ISSN 0452-2982 UDC 681.587.347 629.7.062

航空宇宙技術研究所資料

TECHNICAL MEMORANDUM OF NATIONAL AEROSPACE LABORATORY

TM-711

多重油圧操縦系統における冗長出力型アクチュエータの 作動シミュレーション

小川敏雄

1997年5月

航空宇宙技術研究所 NATIONAL AEROSPACE LABORATORY

NAL TM-711

概要 ·····	1
1.緒 言	1
2.記号	2
3. 多重油圧操縦系統の構成	3
4. 冗長出力型アクチュエータ ·····	3
4.1 作動の定式化······	3
4.2 作動シミュレーションおよび実作動との対応 · · · · · · · · · · · · · · · · · · ·	6
4.3 出力特性改善のためのモデル追従制御の適用 ······ ·····························	11
5.まとめ	20
引用文献 ····································	23
付 録	24

多重油圧操縦系統における冗長出力型アクチュエータの 作動シミュレーション*

小川敏雄*1

Operational Simulation of Redundant Output Actuator for Multiple Hydraulic Flight Control Systems∂*

Toshio OGAWA * 1

ABSTRACT

Multiple channels of flight control systems improve reliability. In this report, we aualyze such systems in which outputs are mechanically tied together to a common output axis so that the multiple output should be summed. Though the operation of this actuator has been given in the form of a block diagram so far, we provide mathematical formulas to solve the problem of twisted oscillation of an axis. This method allows the detailed of operational characteristics to be estimatel.

Keywords: simulation for multiple hydraulic actuator, multiple control systems, redundant hydraulic actuator

概 要

航空機の操縦系統の多重化は、その信頼性を向上させるために必要な対策である。ここでは、その多重化 のうちで、多系統の出力を1系統に加算出力する方式について取り扱う。この加算出力するアクチュエータ が冗長出力型油圧アクチュエータである。このアクチュエータの作動により、多重系出力を1系統出力に変 換して、舵面を駆動することになる。一般に、この種のアクチュエータの加算出力部の作動は、複雑なフィ ードバックループを含むブロック線図の形で与えられるが、本報告では、このようブロック線図の表し方に 代えて、出力軸の捩り振動の問題として定式化する。これにより、設計時において、その作動特性を数値計 算によって取得し、さらに高性能な制御系を構成することが容易になる。

1. 緒言

航空機の操縦系統の信頼性を向上させるために,その 系統の多重化が施される。これは操舵信号より舵面まで の系統を多重にすることであるが,一系統の故障発生時 生じる舵角変位を抑えるために,全系統を同時作動する 方式が望ましい¹⁾。もし,系統が3重系であるならば,1 系統の故障は他の2系統で補償され,ほぼ正常な作動の 持続が期待できるからである。しかし,全系統の同時作 動方式では,舵面において全系統を並列にするか,ある いは,舵面に至る迄の経路で全系統の出力を1系統に統 合しなければならない。本報告では後者の場合を取り扱 うので,各系統の出力がまったく一致するのであれば問 題は生じないが,各系統の構成部品においては,わずか ながら性能のばらつきが避けられないので,その量が大 きい場合は,各系統間に出力差を生じ,出力特性を劣化

* 平成8年12月3日受付 (received 3 December 1996)

^{*1} 新型航空機研究グループ (Advanced Aircraft Research Group)

させる,あるいは過大な負荷状態を起こす等,円滑な作動を妨げることになる。ここでは,これらの問題が端的 に現れる油圧アクチュエータの出力部で変換する方式に ついて取り扱う。系統としては3重系を例に取り,その 作動を定式化して,作動特性を数値シミュレーションに より取得し,実機用相当のアクチュエータを用いた3重 系油圧操縦装置を用いて,これを検証する。

2.記 号

- Q_v : サーボ弁およびシリンダ部での流量 1/min
- K_v : サーボ弁の流量ゲイン $1/(mA \cdot min \cdot \sqrt{MPa})$
- I_v :サーボ弁の入力電流 mA
- P_s :供給油圧 MPa
- P_R : 戻り油圧 MPa
- L_v :スプール漏れ係数 (1/min)/MPa
- P_L : ピストン差圧 MPa
- V :シリンダ容量 1
- B :油の体積弾性係数 MPa
- A : ピストン実効面積 mm²

- Xp : ピストンロッド部変位 mm
- Xc :シリンダマウント変位 mm
- La :オリフィス漏れ係数 (1/min)/MPa
- Kp : ピストンロッド・ベルクランク部ばね定数 N/mm
- R :ベルクランク、出力リンクのモーメントの腕 mm
- ϕ :出力角 rad
- Ks :シリンダマウントばね定数 N/mm
- Ka :サーボ増幅器ゲイン mA/V
- Ee : サーボ弁への制御信号 V
- Er :サーボ増幅器への入力信号 V
- Efb : フィードバックの出力信号 V
- Kfb:フィードバックセンサのゲイン V/mm
- X : アクチュエータ出力 mm
- M : 直線運動する質量 kg
- I :慣性モーメント kg ・ m²
- I_M :等価慣性モーメント $kg \cdot m^2$, $I_M = M R^2 + I$
- K :出力軸の捩りばね定数 MN·m/rad
- F :外力 N
- S : ラプラス変換のパラメタ
- 添字:数字は系統を表す

