、□を無次元量として用いる。 よって、無次元化された円制限三体問題の運動方程式は、

$$\ddot{\xi} - 2\dot{\eta} = \frac{\partial W}{\partial \xi}$$
$$\ddot{\eta} + 2\dot{\xi} = \frac{\partial W}{\partial \eta}$$
$$\ddot{\zeta} = \frac{\partial W}{\partial \zeta}$$
$$W = \frac{1}{2} \left(\xi^2 + \eta^2\right) + \frac{m_1}{|\mathbf{r} - \mathbf{r}_1|} + \frac{m_2}{|\mathbf{r} - \mathbf{r}_2|}$$

となる。

## 3.3 ヤコビ定数とゼロ速度線図

(3.13)式の第1~第3式に各々 5~ 5を乗じて加えると、

$$\ddot{\xi}\dot{\xi} - 2\dot{\xi}\dot{\eta} + \ddot{\eta}\dot{\eta} + 2\dot{\xi}\dot{\eta} + \ddot{\zeta}\dot{\zeta} = \frac{\partial W}{\partial\xi}\dot{\xi} + \frac{\partial W}{\partial\eta}\dot{\eta} + \frac{\partial W}{\partial\zeta}\dot{\zeta}$$

であり、

$$\frac{1}{2}\frac{d}{dt}\left(\dot{\xi}^{2}+\dot{\eta}^{2}+\dot{\zeta}^{2}\right)=\frac{\partial W}{\partial\xi}\frac{d\xi}{dt}+\frac{\partial W}{\partial\eta}\frac{d\eta}{dt}+\frac{\partial W}{\partial\zeta}\frac{d\zeta}{dt}=\frac{dW}{dt}$$

となる。積分定数を-Cとして積分すると、

 $\dot{\xi}^2 + \dot{\eta}^2 + \dot{\zeta}^2 = 2W - C$ 

#### C: ヤコビ定数(Jacobian Constant)

となり、trajectory に沿って、2W – ( $\xi^2$  +  $\eta^2$  +  $\zeta^2$ ) (=C)は一定値を取る。1 つの trajectory が与えられ、C が決まる と、(3.15)式より、

$$\dot{\xi}^{2} + \dot{\eta}^{2} + \dot{\zeta}^{2} = 2W - C \ge 0 \quad \sharp \ \emptyset$$
(3.16)
$$2W \ge C$$

となり、(3.16)式を満足する領域のみが運動可能領域となる。2W=Cの面を、ゼロ速度曲面といい、それとξη平面との交線を、ゼロ速度線図と言う。図 3.2 に、地球ー月系のゼロ速度線図を示す。図 3.3 に月近傍の拡大図を示す。これらの図には、以下の6つのC値の等高線を描いている。

(3.12)

(3.11)

(3.14)

(3.15)

- 9 -

 $C_0 = 3.288$  $C_1 = 3.1897$  $C_2 = 3.1733$  $C_3 = 3.0123$  $C_4 = 2.998$  $C_5 = 2.9879$ C<sub>1</sub>=3.1897, C<sub>2</sub>=3.1733, C3=3.0123 は L1、 L2、L3 点での値で  $b_{5}$ ,  $C_{5} = 2.9879$ はL4,L5 点での値 である。C<sub>0</sub>、C<sub>4</sub>は適 当に設定した。 図 3.2 は 見辛いの で、Cの各値毎の 等高線を図 3.4 から 図 3.8 に掲載した。 矢印でWの増大方 向を示した。(3.16) 式より、図 3.4 から 図 3.8 の各図の C 値を持った宇宙機 の存在可能領域は、

等高線の矢印側の

みに制限される。

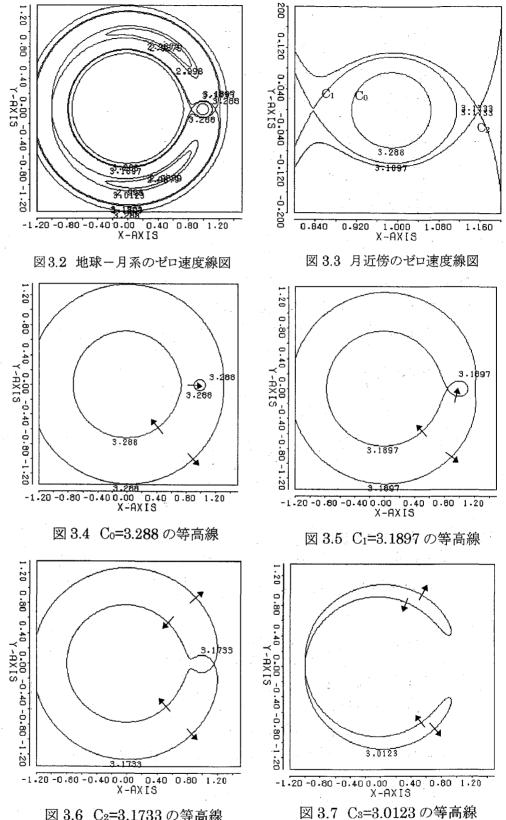
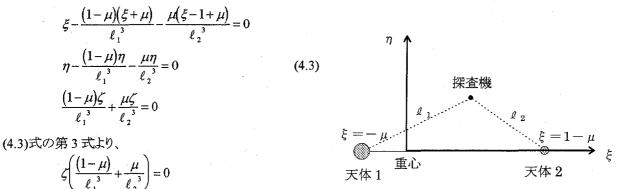



図 3.6 C<sub>2</sub>=3.1733の等高線

## 4. ラグランジュ点の導出

円制限三体問題において、探査機の位置が回転系において変化しない点をラグランジュ点といい、5つ存在する事が知られている。 これらの点では、2 つの質点からの重力と遠心力とが釣り合っている。 ラグランジュ点においては、(3.13)式より、

$$\frac{\partial W}{\partial \xi} = 0$$
$$\frac{\partial W}{\partial \eta} = 0$$
$$\frac{\partial W}{\partial \zeta} = 0$$


が成立する。以下では、m2= μとおく。

Wは、

$$W = \frac{1}{2} \left( \xi^{2} + \eta^{2} \right) + \frac{1 - \mu}{\sqrt{\left(\xi + \mu\right)^{2} + \eta^{2} + \zeta^{2}}} + \frac{\mu}{\sqrt{\left(\xi - 1 + \mu\right)^{2} + \eta^{2} + \zeta^{2}}}$$

と書けるので、(4.1)式は以下のようになる。 ℓ1, ℓ2は、探査機と天体1及び天体2との距離である。(図 4.1を参照)

(4.1)



 $\therefore \zeta = 0$ 

図 4.1 ℓ1, ℓ2の定義

以降は、参考文献 23)の方針に沿って、ラグランジュ点の満足する方程式を導出すると共に、ラグランジュ点は5 つのみである事も示す。

(4.3)式の第2式を、(1- µ)とµの項に分けて変形すると、

つまり、ラグランジュ点は、ミη平面上に存在する。

$$\eta \left( 1 - \frac{1 - \mu}{\ell_1^3} - \frac{\mu}{\ell_2^3} \right) = \eta \left( (1 - \mu) - \frac{1 - \mu}{\ell_1^3} + \mu - \frac{\mu}{\ell_2^3} \right) = \eta \left( (1 - \mu) \left( 1 - \frac{1}{\ell_1^3} \right) + \mu \left( 1 - \frac{1}{\ell_2^3} \right) \right) = 0$$
(4.4)

となる。(4.3)式の第1式を、( $\xi + \mu$ )と $\mu$ の項に分けて変形すると、

$$\left(\xi + \mu\right) \left(1 - \frac{1 - \mu}{\ell_1^3} - \frac{\mu}{\ell_2^3}\right) - \mu \left(1 - \frac{1}{\ell_2^3}\right) = 0$$
(4.5)

となり、余弦定理より、

 $\ell_{2}^{2} = \ell_{1}^{2} + 1 - 2(\xi + \mu)$ 

が成り立つので、次式が得られる。

$$\xi + \mu = \frac{1 + \ell_1^2 - \ell_2^2}{2}$$

これを(4.5)式に代入して、(1-μ)とμの項に分かれる様に変形すると、

2.998 2.998 -1.20-0.60-0.40 0.00 0.40 0.80 1.20 X-AXIS

図 3.8 C4=2.998 の等高線

(4.2)

$$\frac{1}{2} \left(\ell_{1}^{2} + 1 - \ell_{2}^{2}\right) \left(1 - \frac{1 - \mu}{\ell_{1}^{3}} - \frac{\mu}{\ell_{2}^{3}}\right) - \mu \left(1 - \frac{1}{\ell_{2}^{3}}\right) = 0$$

$$\frac{1}{2} \left(\ell_{1}^{2} + 1 - \ell_{2}^{2}\right) \left((1 - \mu) - \frac{1 - \mu}{\ell_{1}^{3}} + \mu - \frac{\mu}{\ell_{2}^{3}}\right) - \mu \left(1 - \frac{1}{\ell_{2}^{3}}\right) = 0$$

$$\frac{1}{2} (1 - \mu) \left(\ell_{1}^{2} + 1 - \ell_{2}^{2}\right) \left(1 - \frac{1}{\ell_{1}^{3}}\right) + \mu \left(1 - \frac{1}{\ell_{2}^{3}}\right) \left(\frac{\ell_{1}^{2} + 1 - \ell_{2}^{2}}{2} - 1\right) = 0$$

$$(1 - \mu) \left(\ell_{1}^{2} + 1 - \ell_{2}^{2}\right) \left(1 - \frac{1}{\ell_{1}^{3}}\right) + \mu \left(\ell_{1}^{2} - 1 - \ell_{2}^{2}\right) \left(1 - \frac{1}{\ell_{2}^{3}}\right) = 0$$

となる。

始めに、直線解でない場合を考える。η≠0なので、(4.4)式より、

$$(1-\mu)\left(1-\frac{1}{\ell_1^3}\right)+\mu\left(1-\frac{1}{\ell_2^3}\right)=0$$

0

となる。これを変形した次式

$$\mu \left( 1 - \frac{1}{\ell_2^3} \right) = -(1 - \mu) \left( 1 - \frac{1}{\ell_1^3} \right)$$

を、(4.6)式に代入すると、

$$(1-\mu)\left(1-\frac{1}{\ell_1^{-3}}\right) =$$

となり、(4.7)式と合わせて、

 $\ell_1 = 1, \ \ell_2 = 1$ 

が得られる。これは、正三角形解である。

直線解の場合は、η =0であり、(4.6)式のみとなる。 図 4.2 のように x を定義すると、

 $\ell_1 = |x| \qquad \ell_2 = |1 - x|$ 

であり、(4.6)式は次式となる。

$$(1-\mu)x\left(1-\frac{1}{|x|^3}\right)+\mu(x-1)\left(1-\frac{1}{|1-x|^3}\right)=0$$

これを整理すると、次式が得られる。

$$(1-\mu)(x-1)|x-1|(|x|^{3}-1)+\mu x |x|(|x-1|^{3}-1)=0$$

上式の左辺をf(x)とおくと、

$$f(x) = (1 - \mu)f_1(x) + \mu f_2(x)$$
  

$$f_1(x) = (x - 1)|x - 1| (|x|^3 - 1)$$
  

$$f_2(x) = x |x| (|x - 1|^3 - 1)$$
  

$$\mu : 0 \sim 1$$

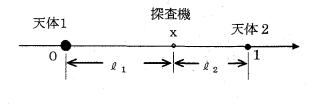



図 4.2 直線解の場合の探査機位置 x の定義

(4.8)

(4.9)

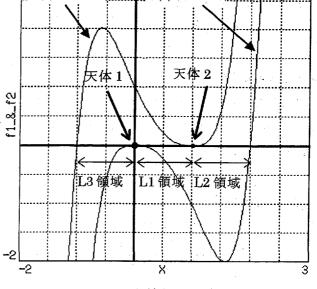
(4.7)

(4.6)

であり、任意のµに対する f(x)のグラフは、f<sub>1</sub>(x)と f<sub>2</sub>(x)のグラフの間に来る。これらのグラフを図 4.3 に 示す。この図から、直線解は以下の範囲に 3 個だけ 存在する事が分かる。

L3 点の存在範囲:-1<x<0

L1 点の存在範囲: 0 < x < 1


L2 点の存在範囲: 1 < x < 2

## 4.1 直線解の数値解<sup>24)</sup>

直線解の存在範囲が明確になったので、各々の 解に対する代数方程式を求める。

L1 点の存在範囲は、0 < x < 1 なので、(4.8)式よ

## (1) L1 点の方程式



f<sub>2</sub>(x)のグラフ

図 4.3 直線解の存在範囲

り、

| $x^{5} - (2 + \mu)x^{4} + (1 + 2\mu)x^{3} - (1 - \mu)x^{2} + 2(1 - \mu)x - (1 - \mu) = 0$ | (4.10) |
|-------------------------------------------------------------------------------------------|--------|
|                                                                                           | · · ·  |

