
宇宙開発事業団技術報告

気相成長基礎実験装置(GDEF)実験成果報告

宇宙でのダイヤモンド薄膜気相成長実験

1998年1月

宇宙開発事業団

宇宙開発事業団技術報告 NASDA Technical Memorandum

気相成長基礎実験装置 (GDEF) 実験成果報告

―― 宇宙でのダイヤモンド薄膜気相成長実験 ――

Final Reports of Gas Dynamics Experiment Facility Experiments

宇宙開発事業団 National Space Development Agency of Japan

まえがき

1995年3月18日、宇宙実験・観測フリーフライヤ(SFU)を搭載したH-Ⅱロケット試験機3号機は、長きに亘りSFUのプロジェクトに携わってきた関係者の熱い想いとともに、白煙を残し天空の彼方へと飛び立って行きました。

そして翌1996年1月、高度480Kmの軌道上で若田飛行士の操るスペースシャトルのロボットアームにより捕獲されたSFUは、約10ヶ月に及ぶ軌道上での周回を終え、数々の実験成果とともに地球への帰路につきました。

SFUは、スペースシャトルを利用した有人ミッションであるとともに、フリーフライヤ型の無人宇宙実験システムによる本格的な宇宙環境利用の先駆けとして、文部省宇宙科学研究所、宇宙開発事業団、新エネルギー・産業技術総合開発機構/財団法人無人宇宙実験システム研究開発機構の合同プロジェクトとして進められました。この間、H-Ⅱロケット開発の遅れによる順延や、大幅なリソースの見直し等が行われる中、様々な困難を乗り越えながら、その開発が行われました。

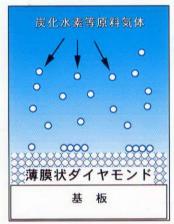
本報告書の気相成長基礎実験装置についても、1987年度にその概念検討を開始しましたが、その後、限られたリソースの中で、いかにより多くの成果が期待できる実験を組み上げてゆくか、どうすればそれらの実験をうまく成り立たせることができるか、多くの検討と試行がなされました。研究者と技術者が一丸となって取り組んだ本実験の成果が、今後の宇宙での気相成長実験、及びフリーフライヤ型の実験を考える際の参考となり、宇宙環境利用促進の一助となれば幸いです。

最後に、これらの実験成果は、本実験に参加していただいた全研究者、システムの開発・運用を担当された関連企業の技術者の方々の多大なご尽力とご協力の賜であり、心から深甚なる感謝を表します。

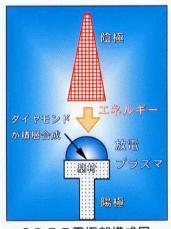
平成9年10月31日 宇宙環境利用システム本部 理事 村山英敏

実験成果の概要

気相成長基礎実験装置 (Gas Dynamics Experiment Facility; GDEF) は、水素・メタンの混合ガスから、宇宙でダイヤモンドのプラズマ CVD (化学気相成長) 実験を行うことのできる実験装置です。


装置には、ダイヤモンドの原料ガスであるメタン・水素混合ガスを蓄えるガスボンベや、プラズマ化学反応を行う反応容器、プラズマの状態を観察するスチルカメラや分光測定装置が搭載されています。

高圧合成法



(高温・高圧)

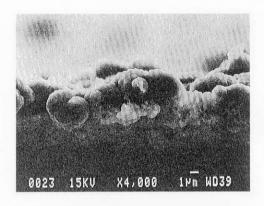
気相合成法

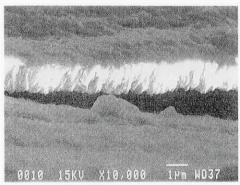
(高温・低圧)

GDEF電極部構成図

放電プラズマ画像

ダイヤモンドの合成法には、大きく分けて2種類の合成法(高圧合成法および気相合成法)があります。

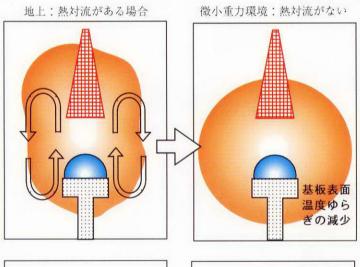

高圧合成法は、炭素がダイヤモンド構造となる高温・高圧条件とすることによりダイヤ塊を生成します。一方、気相合成法では高エネルギーの炭素化合物気体より薄膜状のダイヤモンド結晶を生成します。

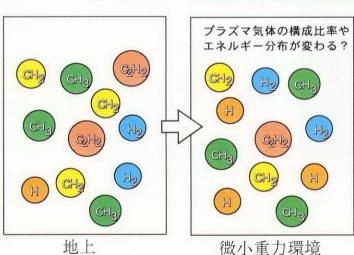

GDEF 実験では、この気相合成法を用います。

気体にエネルギーを与える方法として はいろいろな種類がありますが、GDEF では直流プラズマ法を用いています。

低圧 (20~50Torr) の条件で、400V程度 の直流電圧を印加し、グロー放電を発生させ ます。放電により生成したプラズマ中では、 高エネルギーの種々の炭化水素が生成され、 これがダイヤモンドの原料となります。