冗長出力型アクチュエータ

図1 3重系油圧操縦系統の構成

図2a 3重系油圧操縦装置

3. 多重油圧操縱系統の構成

多重油圧系統の冗長出力型アクチュエータを含めた操 縦系統は,通常2重~4重系統が考えられるが,本稿では, 他の多重系への構成も同じように容易にできるので,最 も基本的な3重系統の構成を例に取ることにして,これ を図1に示す。パイロットあるいはオートパイロットの コマンドの3系統出力がそれぞれの油圧アクチュエータ に入り,その出力が加算され1系統の位置出力になり, パワーアクチュエータを駆動し、ついで舵面を駆動する ことになる。通常,これらの3系統の油圧アクチュエー タと加算機構は一体に製作され, 冗長出力型アクチュエ ータを形成する。また, 舵面負荷の小さい場合は, パワ ーアクチュエータを省略することが考えられる。図 2. a, b に操縦系統を模擬する3重系油圧操縦装置の構成と外観 を示す。本装置は実機の操縦系統を模擬して,実機用相 当の冗長出力型アクチュエータと負荷装置,荷重計,位 置変位計およびそれらを結び付けるリンク機構より構成 されている。冗長出力型アクチュエータの仕様を表1に 示す。パワーアクチュエータは冗長出力型アクチュエー タを信号アクチュエータとして,その出力パワーを増強 することが役割であり,その作動特性も高速である。し たがって,本装置のように冗長出力型アクチュエータの 出力パワーが舵面負荷に充分対応できる場合,パワーア クチュエータは冗長出力型アクチュエータの基本的な作 動特性に影響が小さいとして省略できる。

図 2.b 3 重系油圧操縦装置の外観

1系統に加算出力
1.67 kN(出力制限、通常使用)
5.13 kN(出力制限なし)
± 25 mm

4. 冗長出力型アクチュエータ

4.1 作動の定式化

図3に冗長出力型アクチュエータの構造を示す。その 構成は,系統1~3の油圧のサーボ弁・シリンダ部と加算 機構部からなる。加算機構部では,系統1~3のピストン ロッドをベルクランクを介して共通の出力軸に固定する, そして出力系統では同じように固定されている出力リン クからロッドを通して,舵面を駆動するための出力とな る。一般に,この種のアクチュエータの作動は,複雑な フィードバック経路持つブロック線図の形で与えられる が²⁾,ここでは,これを4慣性系における出力加算方式の 位置制御と位置づけ数式の形で与える。

サーボ弁は,零重合弁で比較的負荷圧力が小さいもの として線形近似する。系統1~3について,そのサーボ弁 流量 Q_v は^{3),4)},サーボ弁の流量ゲイン K_v ,サーボ弁の 入力電流 I_v ,供給油圧 Ps,戻り油圧 P_R ,スプール漏れ係 数 Lv,ピストン差圧 P_L として,次式で与えられる。

$$Q_{V1} = K_{V1} I_{V1} / Ps - P_R - L_{V1} P_{L1}$$
(1.1)

$$Q_{V2} = K_{V2} I_{V2} \sqrt{Ps - P_R} - L_{V2} P_{L2}$$
 (1.2)

$$Q_{v3} = K_{v3} I_{v3} \sqrt{Ps - P_R} - L_{v3} P_{L3}$$
(1.3)

ピストンが中央付近にあるとき,連続の式よりシリンダの流量はサーボ弁流量に等しいから,シリンダ容積 V, 油の体積弾性係数 B,ピストン実効面積 A,ピストンロッ ド部変位 Xp,シリンダマウント部変位 Xc,オリフィス漏 れ係数 La として,次式で表せる。

$$Q_{V1} = \frac{V}{4B} \dot{P}_{L1} + A(\dot{X}p_1 - \dot{X}c_1) + La_1P_{L1}$$
(2.1)

$$Q_{v2} = \frac{V}{4B} \dot{P}_{L2} + A(\dot{X}p_2 - \dot{X}c_2) + La_2P_{L2}$$
 (2.2)

$$Q_{V3} = \frac{V}{4 B} \dot{P}_{L3} + A(\dot{X}p_3 - \dot{X}c_3) + La_3 P_{L3}$$
(2.3)

ピストン差圧はピストンロッドを通して出力軸回りのベ ルクランクを変位させる。ピストンロッドの変位は,ピ ストンロッド・ベルクランク部ばね定数 Kp,ベルクラン クの長さ R,出力角 φ として,次式で表せる。

$A P_{L1} = K p_1 (X p_1)$	$\mathbf{R} \boldsymbol{\phi}_1$)	(3.1)
----------------------------	------------------------------------	-------

 $\mathbf{A} \mathbf{P}_{L2} = \mathbf{K} \mathbf{p}_2 \left(\mathbf{X} \mathbf{p}_2 \quad \mathbf{R} \, \boldsymbol{\phi}_2 \right) \tag{3.2}$

$$A P_{13} = Kp_3 (Xp_3 - R\phi_3)$$

$$(3.3)$$

図3 冗長出力型アクチュエータの構造

図4 冗長出力型アクチュエータ系統図

ピストン差圧によるシリンダマウントの変位 Xc はシリン ダマウントばね定数 Ks として,次式で与えられる。

$$A(P_{L1} + P_{L2} + P_{L3}) = -Ks Xc$$
(4.1)

サーボ増幅器等を取り込み,図4に示すようにフィード バック制御系を形成するものとして,サーボ弁の入力電 流 I_v,サーボ弁へ制御信号 Ee,フィードバックセンサゲ イン Kfb は次のように表せる。

 $Iv_1 = Ka_1 Ee_1$ (5.1)

- $Iv_2 = Ka_2 Ee_2$ (5.2)
- $Iv_3 = Ka_3 Ee_3 \tag{5.3}$

 $\mathbf{E}\mathbf{e}_1 = \mathbf{E}\mathbf{r}_1 - \mathbf{E}\mathbf{f}\mathbf{b}_1 \tag{6.1}$

 $\mathbf{Ee}_2 = \mathbf{Er}_2 - \mathbf{Efb}_2 \tag{6.2}$

 $Ee_3 = Er_3 - Efb_3$ (6.3)