が得られる。通常、μ << 1 であり、x は 1 に近い値となる。(4.10)式をそのまま解くと、有効数字の桁数が減少する ため、

3

f1(x)のグラフ

| $p \equiv 1 - x \ge 0$  |   |  |   | (4.11) |
|-------------------------|---|--|---|--------|
| とおいて、pに対する5次方程式に変換して解く。 | • |  | • |        |

(4.10)式に(4.11)式を代入すると、

 $(1-\mu)p^{2}(p^{3}-3p^{2}+3p)+\mu(p^{2}-2p+1)(p^{3}-1)=0$ (4.12)

となり、これを整理すると、次式が得られる。  
$$p^{5} - (3 - \mu)p^{4} + (3 - 2\mu)p^{3} - \mu p^{2} + 2\mu p - \mu = 0$$

| (2) L2 点の方程式                                               |   |     |    |        |
|------------------------------------------------------------|---|-----|----|--------|
|                                                            |   | : • |    |        |
| μ << 1 の場合、L2 点の x も 1 に近い値となるので、                          |   |     |    |        |
| $\mathbf{p} \equiv \mathbf{x} - 1 \ge 0$                   |   |     |    | (4.14) |
| とおいて、(4.8)式に代入すると、                                         |   |     | .* |        |
| $(1-\mu)p^{2}(p^{3}+3p^{2}+3p)+\mu(p^{2}+2p+1)(p^{3}-1)=0$ | ) |     |    | (4.15) |
| となり、これを整理して、次式を得る。                                         |   |     |    |        |

$$p^{5} + (3-\mu)p^{4} + (3-2\mu)p^{3} - \mu p^{2} - 2\mu p - \mu = 0$$
(4.16)

## (3) L3 点の方程式

| L3 点の存在範囲は-1 < x < 0 であり、 μ <<         | :1の場合、x=-1に近いので、 |        |
|----------------------------------------|------------------|--------|
| $\mathbf{p} \equiv \mathbf{x} + 1 > 0$ | ·                | (4.17) |
| とおいて、(4.8)式に代入すると、                     |                  | ~      |

(4.13)

$$(1-\mu)(p-2)^{2}(p^{3}-3p^{2}+3p)+\mu(p-1)^{2}(p^{3}-6p^{2}+12p-7)=0$$
(4.18)

となり、整理して次式を得る。

$$p^{5} - (7 + \mu)p^{4} + (19 + 6\mu)p^{3} - (24 + 13\mu)p^{2} + (12 + 14\mu)p - 7\mu = 0$$
(4.19)

## 4.2 直線解の解析解<sup>24)</sup>

L1, L2, L3 各点の値を正確に求めるには、前節の5次方程式をニュートン法で解けば良いが、実際の太陽系の 様に μ << 1 の場合には、微小パラメータ(μ等)の低次の冪級数で十分な事も多い。本節では、冪級数による表 現を示す。

#### (1) L1 点の冪級数表現

(4.12)式を、以下のように変形する。

$$\frac{\mu}{1-\mu} = \frac{p^3 \left(-p^2 + 3p - 3\right)}{\left(p-1\right)^2 \left(p^3 - 1\right)} = 3p^3 \left(1+p + \frac{4}{3}p^2 + \frac{8}{3}p^3 + 3p^4 + \frac{11}{3}p^5 + \frac{16}{3}p^6 + 6p^7 + \cdots\right)$$
(4.20)

これから、第一近似の解は、

$$p \cong \left(\frac{\mu}{3(1-\mu)}\right)^{\frac{1}{3}}$$
(4.21)

となる。よって、vを次式で定義し、

$$\nu \equiv \left(\frac{\mu}{3(1-\mu)}\right)^{\frac{1}{3}} \tag{4.22}$$

求めたいpを、以下の形で表現する。

$$p = \nu \left( 1 + k_1 \nu + k_2 \nu^2 + \cdots \right) \tag{4.23}$$

(4.20)式を次のように変形する。

$$v = p \left(1 + p + \frac{4}{3}p^2 + \dots\right)^{\frac{1}{3}} = p \left(1 + \frac{1}{3}p + \frac{1}{3}p^2 + \frac{53}{81}p^3 + \frac{101}{243}p^4 + \frac{97}{243}p^5 + \frac{3953}{6561}p^6 + \dots\right)$$
(4.24)

この式の右辺の p に(4.23)式を代入し、 v の各次数の係数を両辺で比較する事により、k<sub>1</sub>, k<sub>2</sub>, ····が決まる。その結果、p が次式の様に v の冪級数で表現される。

$$p = \nu \left( 1 - \frac{1}{3}\nu - \frac{1}{9}\nu^2 - \frac{23}{81}\nu^3 + \frac{151}{243}\nu^4 - \frac{1}{9}\nu^5 \right) + O(\nu^7)$$
(4.25)

#### (2) L2 点の冪級数表現

(4.15)式を以下のように変形する。

$$\frac{\mu}{1-\mu} = \frac{3p^3\left(1+p+\frac{1}{3}p^2\right)}{\left(1-p^3\right)\left(1+p\right)^2} = 3p^3\left(1-p+\frac{4}{3}p^2-\frac{2}{3}p^3+p^4-p^5+2p^6-\cdots\right)$$
(4.26)

(4.22)式の vの定義を使って上式を変形すると、

$$\nu = p \left( 1 - p + \frac{4}{3}p^2 + \dots \right)^{\frac{1}{3}} = p \left( 1 - \frac{1}{3}p + \frac{1}{3}p^2 + \frac{1}{81}p^3 + \frac{47}{243}p^4 - \frac{43}{243}p^5 + \frac{2549}{6561}p^6 - \dots \right)$$
(4.27)

となる。(4.23)式の形で p を v の冪級数で表現し、(4.27)式の右辺に代入する。 v の各次数の係数を比較する事 で k<sub>1</sub>, k<sub>2</sub>, ····を決める。その結果、次式が得られる。

$$p = \nu \left( 1 + \frac{1}{3}\nu - \frac{1}{9}\nu^2 - \frac{31}{81}\nu^3 - \frac{119}{243}\nu^4 - \frac{1}{9}\nu^5 \right) + O(\nu^7)$$
(4.28)

(3) L3 点の冪級数表現

(4.18)式を変形して、次式を得る。

$$\frac{7}{12}\frac{\mu}{1-\mu} = \frac{p\left(1-\frac{1}{2}p\right)^2\left(1-p+\frac{1}{3}p^2\right)}{\left(1-p\right)^2\left(1-\frac{12}{7}p+\frac{6}{7}p^2-\frac{1}{7}p^3\right)} = p\left(1+\frac{12}{7}p+\frac{1567}{588}p^2+\frac{15745}{4116}p^3+\frac{74695}{14406}p^4+\frac{339859}{50421}p^5+\cdots\right)$$
(4.29)

第一近似解は、

$$p \cong \frac{7}{12} \frac{\mu}{1-\mu}$$
(4.30)

となる。p を(4.30)式の冪級数に展開する事が考えられるが、次式の ν'の冪級数に展開する事で1次項の係数が ゼロとなるため、こちらを採用する。

$$\nu' \equiv \frac{7}{12}\mu \tag{4.31}$$

(4.29)式の左辺を ν'を用いて表現すると、

$$\frac{7}{12}\frac{\mu}{1-\mu} = \frac{7}{12}\mu\left(1+\mu+\mu^2+\mu^3+\cdots\right) = \frac{7}{12}\mu\left(1+\frac{12}{7}\left(\frac{7}{12}\mu\right)+\left(\frac{12}{7}\right)^2\left(\frac{7}{12}\mu\right)^2+\cdots\right)$$

$$=\nu'\left(1+\frac{12}{7}\nu'+\left(\frac{12}{7}\right)^2\nu'^2+\cdots\right)$$
(4.32)

であり、(4.29)式の右辺の p を v'の冪級数展開で表現して代入し、v'の各次数を比較する事で、次式が得られる。

$$p = \nu' \left( 1 + \frac{23}{84} {\nu'}^2 + \frac{23}{84} {\nu'}^3 + \frac{761}{2352} {\nu'}^4 + \frac{3163}{7056} {\nu'}^5 + \frac{30703}{49392} {\nu'}^6 \right) + O(\nu'^8)$$
(4.33)

## 4.3 各天体系でのラグランジュ点(直線解)の位置

参考までに、幾つかの天体系におけるラグランジュ点直線解pの値を表 4.1 に示す。4.1 節の5次方程式をニュートン法で解いた。

| 天体システム   | μ                            | Ll 点の p        | L2 点の p        | L3 点の p                       |
|----------|------------------------------|----------------|----------------|-------------------------------|
| 太陽-地球系   | $3.040423375 \times 10^{-6}$ | 0.010010977203 | 0.01007824041  | $0.1773580302 \times 10^{-5}$ |
| 地球-月系    | $1.215054826 \times 10^{-2}$ | 0.1509341421   | 0.1678325700   | 0.007087918011                |
| 火星-フォボス系 | 1.977663339×10 <sup>-8</sup> | 0.001873867360 | 0.001876211209 | $0.1153636947 \times 10^{-7}$ |
| 太陽-木星系   | $9.536947347 \times 10^{-4}$ | 0.06667642778  | 0.06977989534  | 0.0005563219757               |

表 4.1 幾つかの天体系のラグランジュ点直線解

## 5. 直線解近傍の運動

本章では、ラグランジュ点の直線解のうち、L1 点とL2 点を対象とする。L3 点には現在のところ、意味の有るミッションは提案されていない。

## 5.1. 線型運動方程式

本節では、L1 点とL2 点の近傍の運動を表わす線型方程式を導出する。無次元化された円制限三体問題の運動方程式((3.13)式)を以下に再掲する。

$$\ddot{\xi} - 2\dot{\eta} = \frac{\partial W}{\partial \xi}$$
$$\ddot{\eta} + 2\dot{\xi} = \frac{\partial W}{\partial \eta}$$
$$\ddot{\zeta} = \frac{\partial W}{\partial \zeta}$$
$$W = \frac{1}{2}(\xi^2 + \eta^2) + \frac{1 - \mu}{|\mathbf{r} - \mathbf{r}_1|} + \frac{\mu}{|\mathbf{r} - \mathbf{r}_2|}$$

L1 点、L2 点近傍の運動を扱うために、それらの点を中心とする新しい座標系 xyzを導入する。図 5.1 に定義を示す。 そ、 n、 くを x、 y、 z で表わすと、

$$\xi = 1 \mp p_{L} - \mu + x$$
  
 $\eta = y$   
 $\zeta = z$   
である。複号の上はL1 点の場合( $p_{L} = p_{L1}$ )であり、下はL2  
 $\pi$ の場合( $p_{L} = p_{L2}$ )である。(5.1)式のWは、  
 $W = \frac{1}{2} \left( (1 \mp p_{L} - \mu + x)^{2} + y^{2} + \frac{1 - \mu}{d_{1}} + \frac{\mu}{d_{2}}$   
 $d_{1} = |\mathbf{r} - \mathbf{r}_{1}| = \sqrt{(1 \mp p_{L} + x)^{2} + y^{2} + z^{2}}$   
 $d_{2} = |\mathbf{r} - \mathbf{r}_{2}| = \sqrt{(x \mp p_{L})^{2} + y^{2} + z^{2}}$   
L1 点  
 $f = |\mathbf{r} - \mathbf{r}_{2}| = \sqrt{(x \mp p_{L})^{2} + y^{2} + z^{2}}$   
 $M = 5.1$  直線解近傍の座標系

となる。

次に、
$$\frac{\partial W}{\partial \xi}$$
を求める。  

$$\frac{\partial W}{\partial \xi} = \frac{\partial W}{\partial x} = (1 \mp p_L - \mu + x) - \frac{1 - \mu}{d_1^2} \frac{\partial d_1}{\partial x} - \frac{\mu}{d_2^2} \frac{\partial d_2}{\partial x}$$

$$\frac{\partial d_1}{\partial x} = \frac{1 \mp p_L + x}{d_1}, \quad \frac{\partial d_2}{\partial x} = \frac{x \mp p_L}{d_2}$$

なので、

$$\frac{\partial W}{\partial \xi} = \left(1 \mp p_L - \mu + x\right) - \frac{1 - \mu}{d_1^3} \left(1 \mp p_L + x\right) - \frac{\mu}{d_2^3} \left(x \mp p_L\right)$$

となる。x、y、zの1次項まで求めたいから、

$$\frac{1 \mp p_L + x}{d_1^3} \rightleftharpoons \left(1 \mp p_L + x\right)^{-2} \rightleftharpoons \frac{1}{\left(1 \mp p_L\right)^2} - \frac{2x}{\left(1 \mp p_L\right)^3}$$
$$\frac{x \mp p_L}{d_2^3} \rightleftharpoons \mp \frac{1}{\left(p_L \mp x\right)^2} \rightleftharpoons \mp \frac{1}{p_L^2} - \frac{2x}{p_L^3}$$

-16-

(5.4)

(5.1)