また、この放電により生じる水素原子は、 ダイヤの副生成物である黒鉛状炭素の除去 を行い、ダイヤモンドを高品質化する役割 を持っていると考えられています。


写真は地上で合成したダイヤモンド薄膜 (左上)と軌道上で合成したダイヤモンド 薄膜(左下)の走査電子顕微鏡による断面 写真です。


今回の宇宙実験で得られたダイヤモンド 薄膜は、地上対照実験で合成されたダイヤ モンドと比較して、非ダイヤモンド成分の 少ない良質な膜が得られました。

また、地上実験では見られない、ひも状に連結したダイヤモンド結晶も観察されました。

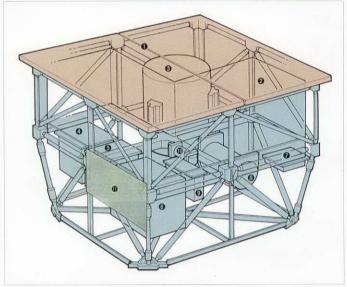
ダイヤモンドの品質にはプラズマの状態 (温度や組成)が大きく関与します。

GDEF実験では、熱対流のない微小重力下でのプラズマの状態変化を、スチルカメラや分光分析器を用いて観察しました。

プラズマの分光測定結果から、プラズマの 状態が大きく変化していることが判りました。

高いレベルにまでは励起されない原子状 水素の量が増加していると考えられ、ダイ ヤモンドの良質化に寄与しているものと思 われます。

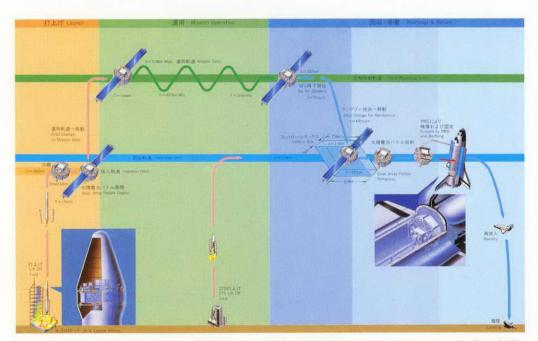

プラズマの発光スペクトルの変化は、特に 低圧 (20Torr) 条件で大きくなっております。


またプラズマからの発光もゆらぎが少なく、安定化していることが考えられます。

今回のGDEFの宇宙実験では、宇宙の 微小重力環境において、対流による擾乱の 無い理想的な状態でプラズマが観察できる 可能性が示されました。

これらのプラズマの変化が、生成するダイヤモンドの質の向上に具体的にどのように結びついていくのかについては、今後の研究課題となっております。

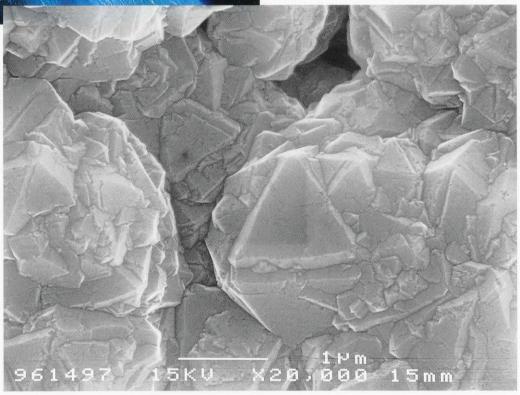
今後はプラズマ構造の解明や、宇宙での 高品質膜作製に向けた研究が進められるも のと考えられます。


①ラジエータ ②GDEF ③装置交換機構(EEU) ④電力分配器⑤EEU制御器 ⑥EFFU制御装置 ⑦ホットプレート ⑧アキュムレータ⑨インバータ ⑩ポンプユニット ⑪材料曝露実験装置

SFUプロジェクトは、文部省/通商産業省/科学技術庁の合同プロジェクトです。1回のフライトで数ヶ月間の長期実験が可能で、多種多様のミッションを搭載できます。また、回収後は再整備を行い、反復利用可能であり、実験コストの低減が図れます。GDEFが組み込まれた軌道上実験機器部(Exposed Facility Flyer Unit; EFFU)は、そのSFUの上部に搭載されました。

EFFUは宇宙開発事業団が担当する実験ミッション機器で、国際宇宙ステーションの日本の実験棟(JEM)の曝露部開発に役立つ基礎技術データの取得を目的とし、流体ループ試験や装置交換機構試験、宇宙環境への材料曝露実験等が行われました。

今回、GDEFは、曝露部で使用する実験 装置のモデル機器として搭載されました。


SFUは、 $H-\Pi$ ロケット試験機 3 号機によって 1995年 3 月に打ち上げられ、その後約 480kmの高度で地球を周回し、約 1 0ヶ月間にわたる軌道上運用を終えた後、同軌道上で 1996年 1 月にスペースシャトル (STS)により回収が行われました。

注)今回のSTSによる回収は、STSがSFU周回軌道まで上昇するGround up方式で実施

宇宙実験・観測フリーフライヤ(SFU)

宇宙で生成したダイヤモンド薄膜の走査電子顕微鏡写真(20000倍)

目 次

第 I 編 GDEFの微小重力実験計画	1
1. GDEF実験計画 ····································	3
1.1 実験計画の概要	3
1.2 実験目的	2
1.3 実験内容	4
2. 気相成長基礎実験装置 (GDEF) の開発····································	ç
2.1 開発の目的	ç
2.2 実験装置の仕様および概要	10
2.2.1 GDEF装置概要····································	10
2.2.2 システム構成	16
2.2.3 性能	23
2.3 開発スケジュール	25
2.4 開発上の留意点	25
3. GDEFの運用 ····································	30
3.1 GDEF射場運用 ····································	30
3.2 GDEF 軌道上運用結果 ······	30
3.2.1 概要	30
3.2.2 運用結果	30
3.2.3 軌道上実験運用結果	34
3.2.3.1 地上リファレンス試験	37
3.3 GDEF 回収後作業結果	49
3.3.1 GDEF回収後作業······	49
3.3.2 分光測定装置および画像取得装置評価結果	49
3.3.3 GDEFフライト後実験····································	50
3.4 GDEF 運用のまとめ ····································	61
3.5 今後のミッションへの反映占 (基置側)	<i>C</i> 1