 $Efb_1 = Kfb_1(Xp_1 - Xc)$ (7.1)

$$\mathbf{Efb}_2 = \mathbf{Kfb}_2(\mathbf{Xp}_2 - \mathbf{Xc}) \tag{7.2}$$

$$Efb_3 = Kfb_3(Xp_3 - Xc)$$
(7.3)

出力角の位置変位への変換は,次式で与えられる。

 $\mathbf{X}_1 = \mathbf{R} \, \boldsymbol{\phi}_1 \tag{8.1}$

 $\mathbf{X}_2 = \mathbf{R} \, \boldsymbol{\phi}_2 \tag{8.2}$

$$\mathbf{X}_3 = \mathbf{R} \, \boldsymbol{\phi}_3 \tag{8.3}$$

$$\mathbf{X}_4 = \mathbf{R} \, \boldsymbol{\phi}_4 \tag{8.4}$$

加算機構部は,4 慣性系に対する出力加算方式の位置制 御⁵⁾と考え,4 慣性系を連結した軸の強制捩り振動の問題 $^{(0,7)}$ として定式化する⁸⁾。図3に示すように I_1 , I_2 , I_3 , I_4 を回転する質量の出力軸まわりの慣性モーメント, M_1 , M_2 , M_3 , M_4 を直線運動する質量, $M R^2 + I$ を等価慣性モ ーメント, ϕ_1 , ϕ_2 , ϕ_3 , ϕ_4 を各系統の回転角, K_1 , K_2 , K_3 を系統1と系統2間,系統2と系統3間,系統3と系統4 間の出力軸の捩りばね定数とすれば,系統1には- $K_1(\phi_1 - \phi_2)$ なるトルクが作用し,系統2には $K_1(\phi_1 - \phi_2)$ - $K_2(\phi_2 - \phi_3)$ なるトルクが作用し,以下も同様となる。し たがって次のように示すことが出来る。

$$(\mathbf{M}_{1}\mathbf{R}^{2} + \mathbf{I}_{1}) \, \ddot{\boldsymbol{\phi}}_{1} + \mathbf{K}_{1}(\boldsymbol{\phi}_{1} - \boldsymbol{\phi}_{2}) = \mathbf{A} \, \mathbf{R} \, \mathbf{P}_{L1} \tag{9.1}$$

$$(\mathbf{M}_{2}\mathbf{R}^{2} + \mathbf{I}_{2}) \, \ddot{\boldsymbol{\phi}}_{2} - \mathbf{K}_{1}(\boldsymbol{\phi}_{1} - \boldsymbol{\phi}_{2}) + \mathbf{K}_{2}(\boldsymbol{\phi}_{2} - \boldsymbol{\phi}_{3}) = \mathbf{A} \, \mathbf{R} \, \mathbf{P}_{L2}$$
(9.2)

$$(\mathbf{M}_3\mathbf{R}^2 + \mathbf{I}_3) \ddot{\boldsymbol{\phi}}_3 - \mathbf{K}_2(\boldsymbol{\phi}_2 - \boldsymbol{\phi}_3) + \mathbf{K}_3(\boldsymbol{\phi}_3 - \boldsymbol{\phi}_4) = \mathbf{A} \mathbf{R} \mathbf{P}_{\mathrm{L}3}$$
(9.3)

$$(\mathbf{M}_4 \mathbf{R}^2 + \mathbf{I}_4) \, \ddot{\boldsymbol{\phi}}_4 - \mathbf{K}_3(\boldsymbol{\phi}_3 - \boldsymbol{\phi}_4) = - \mathbf{R} \, \mathbf{F}$$
 (9.4)

これが本シミュレーションの中心になる式である。 (1.1)~(9.4)式を,速度項等の中間変数を表に出す状態方 程式に書き換える。ここで,ピストン差圧 P_Lはピストン 実効面積を乗じて,シリンダの作動力になるので重要な 変数になる。この書換えについては付録1に示す。

$$\dot{P}_{L1} = \frac{1}{Q_1} \{ KP_{23} QK_1 Er_1 - KSP_2 QK_2 Er_2 - KSP_3 QK_3 Er_3 \\ - P_{L1} (KP_{23} QK_{1K} - KSP_2 QK_{2S} - KSP_3 QK_{3S}) \\ - P_{L2} (KP_{23} QK_{1S} - KSP_2 QK_{2K} - KSP_3 QK_{3S}) \\ - P_{L3} (KP_{23} QK_{1S} - KSP_2 QK_{2S} - KSP_3 QK_{3K}) \\ - \dot{\phi}_1 KP_{23} A R - \phi_1 KP_{23} QK_{1R} \\ + \dot{\phi}_2 KSP_2 A R + \phi_2 KSP_2 QK_{2R} \\ + \dot{\phi}_3 KSP_3 A R + \phi_3 KSP_3 QK_{3R} \}$$
(10.1)

$$\dot{P}_{L2} = \frac{1}{Q_2} \{ KP_{13} QK_2 Er_2 - KSP_1 QK_1 Er_1 - KSP_3 QK_3 Er_3 \\ - P_{L1} (KP_{13} QK_2 S - KSP_1 QK_1 S - KSP_3 QK_3 S) \\ - P_{L2} (KP_{13} QK_2 S - KSP_1 QK_1 S - KSP_3 QK_3 S) \\ - P_{L3} (KP_{13} QK_2 S - KSP_1 QK_1 S - KSP_3 QK_3 K) \\ - \dot{\phi}_2 KP_{13} A R - \phi_2 KP_{13} QK_2 R \\ + \dot{\phi}_1 KSP_1 A R + \phi_1 KSP_1 QK_1 R \\ + \dot{\phi}_3 KSP_3 A R + \phi_3 KSP_3 QK_3 R \}$$
(10.2)

$$\dot{P}_{L3} = \frac{1}{Q_3} \{ KP_{12} QK_3 Er_3 - KSP_1 QK_1 Er_1 - KSP_2 QK_2 Er_2 - P_{L1} (KP_{12} QK_{3 S} - KSP_1 QK_{1 K} - KSP_2 QK_{2 S}) - P_{L2} (KP_{12} QK_{3 S} - KSP_1 QK_{1 S} - KSP_2 QK_{2 K})$$