と展開し、(5.4)式に代入すると、

$$\frac{\partial W}{\partial x} = \left(1 \mp p_L - \mu - \frac{1 - \mu}{\left(1 \mp p_L\right)^2} \pm \frac{\mu}{p_L^2}\right) + \left(1 + 2\left(\frac{1 - \mu}{\left(1 \mp p_L\right)^3} + \frac{\mu}{p_L^3}\right)\right) x$$
(5.5)

が得られる。この式の右辺の第一項は、

$$1 \mp p_{L} - \mu - \frac{1 - \mu}{\left(1 \mp p_{L}\right)^{2}} \pm \frac{\mu}{p_{L}^{2}} = \frac{\mp 1}{\left(1 \mp p_{L}\right)^{2} p_{L}^{2}} \left(p_{L}^{5} \mp (3 - \mu)p_{L}^{4} + (3 - 2\mu)p_{L}^{3} - \mu p_{L}^{2} \pm 2\mu p_{L} - \mu\right)$$
(5.6)

となる。(5.6)式の右辺の pr の5次式は、L1 点及び L2 点を求めるための代数方程式((4.13)式と(4.16)式)の左辺 に一致する事から、(5.6)式はゼロとなる。

$$B_{L} = \frac{1-\mu}{\left(1\mp p_{L}\right)^{3}} + \frac{\mu}{p_{L}^{3}}$$
(5.7)

となる B<sub>L</sub>を定義すると、(5.1)の第一式は、

$$\ddot{x} - 2\dot{y} - (2B_L + 1)x = 0$$

となる。

次に、
$$\frac{\partial W}{\partial \eta}$$
を求める。  
$$\frac{\partial W}{\partial \eta} = \frac{\partial W}{\partial y} = y - \frac{1 - \mu}{d_1^2} \frac{\partial d_1}{\partial y} - \frac{\mu}{d_2^2} \frac{\partial d_2}{\partial y}$$
$$\frac{\partial d_1}{\partial y} = \frac{y}{d_1}, \quad \frac{\partial d_2}{\partial y} = \frac{y}{d_2}$$

なので、

$$\frac{\partial W}{\partial \eta} = y - \frac{1 - \mu}{d_1^3} y - \frac{\mu}{d_2^3} y = y - \frac{1 - \mu}{\left(1 \mp p_L\right)^3} y - \frac{\mu}{p_L^3} y = \left(1 - B_L\right) y$$

となり、(5.1)の第二式は、

$$\ddot{y} + 2\dot{x} + (B_L - 1)y = 0$$

となる。

最後に、
$$\frac{\partial W}{\partial \zeta}$$
を求める。  
 $\frac{\partial W}{\partial \zeta} = \frac{\partial W}{\partial z} = -\frac{1-\mu}{d_1^2} \frac{\partial d_1}{\partial z} - \frac{\mu}{d_2^2} \frac{\partial d_2}{\partial z}$   
 $\frac{\partial d_1}{\partial z} = \frac{z}{d_1}, \quad \frac{\partial d_2}{\partial z} = \frac{z}{d_2}$ 

なので、

$$\frac{\partial W}{\partial \zeta} = -\frac{1-\mu}{d_1^3} z - \frac{\mu}{d_2^3} z = -\frac{1-\mu}{\left(1 \mp p_L\right)^3} z - \frac{\mu}{p_L^3} z = -B_L z$$
(5.11)

となり、(5.1)の第三式は、

$$\ddot{z} + B_L z = 0$$

となる。

以下に、(5.1)式を線型化した方程式をまとめて示す。

(5.8)

(5.10)

(5.9)

(5.12)

$$\ddot{x} - 2\dot{y} - (2B_L + 1)x = 0$$
$$\ddot{y} + 2\dot{x} + (B_L - 1)y = 0$$
$$\ddot{z} + B_L z = 0$$

## 5.2 一般解

この章では、(5.13)式を解いて、L1、L2点近傍の運動を求める。(5.13)式より、xy面内の運動とz方向の運動は 独立している事が分かる。z方向の運動は角振動数が $\sqrt{B_{\mu}}$ の単振動である。よって、xy面内の運動のみ扱う。

$$x = \alpha e^{i\lambda t}, \quad y = \beta e^{i\lambda t} とおいて、(5.13) 式に代入すると、
\lambda^2 \alpha e^{i\lambda t} + 2i\lambda\beta e^{i\lambda t} + (2B_L + 1)\alpha e^{i\lambda t} = 0
- \lambda^2 \beta e^{i\lambda t} + 2i\lambda\alpha e^{i\lambda t} + (B_L - 1)\beta e^{i\lambda t} = 0$$
(5.14)

となる。これを整理して、以下の $\alpha$ と $\beta$ に関する連立方程式を得る。

$$(\lambda^2 + 2B_L + 1)\alpha + 2i\lambda\beta = 0$$
  
-2i\lambda\alpha +  $(\lambda^2 - B_L + 1)\beta = 0$  (5.15)

 $\alpha \neq 0$ ,  $\beta \neq 0$ の根を持つ条件より、以下の特性方程式が得られる。

$$\frac{\lambda^2 + 2B_L + 1}{-2i\lambda} \frac{2i\lambda}{\lambda^2 - B_L + 1} = 0$$
(5.16)

これを整理すると、

$$\lambda^{4} + (B_{L} - 2)\lambda^{2} - (2B_{L} + 1)(B_{L} - 1) = 0$$
(5.17)

となる。これを解くと、

$$\lambda^{2} = \frac{1}{2} \left[ 2 - B_{L} \pm \sqrt{(B_{L} - 2)^{2} + 4(2B_{L} + 1)(B_{L} - 1)} \right]$$
$$= 1 - \frac{B_{L}}{2} \pm \frac{1}{2} \sqrt{B_{L}(9B_{L} - 8)}$$

となる。

ここで、BL>1である事を示す。 BLの定義は、(5.7)式である。

(1)L1 点近傍の場合

この場合は、以下に示すように、BLの定義から容易に示す事ができる。

$$B_{L} = \frac{1-\mu}{(1-p_{L})^{3}} + \frac{\mu}{p_{L}^{3}} > (1-\mu) + \mu = 1$$

(2)L2 点近傍の場合

$$B_{L} = \frac{1-\mu}{\left(1+p_{L}\right)^{3}} + \frac{\mu}{p_{L}^{3}} = 1 + \frac{1-\mu}{\left(1+p_{L}\right)^{3}} + \frac{\mu}{p_{L}^{3}} - (1-\mu) - \mu = 1 + (1-\mu) \left(\frac{1}{\left(1+p_{L}\right)^{3}} - 1\right) + \mu \left(\frac{1}{p_{L}^{3}} - 1\right)$$

$$= 1 - \frac{1-\mu}{\left(1+p_{L}\right)^{3}} \left(3 + 3p_{L} + p_{L}^{2}\right) p_{L} + \frac{\mu}{p_{L}^{3}} \left(1 - p_{L}^{3}\right)$$
(5.19)

となる。L2 点では

$$(1-\mu)p_{L}^{3}(p_{L}^{2}+3p_{L}+3)+\mu(p_{L}+1)^{2}(p_{L}^{3}-1)=0$$

が成り立っており((4.15)式を参照)、これは次のように変形できる。

-18-

(5.13)

(5.18)

$$\frac{1-\mu}{(1+p_L)^3} \left(3+3p_L+p_L^2\right) = \frac{\mu(1-p_L^3)}{p_L^3(1+p_L)}$$

(5.20)式を(5.19)式に代入すると、

$$B_{L} = 1 - \frac{\mu(1 - p_{L}^{3})}{p_{L}^{2}(1 + p_{L})} + \frac{\mu}{p_{L}^{3}}(1 - p_{L}^{3}) = 1 + \frac{\mu}{p_{L}^{3}}(1 - p_{L}^{3})\left(1 - \frac{p_{L}}{1 + p_{L}}\right) = 1 + \frac{\mu(1 - p_{L}^{3})}{p_{L}^{3}(1 + p_{L})} > 1$$

となる。

以上で、BL>1である事を証明できた。

次に、(5.18)式のλ<sup>2</sup>は、複号の上の場合に正、下の場合に負となる事を示す。

(A) 
$$f_1(B_L) = 2 - B_L + \sqrt{B_L(9B_L - 8)} > 0$$
 (B<sub>L</sub>>1 の条件で)を示す。  
 $f_1(1) = 1 + 1 = 2$ 
(5.21)
  
 $f_1'(B_L) = -1 + \frac{9B_L - 4}{9B_L - 4} = \frac{9B_L - 4 - \sqrt{B_L(9B_L - 8)}}{9B_L - 4 - \sqrt{B_L(9B_L - 8)}}$ 
(5.22)

$$f_{1}'(B_{L}) = -1 + \frac{9B_{L} - 4}{\sqrt{B_{L}(9B_{L} - 8)}} = \frac{9B_{L} - 4 - \sqrt{B_{L}(9B_{L} - 8)}}{\sqrt{B_{L}(9B_{L} - 8)}}$$
(5.22)

上式の分子は以下のように変形でき、

$$9B_L - 4 - \sqrt{B_L(9B_L - 8)} = 9B_L - 8 - \sqrt{B_L(9B_L - 8)} + 4 = \sqrt{9B_L - 8}\left(\sqrt{9B_L - 8} - \sqrt{B_L}\right) + 4$$

この式の括弧内は以下に示すように B<sub>L</sub>>1 の条件で正であるから、

$$\sqrt{9B_L - 8} - \sqrt{B_L} = \frac{9B_L - 8 - B_L}{\sqrt{9B_L - 8} + \sqrt{B_L}} = \frac{8(B_L - 1)}{\sqrt{9B_L - 8} + \sqrt{B_L}} > 0$$

以上の事から、(5.22)式は

$$f_{1}'(B_{L}) = \frac{\sqrt{9B_{L} - 8}\left(\sqrt{9B_{L} - 8} - \sqrt{B_{L}}\right) + 4}{\sqrt{B_{L}(9B_{L} - 8)}} > 0$$
(5.23)

となる。(5.21)式、(5.23)式より、B<sub>L</sub>>1の条件で、 $f_1(B_L) \equiv 2 - B_L + \sqrt{B_L(9B_L - 8)} > 0$ が示された。

(B) 
$$f_2(B_L) \equiv 2 - B_L - \sqrt{B_L(9B_L - 8)} < 0$$
 (BL>1 の条件で)を示す。  
 $f_2(1) = 1 - 1 = 0$  (5.24)

$$f_{2}'(B_{L}) = -1 - \frac{9B_{L} - 4}{\sqrt{B_{L}(9B_{L} - 8)}} = \frac{-\sqrt{B_{L}(9B_{L} - 8)} - (9B_{L} - 4)}{\sqrt{B_{L}(9B_{L} - 8)}} < 0$$
(5.25)

(5.24)式、(5.25)式より、  $B_L > 1$  の条件で、  $f_2(B_L) \equiv 2 - B_L - \sqrt{B_L(9B_L - 8)} < 0$  が示された。

よって、特性方程式(5.16)式は、正の $\lambda^2$ (実根)と負の $\lambda^2$ (虚根)を持つ事が分かる。ここでは、二つの実根を± $\lambda_P$ 、二つの虚根を±i $\lambda_N$ で表わす。但し、 $\lambda_P > 0$ 、 $\lambda_N > 0$ とし、i は虚数単位である。これらの特性方程式の根を用いて、(5.13)式の解x は以下のように表わされる。

$$x = \widetilde{\alpha}_1 e^{i\lambda_p t} + \widetilde{\alpha}_2 e^{-i\lambda_p t} + \alpha_3 e^{-\lambda_N t} + \alpha_4 e^{\lambda_N t}$$
(5.26)

 $\tilde{\alpha}_1$ 、 $\tilde{\alpha}_2$ 、 $\alpha_3$ 、 $\alpha_4$ は、積分定数である。(5.26)式を以下のように変形する。

$$x = \widetilde{\alpha}_{1} (\cos \lambda_{p} t + i \sin \lambda_{p} t) + \widetilde{\alpha}_{2} (\cos \lambda_{p} t - i \sin \lambda_{p} t) + \alpha_{3} e^{-\lambda_{y} t} + \alpha_{4} e^{-\lambda_{y} t}$$

$$= (\widetilde{\alpha}_{1} + \widetilde{\alpha}_{2}) \cos \lambda_{p} t + i (\widetilde{\alpha}_{1} - \widetilde{\alpha}_{2}) \sin \lambda_{p} t + \alpha_{3} e^{-\lambda_{y} t} + \alpha_{4} e^{-\lambda_{y} t}$$

$$= \alpha_{1} \cos (\lambda_{p} t + \alpha_{2}) + \alpha_{3} e^{-\lambda_{y} t} + \alpha_{4} e^{-\lambda_{y} t}$$
(5.27)