第Ⅱ	編	GDE	Fの実験結	课	••••••••	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	•••••	• • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••	65
1.	航空	機を	用いた微小。	重力予備	j実験 結果	Į	•••••	••••••	••••	••••••	••••••••	•••	67
1	. 1	実験	概要	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••	67
1	. 2	実験	方法	•••••	••••••	••••••	•••••	•••••	******	••••••		•••	67
1	. 3	実験	結果と考察				• • • • • • • • • •	•••••	•••••		••••••	•••	68
1	. 4	SFU	J実験に向り	けての結	論	• • • • • • • • • • • • • • • • • • • •	•••••	*********	•••••	• • • • • • • • • • • •		•••	72
2.	プラ	ズマ	観察実験結 :	果	••••••	••••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••	77
2	. 1	実験	の目的 …	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••	77
2	. 2	実験	方法	•••••	••••••	•••••	•••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •	••••••	•••	77
	2.2	. 1	実験概要	•••••			••••••	•••••	•••••	••••			77
	2.2	. 2	実験条件	•••••	•••••			•••••	•••••	••••••	•••••	•••	77
	2.2	. 3	プラズマ発										78
	2.2	. 4	プラズマ画	[像解析	•••••		• • • • • • • • • • •	•••••	• • • • • • • • • •	• • • • • • • • • • •		•••	83
2	. 3	実験	結果と考察	•••••	••••••		• • • • • • • • • •	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••	88
	2.3	. 1	プラズマ発	光分光	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••		•••	88
	2.3	. 2	プラズマ画	[像解析	•••••		•••••	•••••	•••••	••••••		1	03
	2.3	. 3	プラズマト	ーム形成	成のメカ-	ニズムと	ヒ微小重	力の効果	į	• • • • • • • • • • • • • • • • • • • •		1	09
2	. 4	結論	•••••	•••••			• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••		1	14
	2.4	. 1	結果のまと	:め		• • • • • • • • •	••••••	•••••	•••••	• • • • • • • • • • • • • • • • • • • •		1	14
	2.4	. 2	今後の課題	<u> </u>	•••••		•••••	••••••	••••	••••••	•••••	1	15
3.	ダイ	ヤモ	ンド成長実	験	•••••		•••••	••••••	•••••	••••••	••••••	1	16
3	. 1	実験	の目的 …	•••••				•••••	•••••	••••••		1	16
3	. 2	実験	方法	•••••			•••••	•••••	•••••	••••••		1	16
	3.2	. 1	基板調整	•••••		• • • • • • • • •		•••••	•••••	•••••		1	16
	3.2	. 2	実験条件	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	•••••				1	16
	3.2	. 3	試料評価	• • • • • • • • • • • •		• • • • • • • • •		•••••	•••••			1	16
3	. 3	実験	結果	• • • • • • • • • • • • • • • • • • • •				•••••	• • • • • • • • • • •	••••••		1	16
	3.3	. 1	実体顕微鏡	きおよび?	SEM観察	₹	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••		1	16
	3.3	. 2	ラマン分光	分析 "		• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••	•••••	•••••		1	18
	3.3	. 3	EDX分析	•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	1	18
	3.3	. 4	ESCA分析	斤			• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • •	•		1	19
	3.3	. 5	薄膜X線回]析	••••••	• • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	··· 1	19
	3.3	. 6	RHEED			•••••	• • • • • • • • • • • • • • • • • • • •	•••••				1	44

3.4 考察	144
3.4.1 ダイヤモンド生成の確認	144
3.4.2 プラズマ分光分析結果との対応	146
3.4.3 不純物分布とその影響	
3.5 結論	· 154
3.5.1 実験結果のまとめ	· 154
3.5.2 今後の課題	· 154
3.6 研究者側から見た今後の宇宙実験ミッションへの要望	154
4. 総括	· 156
4.1 実験の成果と意義	
4.2 反省点	
4.3 今後の方向	• 158
4.4 おわりに	• 159
5. 参考文献	• 160
付録	
(1) 略語集	• 165
(2) GDEF微小重力実験にご協力いただいた方々	
(3) 学会発表等一覧	
(4) 執筆者一覧	

第1編 GDEFの微小重力実験計画

1. GDEF実験計画

1.1 実験計画の概要

1. 1. 1 SFU/GDEF計画

宇宙実験・観測フリーフライヤ(SFU)は、宇宙開発事業団/科学技術庁、宇宙科学研究所/文部省、新エネルギー・産業技術総合開発機構/通商産業省の共同プロジェクトとして開発した回収・再利用が可能な宇宙実験・観測システムである。

宇宙開発事業団は、SFUに、国際宇宙ステーションの日本実験棟(JEM)に採用する技術検証のためのSFU搭載実験機器部(EFFU)とともに気相成長基礎実験装置(GDEF)を搭載し、ダイヤモンドの気相成長実験を行った。ガスを流した状態で宇宙において実施される気相成長実験としては、今回が初めての試みである。

SFUは、1995年3月に $H-\Pi$ ロケット試験機 3 号機により種子島宇宙センターから打ち上げられ、高度約500Km、軌道傾斜角28.5°、軌道周期約94分の運用軌道へ投入された。この軌道で約4.5ヵ月間にわたって各種実験・観測を行い、打ち上げから約10ヵ月後にスペースシャトルにより回収された。

1. 1. 2 実験計画

宇宙開発事業団は、JEM共通実験装置、特に曝露環境を利用した気相成長実験装置開発のため基礎的な技術を確立することを目的として上記SFUを使用して微小重力実験を行うことにした。目標とした技術としては、ガスハンドリング技術、その場観察技術、実験効率化技術、物理現象シミュレーション技術、高温処理技術、微小重力の擾乱による影響評価技術などである。

これらの技術確立のために、地上で数多くの気相成長実験が行われていること、 材料としての将来性が優れていること等から、材料としてダイヤモンドを選定し、 気相成長実験を行うこととした。

1.1.3 実施体制

本プロジェクトの検討は1987年より始まった。当初は、東京工業大学 澤岡昭教授を委員長とし、委員に東北大学 塚本勝男助手、島津製作所 窪寺俊也氏および無機材質研究所 佐藤洋一郎総合研究官、住友電気工業 藤森直治部長、青山学院大学 犬塚直夫教授(故人)の計6名からなるアドバイザーグループを組織し、気相成長実験計画の内容についての検討を行った。その後、無機材質研究所 佐藤洋一郎総合研究官を代表共同研究者とし、住友電気工業 藤森直治部長、青山学院大学 犬塚直夫教授、三菱総合研究所 石川正道部長からなるアドバイザリグルー

プにおいて、ダイヤモンドの気相成長実験に関する計画の詳細検討を行った。また、 実験計画の検討支援を三菱総合研究所、実験装置本体の開発を日本電気、分光測定 装置の開発を島津製作所が各々担当した。

1. 2 実験目的

ダイヤモンドは、紫外光から赤外光までの幅広い透過特性をもち、さらにバンドギャップや正孔移動度が大きく熱伝導率も著しく大きいことなどから、次世代の光学材料や電子材料として高い着目を集めている。このような高機能ダイヤモンドの多くは、メタンおよび水素ガスのプラズマ中における化学反応を利用した化学気相反応法(CVD法)により合成されている。しかしながら、CVD法などの気相成長では、化学反応のための活性化エネルギーの供給や固体原料の蒸発などのために実験系の加熱が不可欠であり、地上では、熱対流による擾乱は避けて通ることのできない課題である。地上におけるCVD法による材料製造では、重力に起因するこの種の擾乱を低減させるために、外部から大量のガスを定常的に流入排出し、強制流(層流)支配下で成長させる手法がとられている。したがって、地上の世界に限ってみれば、完全な拡散支配下での結晶成長は一つの夢と考えられていた。