-
$$P_{L3}(KP_{12}QK_{3K} - KSP_1QK_{1S} - KSP_2QK_{2S})$$

- $\dot{\phi}_3 KP_{12} A R - \phi_3 KP_{12}QK_{3R}$
+ $\dot{\phi}_1 KSP_1 A R + \phi_1 KSP_1QK_{1R}$

+ $\dot{\phi}_2 \operatorname{KSP}_2 \operatorname{A} \operatorname{R} + \phi_2 \operatorname{KSP}_2 \operatorname{QK}_{2 \operatorname{R}}$ (10.3)

$$\dot{\phi}_1 = \phi_5 \tag{10.4}$$

$$\dot{\phi}_2 = \phi_6 \tag{10.5}$$

$$\dot{\phi}_3 = \phi_7 \tag{10.6}$$

$$\dot{\phi}_4 = \phi_8 \tag{10.7}$$

$$\dot{\phi}_5 = \frac{A R}{I_{M 1}} P_{L1} - \frac{K_1}{I_{M 1}} (\phi_1 - \phi_2)$$
(10.8)

$$\dot{\phi}_{6} = \frac{A R}{I_{M 2}} P_{L2} + \frac{K_{1}}{I_{M 2}} (\phi_{1} - \phi_{2}) - \frac{K_{2}}{I_{M 2}} (\phi_{2} - \phi_{3}) \quad (10.9)$$

$$\dot{\phi}_7 = \frac{A R}{I_{M 3}} P_{L3} + \frac{K_2}{I_{M 3}} (\phi_2 - \phi_3) - \frac{K_3}{I_{M 3}} (\phi_3 - \phi_4) (10.10)$$

$$\dot{\phi}_8 = \frac{K_3}{I_{M \ 4}} (\phi_3 - \phi_4) - \frac{R F}{I_{M \ 4}}$$
 (10.11)

出力方程式は,
$$X_1 = R \phi_1$$
 (11.1)

$$\mathbf{X}_2 = \mathbf{R} \, \boldsymbol{\phi}_2 \tag{11.2}$$

$$\mathbf{X}_3 = \mathbf{R} \, \boldsymbol{\phi}_3 \tag{11.3}$$

$$\mathbf{X}_4 = \mathbf{R} \, \boldsymbol{\phi}_4 \tag{11.4}$$

$$\begin{aligned} z z | z , \\ Kp_1 &= A P_{L1} / (Xp_1 - R \phi_1) \\ Kp_2 &= A P_{L2} / (Xp_2 - R \phi_2) \\ Kp_3 &= A P_{L3} / (Xp_3 - R \phi_3) \\ KSP_1 &= \frac{A^2}{K_s \{ A^2 / Kp_1 + V / (4 B) \}} \\ KSP_2 &= \frac{A^2}{K_s \{ A^2 / Kp_2 + V / (4 B) \}} \\ KSP_3 &= \frac{A^2}{K_s \{ A^2 / Kp_3 + V / (4 B) \}} \\ KP_{12} &= 1 + KSP_1 + KSP_2 \\ KP_{13} &= 1 + KSP_1 + KSP_3 \end{aligned}$$

 $\mathbf{KP}_{23} = 1 + \mathbf{KSP}_2 + \mathbf{KSP}_3$

111 23 1 1101 2 1101 3
$Q_1 = A^2 KP_{23}/Kp_1 + A^2/Ks + V KP_{23}/(4 B)$
$Q_2 = A^2 KP_{13}/Kp_2 + A^2/Ks + V KP_{13}/(4 B)$
$Q_3 = A^2 KP_{12}/Kp_3 + A^2/Ks + V KP_{12}/(4 B)$
$\mathbf{Q}\mathbf{K}_{1} = \mathbf{K}\mathbf{a}_{1} \mathbf{K}_{\mathbf{V}1} \sqrt{\mathbf{P}\mathbf{s} - \mathbf{P}_{\mathbf{R}}}$
$\mathbf{Q}\mathbf{K}_2 = \mathbf{K}\mathbf{a}_2 \mathbf{K}_{\mathbf{V}2} \mathbf{\nabla} \mathbf{P}\mathbf{s} - \mathbf{P}_{\mathbf{R}}$
$QK_3 = Ka_3 K_{V3} \sqrt{Ps - P_R}$
$QK_{1 s} = QK_1 Kfb_1 A/K_s$
$QK_{2 s} = QK_2 Kfb_2 A/K_s$
$QK_{3 s} = QK_3 Kfb_3 A/K_s$
$QK_{1 K} = QK_1 Kfb_1 A/Kp_1 + QK_{1 S} + L_{V1} + La_1$
$QK_{2K} = QK_2 Kfb_2 A/Kp_2 + QK_{2S} + L_{v2} + La_2$
$QK_{3 K} = QK_3 Kfb_3 A/Kp_3 + QK_{3 S} + L_{V3} + La_3$
$QK_{1 R} = QK_1 Kfb_1 R$
$QK_{2 R} = QK_2 Kfb_2 R$
$QK_{3R} = QK_3 Kfb_3 R$
$\mathbf{I}_{M \ 1} = \mathbf{M}_1 \mathbf{R}^2 + \mathbf{I}_1$
$\mathbf{I}_{\mathbf{M}2} = \mathbf{M}_2 \mathbf{R}^2 + \mathbf{I}_2$
$\mathbf{I}_{\mathbf{M}\ 3} = \mathbf{M}_3 \mathbf{R}^2 + \mathbf{I}_3$