#### This document is provided by JAXA.

次に、(5.13)式の解yを得るために、yとxの比 $\beta/\alpha$ を求める。

(1) 
$$\lambda = \lambda_{P} > 0$$
  $\mathbf{OT}$ --F $\mathbf{O}$ **BA**  
(5.15)  $\mathbf{x}$ O $\mathbf{P}$ -- $\mathbf{x}$ L<sup>9</sup>  $\mathbf{y}$ ,  $\mathbf{x}$  $\mathbf{x}$  $\mathbf{x}$  $\mathbf{x}$  $\mathbf{x}$  $\mathbf{H}$ **AB** $\mathbf{y}$  $\mathbf{x}_{0}$   
 $\frac{\beta}{\alpha} = \frac{\lambda_{P}^{2} + 2B_{L} + 1}{-2i\lambda_{P}} = i\frac{\lambda_{P}^{2} + 2B_{L} + 1}{2\lambda_{P}} = iC_{y_{1}}$ 
(5.28)  
(2)  $\lambda = -\lambda_{P}$   $\mathbf{OT}$ --F $\mathbf{O}$ **BA**  
(5.15)  $\mathbf{x}$ O $\mathbf{P}$ -- $\mathbf{x}$ **B** $\mathbf{y}$ ,  $\mathbf{x}$ - $\mathbf{x}$  $\mathbf{x}$  $\mathbf{H}$ **B** $\mathbf{y}$  $\mathbf{x}_{0}$   
 $\frac{\beta}{\alpha} = \frac{\lambda_{P}^{2} + 2B_{L} + 1}{2i\lambda_{P}} = -i\frac{\lambda_{P}^{2} + 2B_{L} + 1}{2\lambda_{P}} = -iC_{y_{1}}$ 
(5.29)  
(3)  $\lambda = \mathbf{i} \lambda_{N}$   $\mathbf{OT}$ --F $\mathbf{O}$ **BA**  
(5.15)  $\mathbf{x}$ O $\mathbf{P}$ - $\mathbf{x}$ O**B** $\mathbf{H}$   
(5.15)  $\mathbf{x}$ O $\mathbf{P}$ --F $\mathbf{O}$ **BA**  
(5.15)  $\mathbf{x}$ O $\mathbf{P}$ - $\mathbf{x}$ O**B** $\mathbf{H}$   
(5.15)  $\mathbf{x}$ O $\mathbf{P}$ - $\mathbf{x}$ O**B** $\mathbf{H}$   
(5.15)  $\mathbf{x}$ O $\mathbf{P}$ - $\mathbf{x}$ O**B** $\mathbf{H}$   
(5.15)  $\mathbf{x}$ O $\mathbf{P}$ - $\mathbf{x}$ D**B** $\mathbf{H}$   
(5.16)  $\mathbf{x}$ O $\mathbf{P}$ - $\mathbf{x}$ D**B** $\mathbf{H}$   
(5.17)  $\mathbf{x}$ O $\mathbf{x}$ - $\mathbf{x}$ D**B** $\mathbf{H}$   
(5.18)  $\mathbf{x}$ O $\mathbf{x}$ - $\mathbf{x}$ D**B** $\mathbf{H}$   
(5.19)  $\mathbf{x}$ O $\mathbf{x}$ D $\mathbf{x}$ D $\mathbf{x}$ D $\mathbf{H}$ - $\mathbf{x}$ O**B** $\mathbf{H}$   
(5.19)  $\mathbf{x}$ O $\mathbf{x}$ D $\mathbf$ 

$$= C_{y_1} \alpha_1 \cos\left(\lambda_p t + \alpha_2 + \frac{\pi}{2}\right) + \alpha_3 C_{y_2} e^{-\lambda_y t} - \alpha_4 C_{y_2} e^{\lambda_y t}$$

$$= -C_{y_1} \alpha_1 \sin\left(\lambda_p t + \alpha_2\right) + \alpha_3 C_{y_2} e^{-\lambda_y t} - \alpha_4 C_{y_2} e^{\lambda_y t}$$
(5.34)

となる。よって、(5.13)式の解 x, y は、次式で表わされる。

$$\begin{pmatrix} x \\ y \end{pmatrix} = \alpha_1 \begin{pmatrix} \cos(\lambda_p t + \alpha_2) \\ -C_{y_1} \sin(\lambda_p t + \alpha_2) \end{pmatrix} + \alpha_3 e^{-\lambda_y t} \begin{pmatrix} 1 \\ C_{y_2} \end{pmatrix} + \alpha_4 e^{-\lambda_y t} \begin{pmatrix} 1 \\ -C_{y_2} \end{pmatrix}$$

初期値を巧く選べば、(5.35)式の第一項のみから成る運動(周期 解)をさせる事ができるが、僅かな誤差で指数関数の発散項が生じ るため、直線解近傍の運動は不安定である。この周期解は、図 5.2 に示すように、右回りの運動をする。

## 5.3 周期解(xy 面内)

本節では、(5.35)式の指数関数の係数(積分定数)がゼロになって 周期解が得られる初期条件を見つけ、その解について検討する。 速度ベクトルは、(5.35)式を微分して次式となる。 楕円の長軸:短軸=Cy1:1



図 5.2 直線解近傍の周期運動

(5.35)

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \alpha_1 \lambda_p \begin{pmatrix} -\sin(\lambda_p t + \alpha_2) \\ -C_{y_1}\cos(\lambda_p t + \alpha_2) \end{pmatrix} - \alpha_3 \lambda_W e^{-\lambda_W t} \begin{pmatrix} 1 \\ C_{y_2} \end{pmatrix} + \alpha_4 \lambda_W e^{-\lambda_W t} \begin{pmatrix} 1 \\ -C_{y_2} \end{pmatrix}$$
(5.36)

位置・速度の初期値を添え字0で表わすと、(5.35)、(5.36)式より、

$$\begin{pmatrix} \mathbf{x}_{0} \\ \mathbf{y}_{0} \end{pmatrix} = \alpha_{1} \begin{pmatrix} \cos \alpha_{2} \\ -C_{y_{1}} \sin \alpha_{2} \end{pmatrix} + \alpha_{3} \begin{pmatrix} 1 \\ C_{y_{2}} \end{pmatrix} + \alpha_{4} \begin{pmatrix} 1 \\ -C_{y_{2}} \end{pmatrix}$$
(5.37)
$$\begin{pmatrix} \dot{\mathbf{x}}_{0} \\ -\sin \alpha_{2} \end{pmatrix} = c \begin{pmatrix} 1 \\ -\sin \alpha_{2} \end{pmatrix}$$
(5.37)

$$\begin{pmatrix} x_0 \\ \dot{y}_0 \end{pmatrix} = \alpha_1 \lambda_p \begin{pmatrix} -C_{y_1} \cos \alpha_2 \end{pmatrix} - \alpha_3 \lambda_N \begin{pmatrix} 1 \\ C_{y_2} \end{pmatrix} + \alpha_4 \lambda_N \begin{pmatrix} 1 \\ -C_{y_2} \end{pmatrix}$$
(5.38)

が得られる。ここでは、 $(x_0, y_0)$ を任意に与えて、 $\alpha_3$ 、 $\alpha_4$ がゼロになる様に、 $(\dot{x}_0, \dot{y}_0)$ を設定する。

(5.37)式において、
$$\alpha_3 = \alpha_4 = 0$$
とすると、  
 $\alpha_1 \cos \alpha_2 = x_0$   
 $\alpha_1 \sin \alpha_2 = -\frac{y_0}{C}$ 
(5.39)

となり、これを(5.38)式に代入して、

$$\begin{pmatrix} \dot{x}_{0} \\ \dot{y}_{0} \end{pmatrix} = \lambda_{p} \begin{pmatrix} -\alpha_{1} \sin \alpha_{2} \\ -C_{y1} \alpha_{1} \cos \alpha_{2} \end{pmatrix} = \lambda_{p} \begin{pmatrix} y_{0} \\ C_{y1} \\ -C_{y1} x_{0} \end{pmatrix}$$
(5.40)

を得る。

次に、周期解を規定するパラメータである
$$\lambda_{P} \ge C_{yl} \ge v = \left(\frac{\mu}{3(1-\mu)}\right)^{\frac{3}{2}}$$
 ((4.22)式を参照)の1次までで表現する。

始めに、これらの表現式を以下に再掲する。

$$C_{y1} = \frac{\lambda_{p}^{2} + 2B_{L} + 1}{2\lambda_{p}}$$

$$\lambda_{p} = \sqrt{1 - \frac{1}{2}B_{L} + \frac{1}{2}\sqrt{B_{L}(9B_{L} - 8)}}$$

$$B_{L} = \frac{1 - \mu}{\left(1 \mp p_{L}\right)^{3}} + \frac{\mu}{p_{L}^{3}}$$
(5.41)
(5.42)
(5.43)

pLをvの多項式で近似すると(4.2節を参照)、

$$p_{L1} = v - \frac{1}{3}v^2 - \cdots$$
 (L1 点の場合)  
 $p_{L2} = v + \frac{1}{3}v^2 - \cdots$  (L2 点の場合)

であり、合わせて、

$$p_L = v \mp \frac{1}{3} v^2 - \dots$$
 (5.44)

となる。これを、(5.43)式に代入して、BLをvの1次式で表わす。

$$B_{L} = \frac{1-\mu}{\left(1 \pm \left(\nu \pm \frac{1}{3}\nu^{2}\right)\right)^{3}} + \frac{\mu}{\left(\nu \pm \frac{1}{3}\nu^{2}\right)^{3}} = (1-\mu)(1\pm 3\nu) + 3(1-\mu)(1\pm\nu) = 4\pm 6\nu$$
(5.45)

なお、 $\mu$ は $\nu$ <sup>3</sup>のオーダーなので、消えている。z 方向の運動の角振動数  $\sqrt{B_{\mu}}$ は、

$$\sqrt{B_L} \approx 2 \left( 1 \pm \frac{3}{4} \nu \right) \tag{5.46}$$

である。同様の計算で、  $\lambda_P$ 、  $C_{y1}$  が以下のように求められる。

$$\lambda_{p} = \sqrt{2\sqrt{7} - 1} \left( 1 \pm \frac{5 - \frac{2}{\sqrt{7}}}{6} \nu \right) = 2.072 (1 \pm 0.707 \nu)$$
(5.47)

$$C_{\nu 1} = \frac{\sqrt{7} + 4}{\sqrt{2}\sqrt{7} - 1} \left( 1 \pm \frac{-1 + \sqrt{7}}{6} \nu \right) = 3.208(1 \pm 0.652\nu)$$

表5.1に、各天体系に対するν値を示す。

(5.46)式と(5.47)式を比較すると、xy面内の角振動数はz方向のそれより、約3.6%大きい事が分かる。よって、直線解近傍の3次元運動は、 二つの周期を持つリサジュ図形となる。角振動数は約2なので、近傍 運動の周期は、第二天体の公転周期の約1/2である。

| 表 5.1 各天体系 | 系のν値   |
|------------|--------|
| 天体系        | ν.     |
| 太陽-地球系     | 0.01   |
| 地球一月系      | 0.16   |
| 太陽-木星系     | 0.068  |
| 火星-フォボス系   | 0.0019 |

## 5.4 数値計算(リサジュ軌道)

ここでは、前節までに求めた線型運動方程式の周期解を、線型近似していない円制限三体問題の数値積分で 確認すると共に、非線型性の影響を見る。太陽一地球系のL1点近傍の周期軌道を例に採る。

[ケース 1] x<sub>0</sub> = 1E-5 (L1 点から約 1500km), y<sub>0</sub> = 0, z<sub>0</sub> = 0, z<sub>0</sub> = 0 の場合

線型近似の(5.40)式で求めた初期速度は、

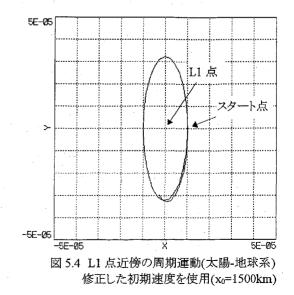
$$\begin{pmatrix} \dot{x}_{0} \\ \dot{y}_{0} \end{pmatrix} = \begin{pmatrix} 0.0 \\ -6.7377182522E - 5 \end{pmatrix}$$

となる。無次元時間で4(232日間に対応)まで計算した結果を図5.3に示す。

約 3/4 周回の所から軌道が大きくずれている。L1 点からの距離が大きい事による非線型項の影響である。

初期位置に戻るように初期速度のy成分を以下の値に修正した結果を図5.4に示す。

 $\dot{y}_0 = -6.7317E - 5$ 


(5.50)

(5.49)

(5.48)

ほぼ周期運動になっており、非線型の影響が初期速度の4桁目に現れている事が分かる。





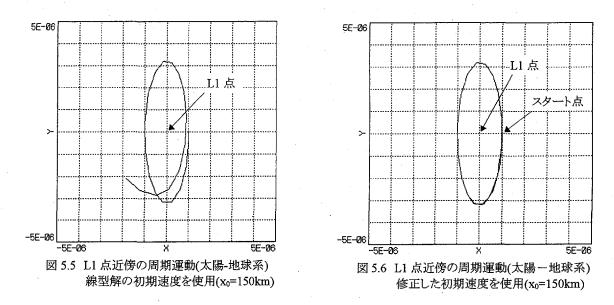
This document is provided by JAXA.