一方、宇宙の微小重力環境下では、温度差に起因する熱対流が大幅に低減し、熱や 反応ガスなどの物質の輸送が拡散支配に近づくことが知られている。したがって、宇 宙における気相合成法では、地上では防ぐことのできない熱対流の影響を大幅に低減 させた条件のもとで化学反応を行い、さらに基板上へ拡散律速のもとで反応物質とな る活性な化学種を運ぶことができるものと期待される。このため、宇宙の微小重力環 境特性を利用すれば、対流の擾乱のない条件のもとで、気体の輸送過程、反応のメカ ニズム、核形成やその成長過程などの気相成長に係る基本的なデータを取得すること も可能である。本実験は、このような微小重力環境の優れた特性を利用して、プラズ マの観察実験およびダイヤモンドの成長実験を行い、気相反応に及ぼす重力の効果に ついて検討することを目的としている。

1.3 軌道上実験計画

1.3.1 実験テーマ

GDEF実験では、メタンの濃度が0.8%および1.0%の2種類の水素希釈ガスを 試料として、直流放電によりプラズマを生成させ、以下の2つのテーマについて実 験を行った。圧力の設定範囲は、20Torr、30Torr、および50Torr、プラズマ投入電力 は、100Wおよび128Wに設定した。また、試料ガスをフローさせた場合(開放系) および流れを止めた場合(閉管系)のそれぞれについて計測を行なった。

[実験テーマ1] プラズマCVDにおける微小重力の効果

微小重力環境では、温度差に起因する熱対流が抑制され、熱および物質輸送機構などが地上のそれとは異なることが予想される。ここでは、種々の実験条件においてプラズマからの発光スペクトルを計測し、直流放電プラズマCVDにおけるプラズマの発生状態を地上の状態と比較した。

[実験テーマ2] 基板上でのダイヤモンド成長実験

微小重力環境では基板上での核成長密度等が変化し、ダイヤモンドの結晶状態が変化する可能性もある。ここでは、Taおよびダイヤモンドを基板として、宇宙空間でダイヤモンドを成長させ、地上の成長状態との違いを比較した。なお、成長実験については、圧力は30Torr、プラズマ投入電力は100Wに設定して、基板およびメタン濃度を変えて行なった。

GDEFの実験概要一覧を表1.3.1-1に示した。

1.3.2 実験シーケンス

プラズマ観察実験とダイヤモンドの成長実験の実験シーケンスを図1.3.2-1および 図1.3.2-2にそれぞれ示した。

表1.3.1-1 GDEF実験概要

					投「・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・							
優先	FO No. 運用日時		実験概要	電極	混合比	電力	開/閉		陽極基材	実 験 概 要		
ミニマム サクセス レヘ*ル	F0-001	3/27	20:42~22:42	SFU初期化時 チェックアウト	-				_		ガス供給系内にパージされているArがスを排出する運用。本運用は、GDEFのチュックアウトに相当する。	
	F0-050	5/8	02:41~02:40	GDEF7クチペーション	_		_		_	_	ガス供給系内のガス置換を行う運用である。	
	F0-060	5/11	04:34~16:33	GDEFテスト1-2	1	N	N	F	N		電極1を使用し左記条件にてフ。ラス、マ発光は懸並びに発光スへ。クトルを計算する実験である	
ų, l	F0-056	5/11	16:34~16:33	GDEFテスト2-1	2	N	N	F	N	タンタル	電極2,3を使用し、左記条件にてタンタル基材上にダイヤモンドを合成する実験である。	
2	F0-072	5/12	16:34~16:33	GDEFテスト2-2	3	Н	N	F	N		上にクイヤモントを盲放する天映にある。	
セ	F0-084	5/13	16:34~16:33	GDEF7712-3	4	N	N	F	N	タンタル/	電極4, 5を使用し、左記条件にてダイヤモンド 基材上にダイヤモンドを合成する実験である。	
ス	F0-085	5/14	16:34~16:33	GDEFテスト2-4	5	Н	N	F	N	ダイヤモント	金竹上にケイトでファで日瓜りる大家でのる。	
^	F0-061	5/15	16:34~04:33	GDEFテスト1-8	1	N	N	С	N			
	F0-062	5/16	04:34~16:33	GDEFテスト1-1	1	N	Н	F	N			
レ	F0-063	5/18	18:37~06:36	GDEFテスト1-10	1	N	Н	С	N			
ベ	F0-064	5/19	06:37~18:36	GDEFテスト1-25	1	I	N	С	N	タンタル	電極1を使用し、左記条件にてプラズマ発光状態 並びに発光スペクトルを計測する実験である。	
ル	F0-065	5/19	18:37~06:36	GDEFテスト1-14	1	Н	N	F	N		and to lead the second	
	F0-066	5/20	06:37~18:36	GDEFテスト1-20	1	Н	N	С	N			
	F0-067	5/20	18:37~06:36	GDEFテスト1-13	1	Н	Н	F	N			
	F0-059	5/21	06:37~06:36	GDEFテスト3-1	6	N	N	С	N		電極6を使用し、閉管系でのタ゛イヤモント、合成実験である。	
+	F0-068	7/4	19:51~10:50	GDEF777-1-22	1	Н	H	С	N			
フ	F0-069	7/ 5	10:51~22:40	GDEFテスト1-3	1	N	N	F	L			
1	F0-070	7/5	22:41~23:55	GDEFテスト1-9	1	N	N	С	L			
シ	F0-073	7/ 7	11:22~23:21	GDEFテスト1-15	1	Н	N	F	L			
エ	F0-074	7/ 7	23:22~11:21	GDEFテスト1-21	1	H	N	С	L			
ン	F0-075	7/8	11:22~22:51	GDEFテスト1-5	1	N	N	F	Н			
,	F0-076	7/ 8	22:52~10:51	GDEFテスト1-7	1	N	N	С	Н			
サ	F0-077	7/10	09:53~21:52	GDEF7X1-6	1	N	Н	F	H	タンタル	電極1を使用し、左記条件にてプラズマ発光状態 並びに発光スペクトルを計測する実験である。	
2	F0-078	7/10	21:53~09:52	GDEF7X>1-11	1	N	Н	С	H			
セ	F0-079		09:53~21:22	GDEF7X1-26	1	I	H	С	Н			
ス	F0-080		21:23~09:22	GDEFFX-1-17	1	H	N	F	Н			
			09:23~19:34	GDEFテスト1-19	1	H	N	С	Н			
レ	F0-058		19:35~08:52	GDEFFX1-27	1	H	N	С	N			
ヾ	F0-057		08:53~20:23	GDEF FX 1-28	1	H	N	F	N			
ル	F0-082		20:24~08:23		1	H	H	F	Н			
	F0-083		08:24~23:23	GDEF7311-23	1	H	Н	С	H		部では、マニーマ AM がは私たらか、多点上で Aマニ で上り 1981より 1981なのか 9	
エサ	F0-052		13:33~01:32	μ-G計測実験1	_	\				200 N . 200 N	電話がルファの周/開動性に作り発生するCを計画する実験である。	
スセトス・	F0-053		01:33~13:32	着火画像取得実験1	1	N	N	С	Н	タンタル	者火→昇圧時のフ°ラス°マ発光は整を取得する実験である。	
ラレベル	F0-054		13:33~01:32	μ-G計測実験2	-					P N	電話が、ルフ、の周/閉動作に伴い発生するでき計画する実験である。 単純、同ではのコペニュア、コを単純的ないとでは出る。	
ル	F0-055	8/14	01:33~13:32	着火画像取得実験2	1	N	N	С	Н	タンタル	着火→昇圧時のフ*ラス、マ発光状態および発光スへ。クトルを計劃する実験である。	
非美	施実験 En_nee	,		CDCC=71.1 4	,	N.T	1.7	12	т	I	電振!お姉田) 上的友加ァテザニマー教がtheb	
	F0-086	/	: ~ :	GDEF7X\1-4	1	N.	Н	F	L	1	電極1を使用し、左記条件にてプラズマ発光状態 並びに発光スペクトルを計測する実験である。 選 ★学際はアキュトラーカイフトズルにキレア	
	F0-087	/	: ~ :	GDEF771-12	1	N	H	C	L	タンタル	{タンタル‖実施予定であったが、]	尚、本実験はエキストラサクセスレベルにおいて 実施予定であったが、FO-083の実験時にプラズマ 業と時の女景深海ののグロッキメ神器よりたちゃ
	F0-088	/	: ~ :	GDEF771-16	1	Н	H	F	L	-	着火時の放電電流値のバタッキが確認されたため 、実施していない。	
}	F0-089	/	: ~ :	GDEFテスト1-24	1	Н	H	С	L —		カニスホニンへ、内の残存か、スを投棄する週刊である。尚、本週刊は残存か、スの分析を行うた	
	F0-051		1	GDEF回収準備							か、大部・フへ、ドロの女件が、人を代案9の歴刊にある。所、本連冊は数件が、人の方面を行うたい大学していない。	