4.2 作動シミュレーションおよび実作動との対応

 $I_{M4} = M_4 R^2 + I_4$

図2.a,bに示した3重系油圧操縦装置の諸元を表2に示 す。操縦系統の作動は,冗長出力型アクチュエータの作 動に基づくものになる。その作動シミュレーションは, この諸元の数値を用いて状態方程式(10.1)~(11.4)を 解くことにより求めることが出来る。この場合の方程式 は,出力時定数の著しく異なるものが混在するスティッ フな系^{9),10)}であるため(stiffness比10³⁶程度),しばしば 数値計算上好ましくない現象が起きるので,計算手法に はギア法を用いる必要がある。

表2の数値を用いた数値シミュレーション(以下数値 計算と略称する)では、出力系統の等価慣性モーメント は $I_{M4} = 0.360 \text{ kg} \cdot \text{m}^2$ と算出されるが、STOL実験機に計 画された数値は $I_{M4} = 0.551 \text{ kg} \cdot \text{m}^2$ であるので、これを用 いることにした。この等価慣性モーメントの部分だけ、3 重系油圧操縦装置による作動と異なっている。また、負

表2 3 重系油圧操縦装置の諸元

K_V	0.0643	$1/(mA \cdot min \cdot \sqrt{MPa})$				
Ps	21	MPa				
P _R	0.35	MPa				
L_{V}	1.44	(1/min)/MPa				
V	0.0124	1				
В	1350	MPa				
А	248	mm^2				
La	0.96	(1/min)/MPa				
Кр	25.8	kN/mm				
Ks	98.0	kN/mm				
Kfb	0.2	V/mm				
Ka	21	mA/V				
R	100	mm				
M_1	0.193	kg				
M_2	0.193	kg				
M_3	0.193	kg				
M_4	3.57	kg				
\mathbf{I}_1	0.0012	kg • m^2				
I_2	0.0014	kg • m^2				
I_3	0.0012	kg • m^2				
\mathbf{I}_4	0.0031	kg • m ²				
\mathbf{K}_1	0.431	MN • m/rad				
\mathbf{K}_2	0.431	MN • m/rad				
K_3	0.489	MN • m/rad				
F		Ν				

荷は与えていない。

3重系油圧操縦装置による作動(以下実作動と略称する) に用いた本冗長出力型アクチュエータ系には,以下に示 す出力ゲインおよびトリムずれが認められる。3系統作動 している場合,系統1を基準にして,系統2の出力ゲイ ンは0.979程度,系統3の出力ゲインは0.993程度である。 零点は系統2が-0.1mm,系統3が-0.6mm程度アクチ ュエータの縮み側にずれている。ピストン差圧の計測は, シリンダに並行して設けられている差圧検出用の小シリ ンダで行うが,4Nのばね予荷重(差圧で0.18MPa相当 のPreload)と計測系にローパスフィルタ(DC~10Hz) が掛けられている。位置変位出力の計測は,系統1~3で はそれぞれのアクチュエータの位置出力センサで検出し, 出力系統では出力リンクに接続している荷重計の一端の 位置変位計で計測している(図2.a)。

数値計算と実作動によるステップ応答の結果を表3に まとめて示す。これが冗長出力型アクチュエータの基本 的な定常出力特性である。

次に表3のもとになった数値計算でのステップ応答の

7

		数値シュミ	ミレーション			3 重系油日	E操縦装置	
作業形態	系統 1	系統 2	系統3	出力系統	系統 1	系統 2	系統3	出力系統
単一形				1.030				
3系統	1.000	1.000	1.000	1.000	1.00	1.00	1.00	1.00
系統 2 油圧 OFF	0.980	0.980	0.980	0.980	1.00	1.03	1.01	1.01
<i>"</i> 3 <i>"</i>					1.00	1.00	0.91	0.94
// 1 , 2 //					1.00	1.03	1.00	1.01
" 2,3"	0.923	0.923	0.923	0.923	1.00	0.97	0.91	0.91
系統 1 入力 OFF					0.22	0.97	0.96	0.95
<i>"</i> 2 <i>"</i>	0.667	0.666	0.667	0.667	0.98	0.50	0.96	0.89
<i>"</i> 3 <i>"</i>					0.98	0.96	0.37	0.53
// 1,2//					0	0	0.51	0.39
// 1,3//					0	0.46	0.01	0.07
" 2,3"	0.335	0.333	0.332	0.332	0.72	0	0.01	0.04
系統1K a 10%増	1.001	1.001	1.001	1.001	0.96	0.94	0.98	0.99
<i>"</i> 3 <i>"</i>	1.001	1.001	1.001	1.001	0.98	0.94	0.96	1.01
″ 1 Kfb2.5 %増					0.98	0.95	0.98	1.01
<i>"</i> 3 <i>"</i>	0.992	0.992	0.992	0.992	0.98	0.95	0.96	0.99
″ 1 Kfb 10 %増					0.85	0.94	0.98	0.99
<i>"</i> 3 <i>"</i>					0.98	0.95	0.88	0.94

表3 冗長出力型アクチュエータの定常位置出力特性

注1 3系統作業時の入力0.2の出力を基準にする

注2 の部分は0.3の入力で,0.2入力に換算

出力波形をちくじ示す。それらの図では各系統に入力0.2 (Vまたは出力角0.56°,これは位置出力で0.97 mm相当) のステップ入力を与えている。PL1 ~ PL3はピストン差 圧で系統1 ~ 3, PHI1 ~ PHI3は出力角で系統1 ~ 3を示 す。PHI4は出力系統の出力角を示している。本来,出力 は出力リンクに接続しているロッド部の位置の動きであ る。しかし,各系統は出力を回転系として出力角で取り 出しているのと,また出力角にその位置の動きは比例す るから,出力角を出力と見立てる。