[ケース 2] x<sub>0</sub> = 1E-6 (L1 点から約 150km), y<sub>0</sub> = 0, z<sub>0</sub> = 0, z<sub>0</sub> = 0 の場合

x<sub>0</sub>の値をケース1よりも1桁小さくして、非線型の影響が小さくなる事を確認する。

線型近似で求めた初期速度は、(5.40)式から分かるように、(5.49)式を1桁小さくした以下の値となる。

$$\begin{pmatrix} \dot{x}_{0} \\ \dot{y}_{0} \end{pmatrix} = \begin{pmatrix} 0.0 \\ -6.737718252E - 6 \end{pmatrix}$$
 (5.51)


無次元時間で 4 (232 日間に対応) まで計算した結果を図 5.5 に示す。 図 5.3 と図 5.5 を比較すると、xoが 1 桁小 さくなった事で、非線型項の影響がかなり小さくなった事が分かる。

より正確に初期位置に戻るように初期速度の y 成分を以下の値に修正した結果を図 5.6 に示す。

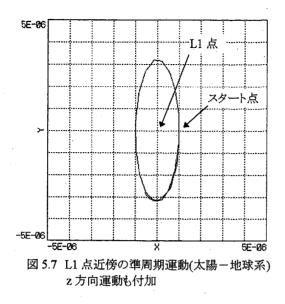
 $\dot{y}_0 = -6.73712E - 6$ 

(5.52)

今度は、非線型の影響が初期速度の5桁目に現れている。



[ケース 3] x₀ = 1E-6 (L1 点から約 150km), y₀ = 0, z₀ = 2E-6, ż₀ = 0 の場合


ケース2の場合に、z方向の運動も付加する。(5.52)式の $\dot{y}_0 = -6.73712E - 6$ では、x y 面内の運動が周期運動からずれる。x y 面内運動とz 方向運動とのカップリングによる非線形項が存在するからである。結局、以下の初期速度で、x y 面内の周期運動を実現できた。

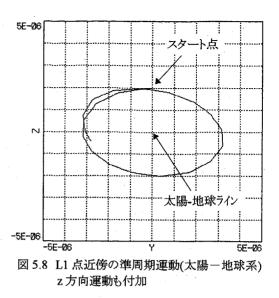

 $\begin{pmatrix} \dot{x}_{0} \\ \dot{y}_{0} \end{pmatrix} = \begin{pmatrix} 0.0 \\ -6.7363E - 6 \end{pmatrix}$  (5.53)

図 5.7 に無次元時間4の期間のxy面内運動を、図 5.8 にyz面内運動を示す。yz面内運動は、z方向運動の 周期がxy面内運動の周期と僅かに異なるために1周で閉じないリサジュ図形になっている。

ISEE-3 や SOHO では、次節に述べるハロー軌道が採用されているが、近年、リサジュ軌道も見直されている。 1997 年 8 月に打上げ予定の ACE (Advanced Composition Explorer)では、リサジュ軌道が採用されている<sup>25)</sup>。宇 宙機の設計を simple にするために、太陽 – 地球ラインからの宇宙機位置のずれを小さく抑える要求があるためで ある。ハロー軌道の y 方向サイズには下限が存在するため、この要求を満足できない。

-23-





## 5.5 ハロー軌道

(5.13)式の線型運動方程式の解では、xy面内とz方向の運動の周期が僅かに異なるため、リサジュ軌道となっ てしまうが、L1 点又は L2 点から大きく離れた軌道では非線型項の影響が周期にも及び、x y 面内とz 方向の運 動の周期を一致させる事ができる。この結果得られる軌道をハロー軌道と言い、円制限三体問題の下では完全 な周期軌道となる(現実の環境下では完全な周期軌道とはならない)。制限三体問題の下で解析的にハロー軌道 を扱ったのは、文献 12)が最初である。周期へも影響を与える項は3次項以上であり、文献 12)は数式処理ソフト を利用して3次項まで扱っている。

ここでは、解析的手法の詳細については触れず、結果の一つとして、太陽一地球系の L1 点回りのハロー軌道 に対するy方向の振幅 Ayとz方向の振幅 Azの関係式<sup>20)</sup>を掲げるのみとする。

$$A_{y} = \sqrt{1.13709551A_{z}^{2} + 4.280773673 \times 10^{11}}$$
(5.54)

A<sub>v</sub>、A<sub>z</sub>とも km 単位。

この式から、ハロー軌道のAyには下限値(654,276km)が存在する事が分かる。

次に、円制限三体問題のモデルにて数値的にハロー軌道を求めてみる。線型近似解からスタートして容易に ハロー軌道を求められれば、高次の解析解を使う必要が無く、手軽にハロー軌道を扱えるからである。

#### [ハロー軌道の設計法]

ハロー軌道はxz面に対して面対称なので、t=0において、xz面のx>0の領域を通過するとすれば、先ず以 下の初期条件が決まる。

 $\dot{z}_0 = 0, y_0 = 0, \dot{x}_0 = 0$ 

(5.55)

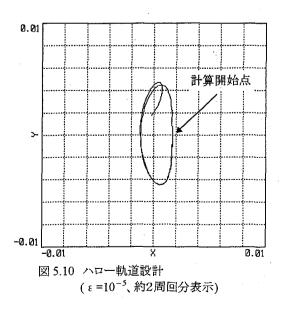
zo又はAzは、ミッション要求から決まる。残りのxo, yoを繰り返し計算で求める必要がある。その際の条件は、半周 後にxz面を垂直に通過する事である。よって、半周後にxz面に達するまでの時間T、x0、yaを未知パラメータと し、Tだけ経過した時に以下の条件を満足する様に、ニュートン法(微分修正法)にて繰り返し計算する。修正量の 計算に用いる遷移行列は、前進差分による数値微分法にて求める。

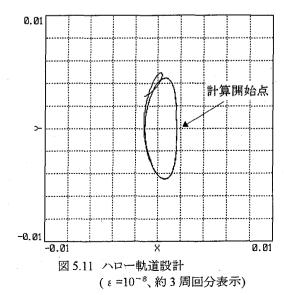
 $y(T)=0, \dot{x}(T)=0, \dot{z}(T)=0$ 

(5.56)

 $x_0$ の見積もりとして、(5.54)式から得られる Ay を3で割ったものを使用する((5.48)式を参照)。 $y_0$ の見積もりには、(5.40)式の線型解を使用する。T の見積もりとして  $\pi/2$ を使う。

以下に、例として、太陽一地球系のL1点近傍ハロー軌道の $A_z$ =109000kmの場合を求めてみる。始めに、未知 パラメータT、 $x_0, y_0$ の初期見積もり値(以下に記載)を伝播した結果を図 5.9 に示す。


T =1.5708  $x_0 = 0.0014767 (221,507 \text{km})$  $\dot{y}_0 = -0.009949588$ 


T後において、y=0を通過しており、この後の微分修正法から 得られる修正量を使う事で、収束する期待が持てる。所が、ニ ュートン法から得られる修正量をそのまま使って次の繰り返し 計算時のパラメータとして使うと、発散してしまった。ニュートン 法から得られる修正量の半分を使用する事で収束した。問題 の非線型性に対して、初期見積もり値の、解からのずれが大き いのが原因であろう。しかし、1/2 を乗じて使う事で問題無く収 束している。収束判定には、次式を用いた。



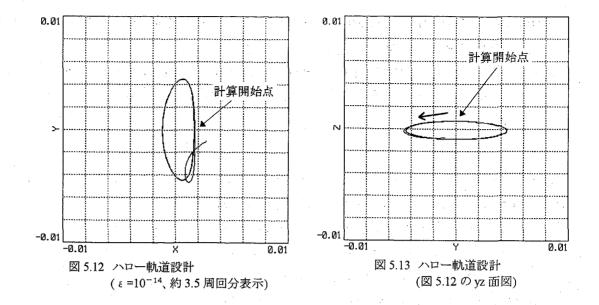

$$\begin{split} |y(T)| &\leq \varepsilon A_{y} \\ |\dot{x}(T)| &\leq \varepsilon |\dot{y}_{0}| \\ |\dot{z}(T)| &\leq \varepsilon |\dot{y}_{0}| \\ \varepsilon : 相対収束判定値 \end{split}$$
(5.57)

図 5.10 に、 $\varepsilon = 10^{-5}$ の場合の解を 2 周回伝播した結果を示す。1.5 周はハロー軌道として使えるものとなって いる。図 5.11 に、 $\varepsilon = 10^{-8}$ の場合の解を3周回伝播した結果を示す。2.5 周はハロー軌道に留まっている。図 5.12 に、 $\varepsilon = 10^{-14}$ の場合の解を3.5 周回伝播した結果を示す。3 周はハロー軌道といえる。図 5.12 の場合のyz 面図を図 5.13 に示す。地球から眺めて反時計回りに回転しており、Class II ハロー軌道と呼ばれている。逆に回 転するものは、Class I ハロー軌道と呼ばれる。





-25-



## 6. 正三角形解近傍の運動

本章では、ラグランジュ点の正三角形解(L4, L5 点)の近傍の運動について記述する。これらの点を利用するミッションは未だ実現されていないが、特に地球-月系のL4, L5 点は近くに邪魔な天体が存在せず、地球からそれほど遠くないため、天体観測ミッションとしての利用が考えられている。最近はあまり聞かなくなったが、以前はスペース・コロニーの設置場所としてL4, L5 点が登場する事が多かった。

#### 6.1 線型運動方程式

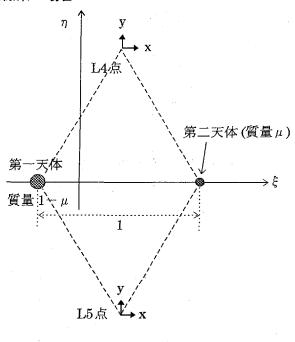
本節では、L4 点と L5 点の近傍の運動を表わす線型方程式を導出する。出発点となる無次元化された円制限 三体問題の運動方程式((3.13)式)を以下に再掲する。

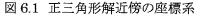
$$\ddot{\xi} - 2\dot{\eta} = \frac{\partial W}{\partial \xi}$$
$$\ddot{\eta} + 2\dot{\xi} = \frac{\partial W}{\partial \eta}$$
$$\ddot{\zeta} = \frac{\partial W}{\partial \zeta}$$
$$W = \frac{1}{2} \left(\xi^2 + \eta^2\right) + \frac{1 - \mu}{|\mathbf{r} - \mathbf{r}_1|} + \frac{\mu}{|\mathbf{r} - \mathbf{r}_2|}$$

6.1.1 節では、L4, L5 点を中心とし、第一・第二天体を結ぶ方向を基準方向とする座標系を使った線型運動方程 式を導出する。この方程式は、第一・第二天体の公転面内の成分間にカップリングが生じて式が複雑になる。そ こで、6.1.2 節で、W において第一・第二天体の公転面内のカップリング項が消える座標系による線型運動方程 式を導出する<sup>27)</sup>。

## 6.1.1 第一・第二天体を結ぶ方向を基準方向とする座標系の場合

L4 点、L5 点近傍の運動を扱うために、それらの点を中心 とする座標系 x y z を導入する。図 6.1 に定義を示す。 $\xi$ 、  $\eta$ 、 $\zeta$ を x、y、z で表わすと、


$$\xi = \frac{1}{2} - \mu + x$$
  


$$\eta = y \pm \frac{\sqrt{3}}{2} (上はL4点、下はL5点)$$
(6.2)

である。(6.1)式の W の微分  $\frac{\partial W}{\partial \xi}$ 等を x, y, z の 1 次までで 近似するために、W を 2 次までの近似で表現する。  $d_1, d_2$ を以下のように定義する。

$$d_1 \equiv \left| \mathbf{r} - \mathbf{r}_1 \right| = \sqrt{\left(x + \frac{1}{2}\right)^2 + \left(y \pm \frac{\sqrt{3}}{2}\right)^2 + z^2}$$
$$d_2 \equiv \left| \mathbf{r} - \mathbf{r}_2 \right| = \sqrt{\left(x - \frac{1}{2}\right)^2 + \left(y \pm \frac{\sqrt{3}}{2}\right)^2 + z^2}$$

1/d1, 1/d2は以下のように2次近似できるので、





- 27 -

(6.3)

(6.1)

$$\frac{1}{d_{1}} = \left[ \left( x + \frac{1}{2} \right)^{2} + \left( y \pm \frac{\sqrt{3}}{2} \right)^{2} + z^{2} \right]^{-\frac{1}{2}} = \left[ 1 + x \pm \sqrt{3}y + x^{2} + y^{2} + z^{2} \right]^{-\frac{1}{2}}$$
  

$$= 1 - \frac{1}{2}x \mp \frac{\sqrt{3}}{2}y - \frac{1}{8}x^{2} + \frac{5}{8}y^{2} - \frac{1}{2}z^{2} \pm \frac{3\sqrt{3}}{4}xy \qquad (6.4)$$
  

$$\frac{1}{d_{2}} = \left[ \left( x - \frac{1}{2} \right)^{2} + \left( y \pm \frac{\sqrt{3}}{2} \right)^{2} + z^{2} \right]^{-\frac{1}{2}} = \left[ 1 - x \pm \sqrt{3}y + x^{2} + y^{2} + z^{2} \right]^{-\frac{1}{2}}$$
  

$$= 1 + \frac{1}{2}x \mp \frac{\sqrt{3}}{2}y - \frac{1}{8}x^{2} + \frac{5}{8}y^{2} - \frac{1}{2}z^{2} \mp \frac{3\sqrt{3}}{4}xy \qquad (6.5)$$