混合比: N (Nominal) 0.8 %, H (High) 1.0 %, I (Intermediate) 0.8~1.0 %電 力: N (Nominal) 100W, H (High) 128W 開/閉: F (Flow) 開放系, C (Close) 閉管系 圧 力: L (Low) 20 Torr N (Nominal) 30 Torr H (High) 50 Torr

図1.3.2-1 プラズマ観察実験・実験シーケンス

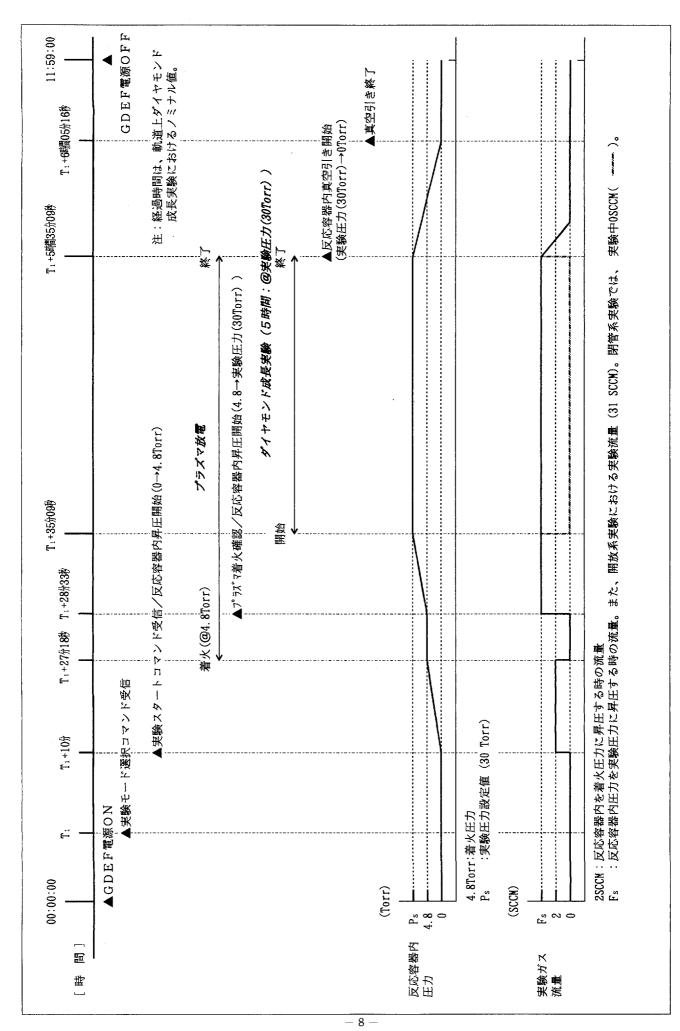


図1.3.2-2 ダイヤモンド成長実験・実験シーケンス

2. 気相成長基礎実験装置 (GDEF) の開発

2. 1 開発の目的

気相成長実験は、JEM曝露部利用の実験候補のひとつとして検討されている実験テーマであり、気相成長基礎実験装置は宇宙での気相成長実験に必要となる実験技術の習得を目的として開発を行っている。

(1) 物理現象シミュレーション技術

気相成長現象を把握する上で必要となる以下の項目について、計算機シミュレーションによる検討を行った。これらの検討結果は、地上実験や航空機実験で検証を行い、実験装置の開発や実験条件の設定に反映されている。