図5.1では,各系統の出力はよく揃っている。ピストン 差圧は,演算開始時にErにステップ入力が入り,一次遅 れ系を通して発生するが,その時定数は小さいので零位 置より立ち上がった状態の出力になっている。図5.2は系 統2を,図5.3は系統2,3の油圧をOFF(油圧の供給停 止)にした場合である。系統のOFFが増えるにつれて, 減衰が悪くなっているのと,図からは読み取りにくいが、 出力が2%,7.7%程度減少していく(表3)ことが分る。 図5.4は3重系統ではなく,単独の系の場合(3重系を単 独の系に切り放すと3次系になる。付録2の前半参照)の 作動例である。PLはピストン差圧,PHIは出力角,PHI/S は角速度出力を示す。この場合は図5.3の1系統作動の場 合に相当し,ほぼ同様な応答波形を示しているが,出力 の低下はなく,図5.1の場合より3%程度増加している。 このように多重系にすると出力が減少するが,これは多 重系において,ピストンロッド・ベルクランク部ばね (ばね定数 K_P)と出力軸捩りばね(ばね定数 K)が各系統 の復元項によって圧縮されることに起因する。単独の系 ではこのような他系統からの復元項が作用しない。

実作動のステップ応答を図 5.5 ~ 7 に示す。この場合, 先に述べたように数値計算とは出力系統の等価慣性モー メントの違いがあり,過渡応答に影響があるので実作動 の制御系において,アナログ演算素子により補正をして いる。この補正については付録2に示す。ただし,この 等価慣性モーメントの補正を行うことによる定常出力ゲ インの変動はないので,表3の定常出力特性を求める場 合は補正を行わない。また,図では出力を数値計算の場 合と異なり,位置変位で表している。また,ピストン差 EP_L は,先に述べたように P_L 検出系の予荷重とローパス フィルタのため,本来の出力と多少異なったものになる ことが考えられる。実作動の P_L の応答については付録3 に,その状況を示す。位置変位速度の計測は,位置変位 の不完全微分S/(1 + 0.02 S)で行った。

図 5.5 ~ 7 は数値計算の図 5.1 ~ 3 に相当するが (図 5.6 は系統 2 でなく系統 3 になっている), 実作動の出力系統

図 5.4 単独系作動

の出力は図示していないが,系統3にほぼ一致する波形 と考えてよい (ベルクランク部のがた分だけずれる可能 性はある)。図から実作動の方は減衰が大きい。これは, シリンダに働くピストンパッキングの摩擦抵抗の影響が 大きいと考えられる。数値計算の方ではこれらの影響は、 定量的に把握しにくいこともあり考慮していない。また 作動系統が減少しても減衰があまり変動しないのは,油 圧を OFF にしてもシリンダは接続されていて,これがダ シュポットの役目をしていると考えられる。また,出力 が減少する傾向は出ているが,出力系統に近い系統3の 油圧 OFF で6%程度,系統2,3 OFF で9%程度減少とな リ,系統3以外の系統の油圧OFFは出力に影響が少ない。 このような状況は,はピストンロッドとベルクランクと を接続する部分で,軸受すきまと弾性変形が大きいこと に起因すると考えられる。数値計算の方では,この部分 はばね定数が大きく,変形は微小になっている(アクチ ュエータの最大作動力が両端から逆方向に加わるとして 0.13 mm 程度)。

次に入力の故障を考えて,図5.8 に系統2の入力がOFF になった時の数値計算による応答を示す。この場合は系 統2のピストン差圧は,他の系統に対抗して負圧になり, 出力は3系統入力時のそれより約2/3 に減少する。図5.9 は系統2,3の入力OFFで,系統1のみ入力がある場合で ある。系統2,3のピストン差圧は,系統1に対抗して負 圧になり,出力は3系統入力時より約1/3 に減少する。こ れは制御偏差と出力パワーの大きさが比例すると考えた 場合,1系統入力OFFでは,力の釣合いから2/3位置変位 出力になり,2系統入力が3系統に分割出力する形になる。 2系統入力OFFの場合は1/3位置変位出力になり,1系統 入力が3系統に分割出力する形になる。

実作動の系統2の入力 OFF は図5.10で,数値計算によ る図5.8に相当する。実作動の入力 OFF の系統2は52% 程度に減少しているが,出力系統では89%程度であり減 少の割合が小さい。すなわち,入力 OFF の系統が,出力 系統に近い系統3の場合は出力低減の割合が大きく,そ うでない場合は小さくでる。これもピストンロッドとベ ルクランク部でのいわばがたに起因すると考えられる。

サーボ系の構成要素は,各系統とも常に同じ特性を持っているとは限らず,多少のバラツキがあるので,これらを代表して,系統3のサーボアンプのような前向き経路のゲインKaが10%増加した場合の数値計算による応答を図5.11に示す。系統3のピストン差圧がわずかに増加するが,出力は変わらない。次に系統3のフィードバック経路のゲインKfbが2.5%増加した場合の応答を図5.12に示す。ピストン差圧は減少し出力は1%程度減少する。いずれも,この程度のゲインずれでは大きな出力変化は生じない。

実作動の前向き経路ゲイン 系統1の Ka 10%増加の応 答を図5.13に示す。また,図5.14はフィードバックのゲ イン系統3の Kfb 2.5%増加を示す。これらはいずれも数 値計算に近い値を示している。

4.3 出力特性改善のためのモデル追従制御の適用

出力特性改善のために,モデル追従制御⁸⁾を本システム に適用する。制御の目的は,過渡特性を改善すること,1 系統の入出力 OFF,システムパラメータの変動および外 乱が発生しても,正常に出力し,各系統の出力差が極小 になることである。

図 5.7 系統 2,3 油圧 OFF (1 系統作動)

図 5.13 系統 1 Ka 10 % 増加 (前向き経路での1 系統ゲイン増加) 図 5.14 系統 3 Kfd 2.5 % 増加 (前向き経路での1 系統ゲイン増加)