Wは、以下のように2次近似できる。

$$W = \frac{1}{2} \left\{ \left( x + \frac{1}{2} - \mu \right)^2 + \left( y \pm \frac{\sqrt{3}}{2} \right)^2 \right\} + \left( 1 - \mu \right) \left( 1 - \frac{1}{2} x \mp \frac{\sqrt{3}}{2} y - \frac{1}{8} x^2 + \frac{5}{8} y^2 - \frac{1}{2} z^2 \pm \frac{3\sqrt{3}}{4} xy \right) \\ + \mu \left( 1 + \frac{1}{2} x \mp \frac{\sqrt{3}}{2} y - \frac{1}{8} x^2 + \frac{5}{8} y^2 - \frac{1}{2} z^2 \mp \frac{3\sqrt{3}}{4} xy \right) \\ = \frac{3}{2} - \frac{1}{2} \mu + \frac{1}{2} \mu^2 + \frac{3}{8} \left\{ x^2 \pm 2\sqrt{3} (1 - 2\mu) xy + 3y^2 \right\} - \frac{1}{2} z^2 \tag{6.6}$$

(6.6)式を使って、 $\frac{\partial W}{\partial \xi}$ 等を求めると、

$$\frac{\partial W}{\partial \xi} = \frac{\partial W}{\partial x} = \frac{3}{4}x \pm \frac{3\sqrt{3}}{4}(1-2\mu)y$$

$$\frac{\partial W}{\partial \eta} = \frac{\partial W}{\partial y} = \pm \frac{3\sqrt{3}}{4}(1-2\mu)x + \frac{9}{4}y$$

$$\frac{\partial W}{\partial \zeta} = \frac{\partial W}{\partial z} = -z$$
(6.7)

となり、(6.1)式は次のように表わされる。

$$\ddot{x} - 2\dot{y} - \frac{3}{4}x \mp \frac{3\sqrt{3}}{4}(1 - 2\mu)y = 0$$
  
$$\ddot{y} + 2\dot{x} \mp \frac{3\sqrt{3}}{4}(1 - 2\mu)x - \frac{9}{4}y = 0$$
  
$$\ddot{z} + z = 0$$
  
(6.8)

## 6.1.2 W のカップリングが消える座標系の場合

前節の座標系では、Wは(6.6)式で近似されるが、xyという相乗項の存在が式を複雑にしている。そこで本節では、図 6.2 に示すように、x, y 軸をz 軸回りに角 φ だけ回転した X Y Z 座標系を考え、相乗項が消える φ を使用する。xyz 座標と XY Z 座標の関係は、次式で与えられる。

-28-

 $x = X \cos \psi - Y \sin \psi$  $y = X \sin \psi + Y \cos \psi$ z = Z

これを(6.6)式に代入すると、

(6.9)

$$W\mathcal{O} \overline{\mathscr{B}} (L \overline{\mathfrak{P}} = \frac{3}{8} \left\{ x^2 \pm 2\sqrt{3} (1 - 2\mu) xy + 3y^2 \right\} - \frac{1}{2} z^2$$

$$= \frac{3}{8} \left[ X^2 \left\{ \cos^2 \psi \pm \sqrt{3} (1 - 2\mu) \sin 2\psi + 3 \sin^2 \psi \right\} + Y^2 \left\{ \sin^2 \psi \mp \sqrt{3} (1 - 2\mu) \sin 2\psi + 3 \cos^2 \psi \right\} + XY \left\{ -\sin 2\psi \pm 2\sqrt{3} (1 - 2\mu) \cos 2\psi + 3 \sin 2\psi \right\} \right]$$

$$(6.10)$$

$$- \frac{1}{2} Z^2$$

となり、

XYの係数 = 
$$\frac{3}{4} \left\{ \sin 2\psi \pm \sqrt{3} (1 - 2\mu) \cos 2\psi \right\} = 0$$

の条件より、

$$\tan 2\psi = \pm \sqrt{3}(1 - 2\mu) \tag{6.11}$$

が得られる。L4 点では 2 ø ≒ 120°、L5 点では 2 ø ≒ -120°となる。よって、 (6.12)

$$\psi = \pm 60^{\circ}$$

となる。X<sup>2</sup>の係数は、

$$X^{2} \mathcal{O} 係数 = \frac{3}{8} \left\{ \cos^{2} \psi \pm \sqrt{3} (1 - 2\mu) \sin 2\psi + 3 \sin^{2} \psi \right\}$$
$$= \frac{3}{8} \left[ 2 - \cos 2\psi \left\{ 1 \mp \sqrt{3} (1 - 2\mu) \tan 2\psi \right\} \right]$$

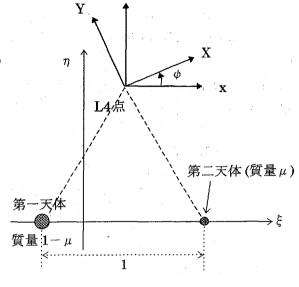



図 6.2 相乗項が消える座標系

となり、

$$\frac{1}{\cos^2 2\psi} = 1 + \tan^2 2\psi = 1 + 3(1 - 2\mu)^2$$
  

$$\cos 2\psi = \frac{-1}{\sqrt{1 + 3(1 - 2\mu)^2}} = \frac{-1}{2\sqrt{1 - 3\mu + 3\mu^2}}$$
(6.13)

なので、

$$X^2$$
の係数 =  $\frac{3}{4} \left( 1 + \sqrt{1 - 3\mu + 3\mu^2} \right)$  (6.14)

となる。同様にして、Y<sup>2</sup>の係数が以下のように求められる。

$$Y^2 \mathcal{O} 係数 = \frac{3}{4} \left( 1 - \sqrt{1 - 3\mu + 3\mu^2} \right)$$
(6.15)

よって、新しい座標系におけるWの変化項は、複号が消えて、以下の様になる。

Wの変化項 =  $\frac{3}{4} \left( 1 + \sqrt{1 - 3\mu + 3\mu^2} \right) X^2 + \frac{3}{4} \left( 1 - \sqrt{1 - 3\mu + 3\mu^2} \right) Y^2 - \frac{1}{2} Z^2$ (6.16)

新しい XYZ 座標系においても、運動方程式は、(6.1)式と同じ形の以下の式で表わされる。

| $\ddot{X} - 2\dot{Y} = \frac{\partial W}{\partial X}$ |         | • | - |                           |        |
|-------------------------------------------------------|---------|---|---|---------------------------|--------|
| $\ddot{Y} + 2\dot{X} = \frac{\partial W}{\partial Y}$ | · · · · |   |   | н <u>.</u><br>Население с | (6.17) |
| $\ddot{Z} = \frac{\partial W}{\partial Z}$            |         |   |   | ал.<br>А.                 | 1 · ·  |

新しい XYZ 座標系においても、運動方程式が(6.1)式と同じ形で表わされる理由は、以下の2点による(図 6.3参 照)。

-29-

①慣性系から回転系への変換において、 ξ η 軸は ξ R η R 軸の

様に任意の方向で良い(第3章を参照)。

② ξ<sub>R η R</sub>軸を、XY 軸(相乗項が消える)と平行にできる。

(6.17)式に(6.16)式を代入すると、相乗項が消えた以下の線型運動方程式が得られる。

$$\begin{split} \ddot{X} - 2\dot{Y} - E_1 X &= 0\\ \ddot{Y} + 2\dot{X} - E_2 Y &= 0\\ \ddot{Z} &+ Z &= 0\\ E_1 &\equiv \frac{3}{2} \Big( 1 + \sqrt{1 - 3\mu + 3\mu^2} \Big)\\ E_2 &\equiv \frac{3}{2} \Big( 1 - \sqrt{1 - 3\mu + 3\mu^2} \Big) \end{split}$$

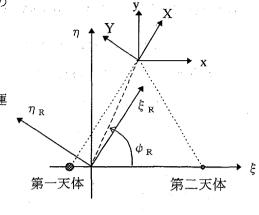



図 6.3 座標変換

ここで、X軸が、第一・第二天体の重心ではなく、重心と第一天体の間を通っている事を示す。L4点と重心を結 ぶ直線とξ軸とのなす角をφ<sub>R</sub>とする(図 6.3 参照)。すると、

(6.18)

$$\tan \psi_{R} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2} - \mu} = \frac{\sqrt{3}}{1 - 2\mu}$$

であるから、

$$\tan 2\psi_R = \frac{2\tan\psi_R}{1-\tan^2\psi_R} = \frac{-\sqrt{3}(1-2\mu)}{1+2\mu-2\mu^2} = -\sqrt{3}(1-4\mu)$$
(6.19)

となり、(6.11)式の $\tan 2\psi = \mp \sqrt{3}(1 - 2\mu)$ と比較すると、X軸が、重心と第一天体の間を通っている事が分かる。

## 6.2 XY 面内運動の解析解

この節では、(6.18)式を解いて、L4、L5点近傍の運動を解析的に求める。(6.18)式より、直線解近傍の線型運動 と同様に、XY面内の運動とZ方向の運動は独立している。Z方向の運動は角振動数が1の単振動である。よっ て、以下ではXY面内の運動のみを扱う。

$$\begin{aligned} x &= \alpha e^{i\lambda}, \ y &= \beta e^{i\lambda} \\ \xi^2 \alpha e^{i\lambda} + 2i\lambda \beta e^{i\lambda} \\ &= E_1 \alpha e^{i\lambda} = 0 \\ &-\lambda^2 \beta e^{i\lambda} + 2i\lambda \alpha e^{i\lambda} \\ &= E_2 \beta e^{i\lambda} \\ &= 0 \end{aligned} \tag{6.20}$$
  
となる。これを整理して、以下の  $\alpha \\ &\geq \beta \\ \\ &= 0 \\ &-2i\lambda \\ &+ (\lambda^2 + E_2) \\ &= 0 \\ &\alpha \neq 0, \ \beta \neq 0 \\ & 0 \\ &dex \\ &= 0 \\ &\left| \begin{array}{l} \lambda^2 + E_1 \\ &= 2i\lambda \\ \\ &-2i\lambda \\ &\lambda^2 + E_2 \\ \\ &= 0 \\ \end{array} \right| = 0 \end{aligned} \tag{6.21}$ 
  
これを整理すると、  

$$\begin{aligned} \lambda^4 + (E_1 + E_2 - 4)\lambda^2 + E_2 \\ &= 0 \\ & (6.23) \end{aligned}$$

となり、(6.18)式より、

#### This document is provided by JAXA.

$$E_1 + E_2 = 3$$
$$E_1 E_2 = \frac{27}{4} \mu (1 - \mu)$$

なので、

$$\lambda^4 - \lambda^2 + \frac{27}{4}\mu(1-\mu) = 0$$

が得られる。これを解くと、

$$\begin{aligned} h^{2} &= \frac{1}{2} \left[ 1 \pm \sqrt{1 - 27\mu(1 - \mu)} \right] \\ &= \begin{cases} \frac{1}{2} \left[ 1 + \sqrt{1 - 27\mu(1 - \mu)} \right] \cdots \cdots \lambda_{1}^{2} \\ \frac{1}{2} \frac{27\mu(1 - \mu)}{1 + \sqrt{1 - 27\mu(1 - \mu)}} \cdots \lambda_{2}^{2} \end{cases} \end{aligned}$$

となる。 $\lambda_2$ の方は、 $\mu$  が小さい時の精度を確保するために、分子を有理化した。特性方程式の根を、 $\lambda_1$ (>0)、 -  $\lambda_1$ 、 $\lambda_2$ (>0)、 -  $\lambda_2$ とする。

運動が安定であるためには、 $\lambda$ は実数である必要がある。よって、  $1-27\mu(1-\mu)>0$ 

$$u < \frac{1}{2} \left( 1 - \sqrt{\frac{23}{27}} \right) \approx 0.03852... \tag{6.27}$$

という安定条件が得られる。地球-月系でも $\mu = 0.01215$  であり、太陽系では $\mu = 0.11$ の冥王星-Charon 系を 除き、全てこの安定条件を満足している。