(a) 反応ガスの流れ場解析

微小重力下の気相成長における熱や原料物質の動きと、地上との相違を考えるにあたっては、重力による熱対流と、原料ガス供給によって生じる強制流の 挙動について把握をする必要がある。

(b) 化学種分布解析

プラズマ気相成長実験では、プラズマを構成する化学種の分布が、成長する 薄膜の種類や質および量に大きく影響する。GDEF実験では発光スペクトル の分析のみを行うため、測定できる核種の種類に限りがあることから、ある温 度における化学種分布の平衡状態を算出し、実験中存在する化学種の分布の傾 向をつかむ。

(2) 低電力プラズマCVD技術

軌道上実験においては、実験時に供給できる電力に限りがあるため、地上の技術を基に低電力条件下でプラズマを生成し、薄膜成長実験を行う必要がある。このため、プラズマの発生方式として直流放電CVD法を用いて、また成長基材からの熱の逃げを極力抑える技術を開発した。

(3) 圧力・ガス流量制御技術

宇宙実験においては、なるべく簡便な方法で、かつ正確に反応容器内の圧力や、 ガス流量の制御を行う必要がある。そのため、民生品の流量制御器を宇宙用に改造 し、重力環境下でのガスの流量制御を行う。

GDEF実験では、オリフィスと宇宙用に改造したガス流量制御器によって反応 容器内の圧力制御を行う仕組みとなっている。

(4) その場観察技術

実験中のプラズマの状態を観察することは、気相成長現象の解析に不可欠である。 GDEF実験では、宇宙用の分光測定装置を開発し、プラズマからの発光スペクト ルデータを取得する。また、民生品のスチルカメラを宇宙用に改造し、プラズマの 発光画像の取得を行う。

また、これらの技術の開発に加え、周回衛星の限られた可視帯での運用に対応し、 また各種実験条件をパラメータ化し、軌道上運用中に状況に応じて実験を任意に選 択することができる機能等、人工衛星での経験を生かした運用技術を採用している。

2. 2 実験装置の仕様および概要

2. 2. 1 GDEF装置概要

GDEFは、微小重力および曝露環境下において、DCプラズマ放電の状態観察(プラズマ観察実験)および気相からの基板上ダイヤモンド結晶成長(ダイヤモンド成長実験)を実施するために、水素/メタン混合ガスを試料ガスとして使用し、直径270mm、高さ183.5mmの円筒形状の反応容器内に圧力20~50Torrで充填し、反応容器内部に実装している全6個の電極に対し個別にプラズマ放電を発生させ、水素/メタン混合ガスのメタン濃度(メタン濃度:0.8%および1.0%)、プラズマ放電電力および実験圧力等の各実験パラメータを組合わせた全33テーマの実験を、オンボードソフトウェアの制御により行うことができる実験装置である。なお、本装置は、実験ガスを反応容器内に供給ならびに系外排出を行いながら実施する開放系の実験と、ガスの供給・排出を行わない閉管系の実験を行う機能を有している。

GDEFの外観を写真2.2.1-1に、装置原理図を図2.2.1-1に、機器配置を図2.2.1-2に示す。

①プラズマ観察実験

軌道上実験数:24実験

実験電極 :第1電極(基材:Ta) 図2.2.2-1参照

観察実験時間:15分/1実験放電電力 : 100W、128W実験圧力 : 20、30、50Torr

実験ガス供給流量:19、31,58 sccm

②ダイヤモンド成長実験

軌道上実験数:5実験

実験電極 : 第2~6電極

電極基材 : 電極2、3、6; Ta

電極4、5 ; Ta/鑞付けダイヤモンド

成長実験時間:5時間/1実験

放電電力 : 100W

実験圧力 :30Torr

実験ガス供給流量:31 sccm

また、GDEFは、SFU搭載実験機器部(EFFU)のペイロード取付部に取り付けられているため、EFFUとは機械、電気、熱、流体の各インタフェースを持つように設計を行っている。

EFFUのSFUへの搭載概念図を図2.2.1-3に、GDEFのEFFUへの搭載概念図を図2.2.1-4に示す。

また、GDEFは、地上におけるDCプラズマ実験装置の機能を損なうことなく 搭載化した実験装置である。ただし、SFU/EFFUとのインタフェース上の制 約のため、小型軽量化および省電力化を施している。

制約となった主なインタフェース条件を以下に示す。

形状:600mm(幅)×600mm(長さ)×365mm(高さ)

以上3区画構成

重量:65Kg以下

電力:瞬間最大電力 412W以下

最大電力 301W以下 1周回平均電力 225W以下 非動作電力 5W以下

写真2.2.1-1 気相成長基礎実験 (GDEF)