図 6.1 モデル追従制御システム(操縦系統は1系統のみ示す)

モデルの原型は操縦系統が連成項を除けば3次系になるので(付録2参照),次のように与える。

$$768,300 / \{ (S^2 + 74.3 S + 2,767) (S + 277.7) \}$$
 (12)

積分補償を加えて,次の制御則を得る。

U = -2.61 Xm - 0.02972 Xm - 0.00007782 Xm + 100 Wm(13)

ここに,モデル系統の位置変位出力 Xm,操作入力 U, Wm = $\int_0^\infty (\text{Er - Xm}) dt$

これをモデル系統にして,全系統がこれに追従するよう な制御則を考える。操縦系統には3重系油圧操縦装置の 表2の数値を与え,その結果を3次系に当てはめて、制御 対象の操縦系統は,操縦系統の位置変位出力X_Pとして,

 $\ddot{\mathbf{X}}$ p + 8,770 $\ddot{\mathbf{X}}$ p + 236,000 $\dot{\mathbf{X}}$ p + 19,500,000 \mathbf{X} _p = 973,000 Er (14)

と表すことが出来る。この操縦系統に対してモデル追従 制御のための制御則を次のように定めた。

$$U = 17.2 \text{ Xm} + 6.36 \dot{\text{Xm}} + \ddot{\text{Xm}} + 67.5 \text{ Wm} - 0.168 \text{ Xp} - 6.16 \dot{\text{Xp}} - 0.991 \ddot{\text{Xp}} + 0.449 \text{ Wp}$$
(15)
$$\Box \Box \Box WP = \int_0^{\infty} (\text{Er} - \text{Xp}) dt$$

この制御システムを図 6.1 に示す。図 6.2 はモデル追従制 御を施した場合の数値計算によるステップ応答を示す。 モデル系統に各系統がよく追従していることが分る。図 6.3 は系統1の入力がOFF になった場合の応答を示す。系 統1の入力がOFF にもかかわらず図6.2 と同じように応答 している(積分補償制御に特有な積分器の Windup 現象が 生じることに注意)。表4にこれら種々の形態にける定常 出力特性を示す。このようにモデル追従制御を施すこと により入力 OFF,系統の油圧 OFF の場合を含めて,その 出力特性に改善が見られる。

5.**まとめ**

多重の油圧操縦系統のうち,特に標準的な3重系に関 して,各系統の出力を加算して1系統に出力する冗長出 力型アクチュエータの作動に基づく方式についての位置 変位出力特性を,数値シミュレーションにより求めた。 本数値シミュレーションの結果については,3重系油圧操 縦装置による作動でその検証を行った。その結果を次に 示す。

- 1. 冗長出力型アクチュエータの加算出力機能に関して, 多慣性系に対する捩り振動の問題として定式化した。 この数式モデルが,実システムの作動を的確に表すこ とを示し,3重系油圧操縦装置の作動でそれを確認し た。
- 2. 冗長出力型アクチュエータの基本的な位置変位に関 する入出力特性を明らかにした。この特性は,各系統 の入力 OFF に対しては,全系統の入力に見合う出力 がでる。サーボアンプゲイン等のシステムパラメータ

図 6.3 系統 1 入力 OFF (2 系統入力作動)

表4 モデル追従制御における定常出力特性 (数値シュミレーション結果)

0.2入力	系統 1	系統 2	系統 3	出力系統
3系統	0.999	0.999	1.000	1.000
系統1油圧OFF	0.999	0.998	0.998	0.998
系統1,3油圧OFF	0.999	0.999	0.999	0.999
系統1入力 OFF	0.998	0.999	1.000	1.000
系統2入力 OFF	0.998	0.999	1.000	1.000
系統3入力OFF	0.998	0.999	1.000	1.000
系統1,3入力OFF	0.998	0.999	0.999	0.999
系統1入力 0.22				
他系統 0.2	0.998	0.999	1.000	1.000
系統1 P _L 10%増	1.000	1.000	1.001	1.001

注1 3系統作動時の入力0.2の出力を基準にする

の変動にはロバスト性がある。系統の油圧 OFF の場合, わずか出力低下がおき, OFF の系統が増えるとさらに 出力低下が続くことである。

- 3. 各系統のアクチュエータ出力を加算機構部へ接続す る部分でのがたが,前項の位置変位出力特性を低下さ せる。
- 4.モデル追従制御を行うことにより,過渡特性および 2. の定常位置変位出力特性を改善できることを示した。

引用文献

1) 山本和男; FBW 用信号アクチュエータについて,日

本航空宇宙学会誌, VOL. 30, NO.336(1982) pp. 53-63.

- 2) Gerald E. Amies, Cecil Clark, Charles L. Jones, M. Sheppard Smyth; Survivable Flight Control System Interim Report No.1 Studies, Analyses and Approach, Supplement for Hydraulic Power and Actuation Studies, AFFDL-TR-71-20 Supplement-3 (1971) pp.125–199.
- J. G. Rolland Collete; Analysis and Design of Space Vehicle Flight Control Systems, Volume XI- Component Dynamics, NASA CR-830 (1967) pp. 64–86.
- 4) 山口惇,田中裕久;油空圧工学(昭和 61) pp. 63-82, コロナ社
- 5) 原 辰次,千田有一,佐伯正美,野波健蔵;ロバスト 制御のためのベンチマーク問題(I) - 3 慣性系に対 する位置制御・速度制御一,計測と制御,VOL.34, NO.5 (1995) pp.403-409.
- 6) 谷下市松,渡辺茂訳;チモシェンコ工業振動学(1954) pp. 220-243,東京図書
- 7) **粟野誠一;内燃機関工学**(1958) pp. 521-562,山海堂
- 小川敏雄;多重油圧操縦系統のモデル追従制御,第 35回計測自動制御学会学術講演会予稿集(1996) pp. 767-768.
- 9) 安藤和昭,田沼正也,梶原宏之,兼田雅弘,名取 亮,藤井隆雄;数値解析手法による制御系設計(昭 和61)pp.176-185,計測自動制御学会
- 10) FACOM FORTRAN, SSL 使用手引書 (科学用サブル ーチンライブラリ)(昭和55) PP.62-63, 富士通