特性方程式の根を使うと、(6.18)式の解 X は、以下の様に表わされる。  $X = \widetilde{\alpha}_{1}e^{i\lambda_{1}t} + \widetilde{\alpha}_{2}e^{-i\lambda_{1}t} + \widetilde{\alpha}_{3}e^{i\lambda_{2}t} + \widetilde{\alpha}_{4}e^{-i\lambda_{2}t}$   $= \widetilde{\alpha}_{1}(\cos\lambda_{1}t + i\sin\lambda_{1}t) + \widetilde{\alpha}_{2}(\cos\lambda_{1}t - i\sin\lambda_{1}t) + \widetilde{\alpha}_{3}(\cos\lambda_{2}t + i\sin\lambda_{2}t) + \widetilde{\alpha}_{4}(\cos\lambda_{2}t - i\sin\lambda_{2}t)$   $= (\widetilde{\alpha}_{1} + \widetilde{\alpha}_{2})\cos\lambda_{1}t + i(\widetilde{\alpha}_{1} - \widetilde{\alpha}_{2})\sin\lambda_{1}t + (\widetilde{\alpha}_{3} + \widetilde{\alpha}_{4})\cos\lambda_{2}t + i(\widetilde{\alpha}_{3} - \widetilde{\alpha}_{4})\sin\lambda_{2}t$   $= \alpha_{1}\cos(\lambda_{1}t + \alpha_{2}) + \alpha_{3}\cos(\lambda_{2}t + \alpha_{4})$ (6.28)

次に、(6.18)式の解 Y を得るために、Y と X の比 β / α を求める。

(1) λ = λ 1 (> 0)のモードの場合

(6.21)式の第二式より、次式が得られる。

$$\frac{\beta}{\alpha} = i \frac{2\lambda_1}{\lambda_1^2 + E_2} \equiv i C_{y_1} \qquad (C_{y_1} > 0)$$
(6.29)

 $(2) \lambda = -\lambda_1$ のモードの場合

(6.21)式の第二式より、次式が得られる。

$$\frac{\beta}{\alpha} = -i\frac{2\lambda_1}{\lambda_1^2 + E_2} = -iC_{y1}$$

 $(3) \lambda = \lambda_2 (> 0)$ のモードの場合

(6.21)式の第二式より、次式が得られる。

$$-31-$$

#### This document is provided by JAXA.

(6.30)

(6.24)

(6.25)

(6.26)

$$\frac{\beta}{\alpha} = i \frac{2\lambda_2}{\lambda_2^2 + E_2} \equiv iC_{y_2} \qquad (C_{y_2} > 0)$$

(4)  $\lambda = -\lambda_2$ のモードの場合 (6.21)式の第二式より、次式が得られる。  $\frac{\beta}{\alpha} = -i\frac{2\lambda_2}{\lambda_2^2 + E_2} = -iC_{y_2}$ 

Yの解を以下のように表わす。

$$Y = \widetilde{\beta_1} e^{i\lambda_1 t} + \widetilde{\beta_2} e^{-i\lambda_1 t} + \widetilde{\beta_3} e^{i\lambda_2 t} + \widetilde{\beta_4} e^{-i\lambda_2 t}$$

ここで、各項の係数を(6.29)式~(6.32)式で表現すると、  $Y = \tilde{\alpha} i C e^{i \Delta t} = \tilde{\alpha} i C e^{i \Delta t} + \tilde{\alpha} i C e^{i \Delta t} = \tilde{\alpha} i C e^{i \Delta t}$ 

$$\begin{aligned} &= \alpha_{1}tC_{y1}e^{-1} - \alpha_{2}tC_{y1}e^{-1} + \alpha_{3}tC_{y2}e^{-1} - \alpha_{4}tC_{y2}e^{-1} \\ &= C_{y1}\left\{\widetilde{\alpha}_{1}e^{i\left(\lambda_{1}t+\frac{\pi}{2}\right)} + \widetilde{\alpha}_{2}e^{-i\left(\lambda_{1}t+\frac{\pi}{2}\right)}\right\} + C_{y2}\left\{\widetilde{\alpha}_{3}e^{i\left(\lambda_{2}t+\frac{\pi}{2}\right)} + \widetilde{\alpha}_{4}e^{-i\left(\lambda_{2}t+\frac{\pi}{2}\right)} \\ &= C_{y1}\alpha_{1}\cos\left(\lambda_{1}t+\alpha_{2}+\frac{\pi}{2}\right) + C_{y2}\alpha_{3}\cos\left(\lambda_{2}t+\alpha_{4}+\frac{\pi}{2}\right) \\ &= -C_{y1}\alpha_{1}\sin\left(\lambda_{1}t+\alpha_{2}\right) - C_{y2}\alpha_{3}\sin\left(\lambda_{2}t+\alpha_{4}\right) \end{aligned}$$

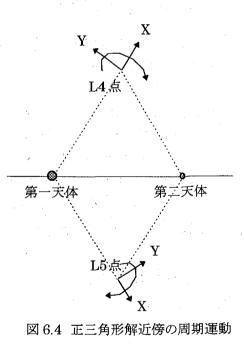
となる。よって、(6.18)式の解X,Yは、次式で表わされる。

$$\binom{X}{Y} = \alpha_1 \binom{\cos(\lambda_1 t + \alpha_2)}{-C_{y_1}\sin(\lambda_1 t + \alpha_2)} + \alpha_3 \binom{\cos(\lambda_2 t + \alpha_4)}{-C_{y_2}\sin(\lambda_2 t + \alpha_4)}$$

この運動は、2つの周期を持つ周期運動であり、図 6.4 に示すよう に、右回りの運動をする。

ここで、
$$\lambda_1$$
、 $\lambda_2$ 、 $C_{yl}$ ,  $C_{y2}$ の近似式を求めておく。  
 $\sqrt{1-27\mu(1-\mu)} = 1 - \frac{27}{2}\mu - \frac{621}{8}\mu^2 - \frac{16767}{16}\mu^3 + \cdots$   
なので、(6.26)式より、  
 $\lambda_1^2 = 1 - \frac{27}{4}\mu - \frac{621}{16}\mu^2 + \cdots$ 
(6.36)

$$\lambda_2^2 \doteq \frac{27}{4}\mu + \frac{621}{16}\mu^2 + \cdots$$


$$\lambda_{1} = 1 - \frac{27}{8} \mu - \frac{3213}{128} \mu^{2} + \cdots$$
$$\lambda_{2} = \frac{1}{2} \sqrt{27\mu} \left( 1 + \frac{23}{8} \mu + \cdots \right)$$

となる。

$$E_2 = \frac{3}{2} \left( 1 - \sqrt{1 - 3\mu + 3\mu^2} \right) = \frac{9}{4} \mu - \frac{9}{16} \mu^2 - \cdots$$

なので、C<sub>y1</sub>, C<sub>y2</sub>は以下の様に近似できる。

$$C_{y1} = \frac{2\lambda_1}{\lambda_1^2 + E_2} = 2 + \frac{9}{4}\mu + \cdots$$
$$C_{y2} = \frac{2\lambda_2}{\lambda_2^2 + E_2} = \frac{1}{\sqrt{3\mu}} \left(1 - \frac{11}{8}\mu + \cdots\right)$$



(6.38)

(6.39)

(6.31)

(6.32)

(6.35)

(6.34)

-32-

(6.37)

太陽-地球系及び地球-月系を例にして、2つの周期モードの周期及び縦横比を求めてみる。

⇒約1年

⇒約222年

# 太陽-地球系の場合

 $\mu = 3 \times 10^{-6} \text{ $\varpi$} \text{$\sigma$} \text{$\sigma$},$ 

(1)  $\lambda_1$ モード 周期:  $\frac{2\pi}{\lambda_1} = 2\pi \left(1 + \frac{27}{8}\mu\right) = 2\pi$ 

長軸短軸比:C<sub>y1</sub> ≒ 2

(2) え 2モード

周期: 
$$\frac{2\pi}{\lambda_2} \Rightarrow 2\pi \times \frac{2}{\sqrt{27\mu}} \Rightarrow 2\pi \times 222$$
  
長軸短軸比:  $C_{y2} \Rightarrow \frac{1}{\sqrt{3\mu}} \Rightarrow 333$ 

## 地球-月系の場合

*μ* ≒ 0.01215 なので、

(1) ん 1 モード

周期: 
$$\frac{2\pi}{\lambda_1} = 2\pi \left(1 + \frac{27}{8}\mu\right) = 2\pi \times 1.041$$
  $\Rightarrow$ 約 28.4 日

長軸短軸比:C<sub>yl</sub> ≒ 2

(2) 1 2モード

周期: 
$$\frac{2\pi}{\lambda_2} = 2\pi \times \frac{2}{\sqrt{27\mu}} = 2\pi \times 3.49$$
  $\Rightarrow$ 約 95.3 日  
長軸短軸比:  $C_{y_2} = \frac{1}{\sqrt{3\mu}} = 5.2$ 

次に、(6.35)式の4つの積分定数  $\alpha_1$ 、 $\alpha_2$ 、 $\alpha_3$ 、 $\alpha_4$ を、位置と速度の初期値で表現する。ここに(6.35)式を再掲し、速度の式も掲げる。

$$\begin{pmatrix}
X \\
Y
\end{pmatrix} = \alpha_1 \begin{pmatrix}
\cos(\lambda_1 t + \alpha_2) \\
-C_{y_1} \sin(\lambda_1 t + \alpha_2)
\end{pmatrix} + \alpha_3 \begin{pmatrix}
\cos(\lambda_2 t + \alpha_4) \\
-C_{y_2} \sin(\lambda_2 t + \alpha_4)
\end{pmatrix}$$

$$\begin{pmatrix}
\dot{X} \\
\dot{Y}
\end{pmatrix} = \alpha_1 \lambda_1 \begin{pmatrix}
-\sin(\lambda_1 t + \alpha_2) \\
-C_{y_1} \cos(\lambda_1 t + \alpha_2)
\end{pmatrix} + \alpha_3 \lambda_2 \begin{pmatrix}
-\sin(\lambda_2 t + \alpha_4) \\
-C_{y_2} \cos(\lambda_2 t + \alpha_4)
\end{pmatrix}$$
(6.40)

三角関数を展開して以下の定数を定義すると、

 $p_{1c} \equiv \alpha_1 \cos \alpha_2 \quad p_{1s} \equiv \alpha_1 \sin \alpha_2 \quad p_{2c} \equiv \alpha_3 \cos \alpha_4 \quad p_{2s} \equiv \alpha_3 \sin \alpha_4 \tag{6.41}$ 

(6.35)、(6.40)式は

$$X = p_{1c} \cos \lambda_{1} t - p_{1s} \sin \lambda_{1} t + p_{2c} \cos \lambda_{2} t - p_{2s} \sin \lambda_{2} t$$

$$Y = -C_{y_{1}} (p_{1c} \sin \lambda_{1} t + p_{1s} \cos \lambda_{1} t) - C_{y_{2}} (p_{2c} \sin \lambda_{2} t + p_{2s} \cos \lambda_{2} t)$$

$$\dot{X} = -\lambda_{1} (p_{1c} \sin \lambda_{1} t + p_{1s} \cos \lambda_{1} t) - \lambda_{2} (p_{2c} \sin \lambda_{2} t + p_{2s} \cos \lambda_{2} t)$$

$$\dot{Y} = -C_{y_{1}} \lambda_{1} (p_{1c} \cos \lambda_{1} t - p_{1s} \sin \lambda_{1} t) - C_{y_{2}} \lambda_{2} (p_{2c} \cos \lambda_{2} t - p_{2s} \sin \lambda_{2} t)$$
(6.42)

となる。t = 0 における初期値を、 $X_0, Y_0, X_0, Y_0$ とすると、(6.41)式の定数を決定する連立方程式が以下の様に表わされる。

$$p_{1c} + p_{2c} = X_0$$

$$-C_{y1}p_{1s} - C_{y2}p_{2s} = Y_0$$

$$-\lambda_1 p_{1s} - \lambda_2 p_{2s} = \dot{X}_0$$

$$-C_{y1}\lambda_2 p_{1c} - C_{y2}\lambda_2 p_{2c} = \dot{Y}_0$$

(6.43)式の第1、第4式より、p1。とp2。が以下の様に求められ、

$$p_{1c} = \frac{-C_{y2}\lambda_2 X_0 - \dot{Y}_0}{C_{y1}\lambda_1 - C_{y2}\lambda_2}$$
$$p_{2c} = \frac{C_{y1}\lambda_1 X_0 + \dot{Y}_0}{C_{y1}\lambda_1 - C_{y2}\lambda_2}$$

第2、第3式より、p1sとp2sが以下の様に求められる。

$$p_{1s} = \frac{-\lambda_2 Y_0 + C_{y2} \dot{X}_0}{C_{y1} \lambda_2 - C_{y2} \lambda_1}$$
$$p_{2s} = \frac{\lambda_1 Y_0 - C_{y1} \dot{X}_0}{C_{y1} \lambda_2 - C_{y2} \lambda_1}$$