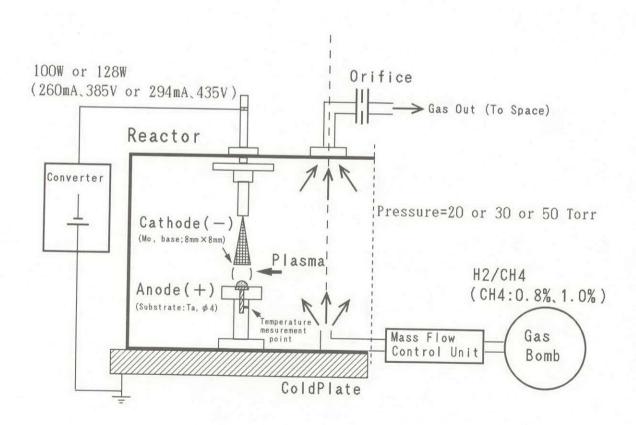


図2.2.1-1 GDEF・装置原理

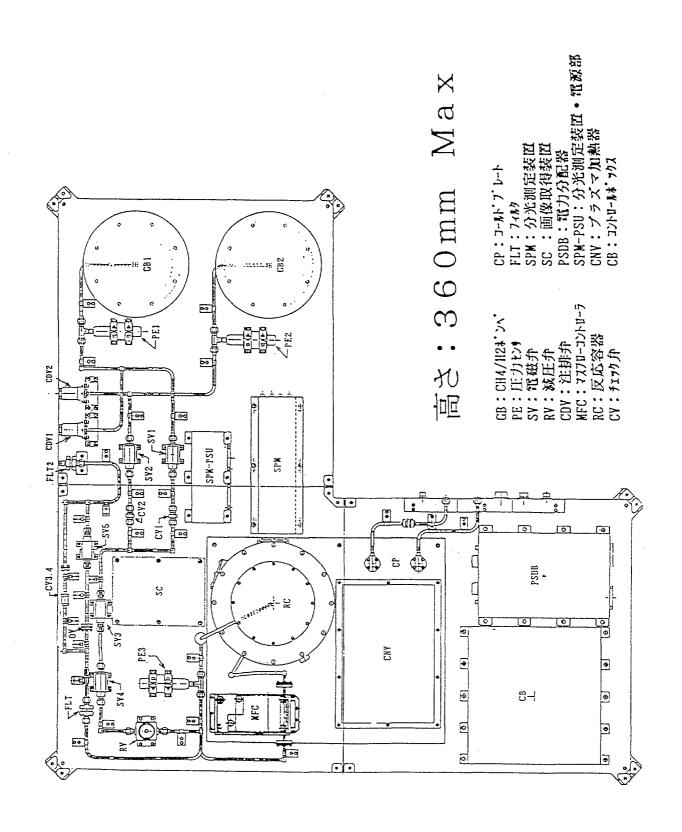
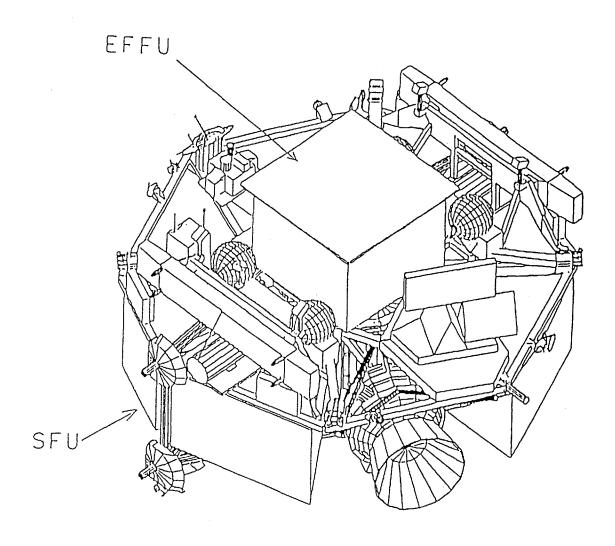



図2.2.1-2 GDEF機器配置図

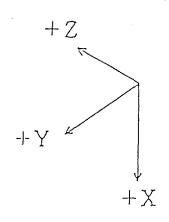


図2.2.1-3 EFFUのSFUへの搭載概念図

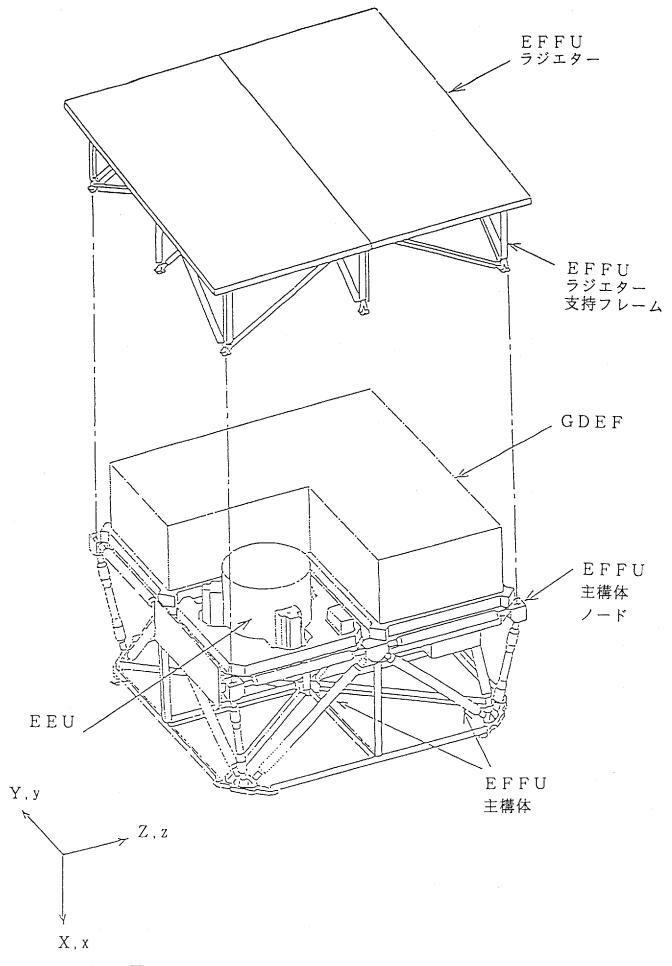


図2.2.1-4 GDEFのEFFUへの搭載概念図

2.2.2 システム構成

GDEFは、水素/メタン混合ガスの供給、放電によるプラズマ形成、ダイヤモンドの結晶成長、およびプラズマ観察を行う機器である反応容器系、ガス供給系、反応観察系と、計測制御系、熱制御系、構造系、計装系の機器から構成されている。 GDEFのシステム構成図を図2.2.2-1に、GDEF構成表を表2.2.2-1に示す。

(1) 反応容器系

(a) 反応容器(RC)

反応容器の外観図を図2.2.2-2に示す。

(i) 反応容器

反応容器は、プラズマ放電および気相成長の反応場であり、ガス供給系から容器内部に供給される水素/メタン混合ガスを雰囲気ガスとし、プラズマ加熱器から印加される高電圧により、各々の電極でプラズマ放電を発生させる装置である。円筒形状をした容器の内部上面および下面には、第1から第6電極までの陰極/陽極6対の放電電極を有し、それぞれを円環状に配している。

第1電極は、プラズマ観察実験を実施する電極であり、容器側面には、 第1電極で行われるプラズマ観察実験の放電状態を画像取得装置および 分光測定装置によって観察するために、2つの観察窓を設けている。第2 から第6電極は、陽極上へのダイヤモンド生成を実施する電極である。

また、容器内面には、陰極部から容器内壁面、熱電対線および導電線等への異常放電を防止するために、ポリイミドフィルムの貼付け、陰極部への放電防止板の取付け、およびポリウレタン系樹脂の塗布を施している。