付 録

1. 変数 P₁ に関する方程式の状態方程式への書替え

(3.1) ~ (3.3), (4.1)式を微分して, $\dot{x}_{p_1}, \dot{x}_{p_2}, \dot{x}_{p_3}, \dot{x}_c$ に 関する式を求め, これらを (2.1) ~ (2.3)式に代入し, \dot{P}_{L1} , $\dot{P}_{L2}, \dot{P}_{L3}$ に関する 3 式を求める。この 3 式よりそれぞれ \dot{P}_{L1} , $\dot{P}_{L2}, \dot{P}_{L3}$ だけを含む式を求める。一方, (1.1) ~ (1.3)式に (4.1), (5.1) ~ (5.3), (6.1) ~ (6.3), (7.1) ~ (7.3)式をそ れぞれ代入して Qv₁, Qv₂, Qv₃ に関する式を求め, これら を先に求めた $\dot{P}_{L1}, \dot{P}_{L2}, \dot{P}_{L3}$ に関する 3 式に代入して, それ ぞれ P_{L1}, P_{L2}, P_{L3}に関する状態方程式を得る。

2. 出力部慣性項の異なる場合の補正

(10.1 ~ 11)式において,K_s = ,K₁ ~ K₃ = 0 とおけば, 各系統は切り放されて単独の系になるので,たとえば系 統1に系統2,3,出力系統の等価慣性モーメントを加算 して,

$$\dot{P}_{L1} = 1/Q_1 (QK_1 Er_1 - QK_{1 K} P_{L1} - A R \dot{\phi}_1 - QK_{1 R} \phi_1)$$
$$\dot{\phi}_1 = \phi_5$$
$$\dot{\phi}_5 = A R/(I_{M1} + I_{M2} + I_{M3} + I_{M4}) P_{L1}$$

これを書き替えて,

$$\begin{split} & \overleftrightarrow{\phi_1} = - K_1 \, \overleftrightarrow{\phi_1} - K_3 \, K_5 \, \dot{\phi_1} - K_2 \, K_5 \, \phi_1 + K_4 \, K_5 \, \text{Er}_1 \\ & \Box \, \Box \, \Box \, \Box \, \Box \, \downarrow C \, I \\ & \mathsf{K}_1 = Q K_{1 \, \mathsf{K}} / Q_1, K_2 = Q K_{1 \, \mathsf{R}} / Q_1, K_3 = A \, \mathsf{R} / Q_1 \\ & \mathsf{K}_4 = Q K_1 / Q_1, K_5 = A \, \mathsf{R} / (\mathsf{I}_{M \, 1} + \mathsf{I}_{M \, 2} + \mathsf{I}_{M \, 3} + \mathsf{I}_{M \, 4}) \end{split}$$

ラプラス変換して ϕ , Erの添字を省略すると, ϕ S³ = -K₁ ϕ S² - K₃K₅ ϕ S - K₂K₅ ϕ + K₄K₅Er これをブロック線図で表すと付図1のようになる。等価 慣性モーメントの変化は K_5 の変化であり,入力ゲイン, 復元項,速度項に変化が出る。この補正は,入力ゲイン と復元項は制御偏差信号で行い,速度項は実際にフィー ドバック経路に現れないので,復元項で行う。この復元 項も特定のゲインを持って出力されている。補正のため のブロック線図は,速度項には ϕ の時定数0.02 sec の不完全 微分を用いて,付図2のように求められる。ここで,入 力ゲイン,復元項の補正 G_1 は,表1での等価慣性モーメン ト I_M = 0.360,数値計算で用いた I'_M = 0.551であるから,

$$G_1 = I_M / I'_M$$

0.653

速度項は,本来持っている速度項を相殺して,新たにゲ イン変更した速度項を復元項から作りだすことを考える,

G₂ = (-1/G₁ + 1) G₁ K₃ K₅/(K₂ K₅)
 = -0.0042
 ここに, K₃ K₅/(K₂ K₅) = 0.01212
 作動実験では制御偏差出力にG₁,復元項に
 G₂ S/(1 + 0.02 S)を付図2のブロック線図のように挿入し,出力部慣性項の補正を行った。

3. アクチュエータ ピストン差圧の応答

実作動のステップ応答では、シリンダ差圧検出系に4N のばね予荷重と計測系にはローパスフィルタ(DC~ 10 Hz)が掛かっている。これらは検出系の振動対策であ る。そのため、本来のP_L出力と異なることが考えられる ので、ローパスフィルタ無しの場合の応答を1系統作動

付図1 アクチュエータの原形

付図2 慣用項変化の補正

付図3 系統3作動(系統1,2油丘OFF, ローパスフィルタなし)

の場合について付図3に示す。P_Lの急激な立ち上がりが 見られる。付図4には,同じ1系統作動の場合の位置変位 とシリンダ差圧P_L出力の周波数応答を示す。P_L出力は高 い周波数でゲインが上昇しているが,これは Preload ばねの振動特性であると考えられる。

航空宇宙技術研究所資料 711号

平成9年5月発行

 発行所科学技術庁航空宇宙技術研究所 東京都調布市深大寺東町7丁目44番地1 電話(0422)47-5911 〒182
 印刷所株式会社東京プレス 東京都板橋区桜川2-27-12

⑦ 禁無断複写転載

本書(誌)からの複写,転載を希望される場合は,企画室調査 普及係にご連絡ください。

Printed in Japan