これらの定数を(6.42)式に代入すれば、任意の時刻における位置・速度が得られる。

以下に、 $\dot{X}_0 = 0, Y_0 = 0$ の場合のみ、結果を掲げる。 $p_{1s} \ge p_{2s}$ は共にゼロとなり、

$$X = \frac{-C_{y2}\lambda_{2}X_{0} - Y_{0}}{C_{y1}\lambda_{1} - C_{y2}\lambda_{2}}\cos\lambda_{1}t + \frac{C_{y1}\lambda_{1}X_{0} + Y_{0}}{C_{y1}\lambda_{1} - C_{y2}\lambda_{2}}\cos\lambda_{2}t$$

$$Y = \frac{C_{y1}\left(C_{y2}\lambda_{2}X_{0} + \dot{Y}_{0}\right)}{C_{y1}\lambda_{1} - C_{y2}\lambda_{2}}\sin\lambda_{1}t - \frac{C_{y2}\left(C_{y1}\lambda_{1}X_{0} + \dot{Y}_{0}\right)}{C_{y1}\lambda_{1} - C_{y2}\lambda_{2}}\sin\lambda_{2}t$$
(6.46)

が得られる。周期が短く、長軸短軸比も小さい21モードのみとなる初期速度は、(6.46)式より、

 $\dot{Y}_0 = -C_{y1}\lambda_1 X_0 \tag{6.47}$ 

となる。

### 6.3 数值解

ここでは、前節までに求めた線型運動方程式の周期解を、線型近似していない円制限三体問題の数値積分で 確認すると共に、非線型性の影響を見る。太陽一地球系の L4、L5 点近傍の周期軌道を例に採る。Ζ(ζ)方向の 運動は省略する。

### 6.3.1 λ 1モードのみ生じる初期条件の場合

位置・速度の初期条件は、(6.46), (6.47)式より、

$$Y_0 = 0, \ Z_0 = 0, \ \dot{X}_0 = 0, \ \dot{Z}_0 = 0$$
$$\dot{Y}_0 = -C_{\rm sl}\lambda_1 X_0$$

(6.48)

(6.43)

(6.44)

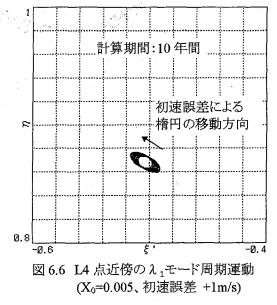
(6.45)

である。太陽-地球系では、μ = 3.040423×10<sup>-6</sup>なので、

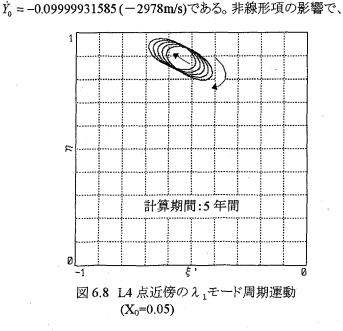
$$\lambda_1 = 0.9999897383, E_2 = 6.84094655 \times 10^{-6}, C_{\nu_1} = 2.000006841$$

 $\dot{Y}_0 = -1.999986317X_0$ 

となる。幾つかの Xoに対して、以下に計算する。


-- 34 --

[ケース 1] x<sub>0</sub> = 0.005 (L4 点から約 75 万 km)の場合


L4 点の近傍に対して、10 年間の計算結果を図 6.5 に示す。  $\dot{Y}_0 = -0.009999931585(-298m/s)$ である。図 6.5 の座標系は  $\xi \eta 系の原点を第二天体に移動した <math>\xi' \eta 系$ である。線型解 が示すように、長軸短軸比が約 2 の楕円運動を 10 回繰り返し ている。中心の移動も小さい。 $\dot{Y}_0$ の誤差が±1 m/sある場合の 影響を、図 6.6(+1m/s)と図 6.7(-1m/s)に示す。

L4 点からのずれがこの程度までは非線型項の影響は小さ

し4 点からのすれからの住皮までは外線生気の影響は小さ



[ケース 2] x<sub>0</sub> = 0.05 (L4 点から約 750 万 km)の場合 L4 点の近傍に対して、5 年間の計算結果を図 6.8 に示す。





楕円運動の中心が移動している。速度の大きさを1%小さくして、 𝔥 = −0.09899932269とした場合を図 6.9 に示す。楕円運動の ずれがほぼ消えている。

[ケース 3] x₀ = 0.05 (L5 点から約 750 万 km)の場合

L5 点の近傍に対して、線型解の初期速度を使い、λ<sub>2</sub>モードの周期 222 年間の計算結果を図 6.10 に示す。非線形項の影響 (λ<sub>2</sub>モードの成分も混入)で、楕円運動の中心が大きく振動して いる。

6.3.2 入2モードのみ生じる初期条件の場合

位置・速度の初期条件は、(6.46)式より、  $Y_0 = 0, Z_0 = 0, \dot{X}_0 = 0, \dot{Z}_0 = 0$  $\dot{Y}_0 = -C_{v2}\lambda_2 X_0$ 

である。太陽一地球系では( $\mu = 3.040423 \times 10^{-6}$ )、  $\lambda_2 = 0.004530255407, E_2 = 6.84094655 \times 10^{-6}$  $C_{y2} = 331.1086697, \dot{Y}_0 = -1.500006841X_0$ 

となる。幾つかの Xoに対して、以下に計算する。

[ケース 4] x<sub>0</sub> = 0.005 (L4 点から約 75 万 km)の場合 Y<sub>0</sub> = -0.007500034205 (-223m/s)である。L4 点の近傍からスタ ートして、222 年間の計算結果を図 6.11 に示す。

**[ケース 5] x₀ = 0.0005 (L4 点から約 7.5 万 km)の場合** Ŷ₀ = −0.000750003420 (−22.3m/s)である。L4 点の近傍からス タートして、222 年間の計算結果を図 6.12 に示す。

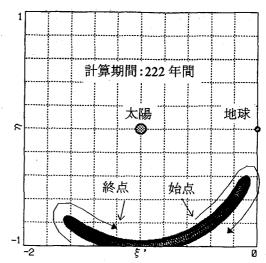



図 6.10 L5 点近傍の λ<sub>1</sub>モード周期運動 (X<sub>0</sub>=0.05、線型解の初速を使用)



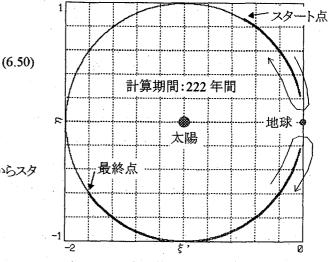
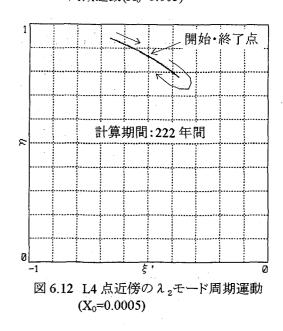




図 6.11 L4 点近傍から出発した  $\lambda_2$ モード 周期運動(X<sub>0</sub>=0.005)



## 7.おわりに

本資料では、ラグランジュ点を利用したミッションを考える際に必要となる基本的な軌道力学について述べた。 これにより、ラグランジュ点近傍の宇宙機の運動の概要を理解できるであろう。

この他に、更に以下の検討が必要である。

(1)ラグランジュ点のミッション軌道への遷移軌道の検討

(2)ラグランジュ点ミッション軌道の軌道保持の検討

(1)は火星や金星などの惑星への遷移軌道とは異なり、Patched Conic Method が使えない軌道であり、別に検討 する必要がある。(2)も普通の惑星探査ミッションでは存在しない検討項目である。特に(2)は、高次の摂動を考慮 しないと意味のある検討にはならない可能性がある。

#### 8. 参考文献

1)中川貴雄:光・赤外線天文衛星 次期計画の提案、第 5 回科学衛星・宇宙観測シンポジウム、1996 年 7 月、 pp.182-185.

2)H.Lambert, P.Vangasse, R.Laurance: MOFFIT MOon based / Free Flyer Interferometer Trade off study : Trade off's for a kilometric space based interferometer, 46th International Astronautical Congress, IAF-95-Q.2.04, 1995.

3)R.W.Farquhar, D.P.Muhonen, C.R.Newman, H.S.Heuberger : TRAJECTORIES AND ORBITAL MANEUVERS FOR THE FIRST LIBRATION-POINT SATELLITE, Journal of Guidance and Control, Vol.3, No.6, 1980, pp.549-554.

4)R.W.Farquhar, D.P.Muhonen, D.L.Richardson : MISSION DESIGN FOR A HALO ORBITER OF THE EARTH, AIAA PAPER 76-810, 1976.

5) J.Rodriguez-Canabal : OPERATIONAL HALO ORBIT MAINTENANCE TECHNIQUE FOR SOHO, ESA P-255, 1986.

6) J. Rodriguez-Canabal, M. Hechler : ORBITAL ASPECTS OF THE SOHO MISSION DESIGN, AAS 89-171, 1989.

7)D.W.Dunham, S.J.Jen, C.E.Roberts, A.W.Seacord, P.J.Sharer, D.C.Folta, D.P. Muhonen : Transfer Trajectory Design for the SOHO Libration-Point Mission, IAF-92-0066, 1992.

8)N.Eismont, D.Dunham, S.C.Jen, R.Farquhar : LUNAR SWINGBY AS A TOOL FOR HALO-ORBIT OPTIMIZATION IN RELICT-2 PROJECT, ESA SP-326, 1991/12.

9)L.David : Incredible Shrinking Spacecraft, AEROSPACE AMERICA, January 1996, pp.20-24.

10)R.W.Farquhar : THE UTILIZATION OF HALO ORBITS IN ADVANCED LUNAR OPERATIONS, NASA TN D-6365, 1971.

11)R.W.Farquhar : FUTURE MISSIONS FOR LIBRATION-POINT SATELLITES, Astronautics & Aeronautics, 1969/05.

12)R.W.Farquhar, A.A.Kamel : QUASI-PERIODIC ORBITS ABOUT THE TRANSLUNAR LIBRATION POINT, Celestial Mechanics 7, 1973, pp.458-473.

13)Paul W. Keaton : A Moon Base/Mars Base Transportation Depot, Lunar Bases and Space Activities of the 21st Century, 1985.

14) V. Companys, G. Gomez, A. Jorba, J. Masdemont, J. Rodriguez, C. Simo : ORBITS NEAR THE TRIANGULAR

LIBRATION POINTS IN THE EARTH-MOON SYSTEM, IAF-93-A.1.2, 1993/10.

15)K.C.Howell : Three-Dimensional Periodic Halo Orbits, Celestial Mechanics 32, 1984.

- 16)J.V.Breakwell, J.V.Brown : The HALO Family of 3-Dimensional Periodic Orbits in the Earth-Moon Restricted3-Body Problem, Celestial Mechanics 20, 1979.
- 17)M.Popescu : Stability of Motion on Three-Dimensional Halo Orbits, Journal of Guidance, Control, & Dynamics, 1995/10.
- 18)K.C.Howell, H.J.Pernicka : STATIONKEEPING METHOD FOR LIBRATION POINT TRAJECTORIES, Journal of Guidance, Control, and Dynamics, Vol.16, No.1, 1993.

19)C.Simo, G.Gomez, J.Llibre, R.Martinez, J.Rodriguez : ON THE OPTIMAL STATION KEEPING CONTROL OF HALO ORBITS, ACTA ASTRONAUTICA, VOL.15, NO.6/7, 1987.

20)T.Prieto-Llanos, M.A.Gomez-Tierno : Stationkeeping at Libration Points of Natural Elongated Bodies, Journal of Guidance, Control, and Dynamics, Vol. 17, No.4, 1994/07.

and a second stand

and the second

en Eller in district Provider

and a second second second

21)掘 源一郎:天体力学講義、東京大学出版会、1988年.

22)守屋富次郎、鷲津久一郎:力学概論、培風館、1968年

23)広田正夫:「制限3体問題の定常解(ラグランジュ点)を導く」(私的メモ)、1981年.

24) V. Szebehely: THEORY OF ORBITS (The Restricted Problem of Three Bodies), Academic Press, New York, 1967.

25)P.Sharer, T.Harrington : TRAJECTORY OPTIMIZATION FOR THE ACE HALO ORBIT MISSION, AIAA/AAS Astrodynamics Specialist Conference, AIAA-96-3601-CP, July 1996.

26) R.W.Farquhar, D.P.Muhonen, D.L.Richardson : Mission Design for a Halo Orbiter of the Earth, Journal of Spacecraft and Rockets, Vol. 14, No. 3, 1977, pp.170-177.

and the second second

المرجع والمرأب والمرجع والمرجع والمرجع والمرجع والمرجع

s and a sub-analyzed a second second second

27) R.W.Farquhar : The Control and Use of Libration-Point Satellites, NASA TR R-346, 1970.

<本資料に関するお問い合わせ先> 宇宙開発事業団調査国際部技術情報課 TEL 03-3438-6246

©1997 NASDA 無断複写、転載を禁ずる

発行日
 1997年3月31日
 編集・発行
 宇宙開発事業団
 〒105-60
 東京都港区浜松町2丁目4番1号
 世界貿易センタービル29階
 TEL 03-3438-6000 (代表)

宇宙開発事業団技術報告 NASDA-TMR-960033