(ii) 電極

(ア)陽極

陽極は、陽極基材、石英ガラスハット、陽極ホルダ等から構成されている。

陽極基材は、ダイヤモンド生成の供試体を兼ねているため、放電電力が100Wの条件下で、ダイヤモンド生成に必要な温度(800~1000℃)を確保する必要がある。したがって、陽極基材の素材としては、加工性および入手性等を考慮した上で、比較的熱伝導率の小さいTaとした。また、形状としては、直径4mmの放電面からの熱の伝導を少なくするために、放電面から下の基材部分の径を細くしたティー型とし、また陽極ホルダへの固定についても極力断熱するように工夫されている。

さらに、陽極ホルダの固定に関しても、熱の伝導を少なくするため にセラミックを介して反応容器底面に固定されており、電流経路につ いても径の細い導電線によってのみ行っている。

また、陰極からの放電を陽極基材の放電面に集中させるため、庇をつけた石英ガラスハットを取付け、放電面以外への放電を防止する構造としている。

なお、全6電極の内、第4電極および第5電極には、ダイヤモンドのホモエピタキシャル成長を行うために、単結晶ダイヤモンドをTaの基材上に金鑞付けしたものを実装している。

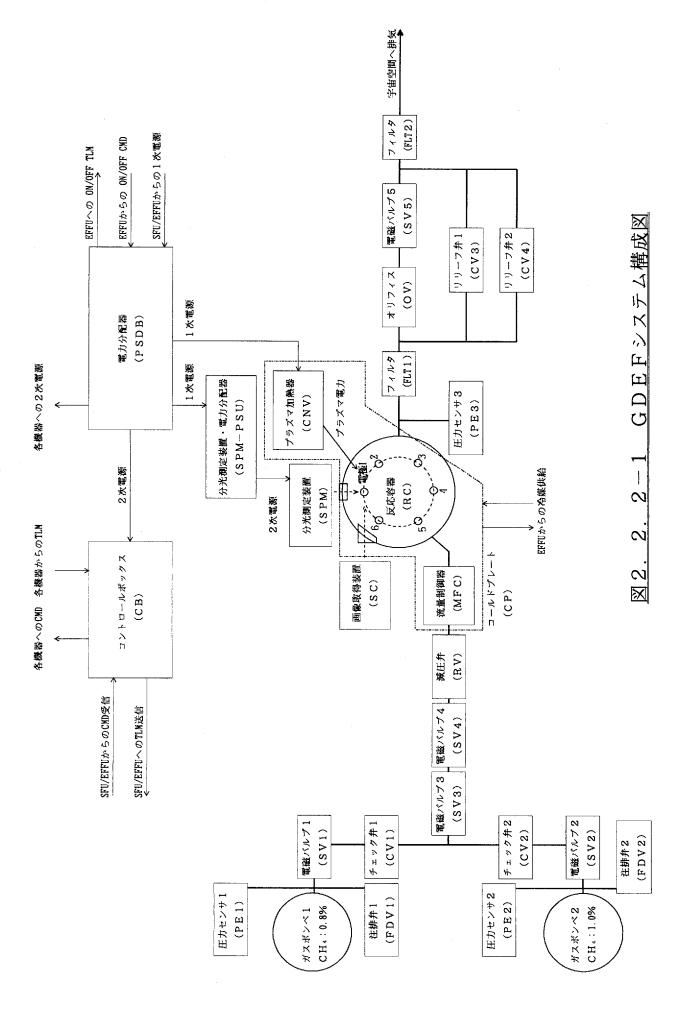
(イ) 陰極

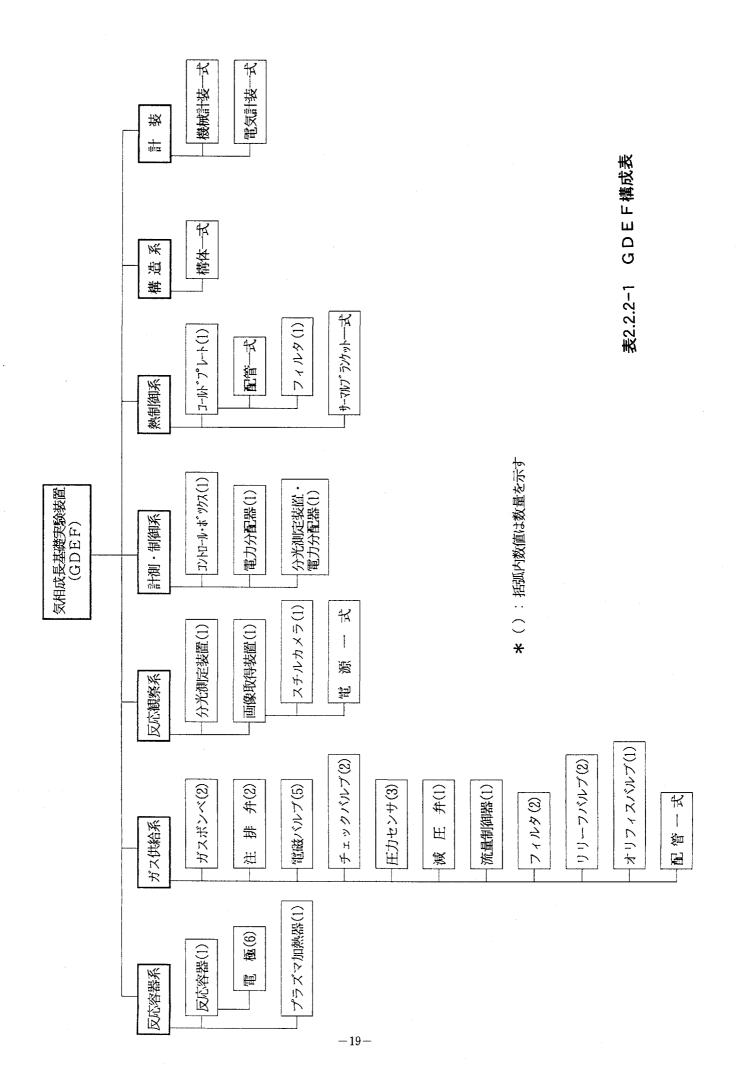
陰極は、放電部である陰極、振れ防止板、陰極ホルダ、断熱ナット、 異常放電防止板等から構成されている。

放電部である陰極の素材としてはMoを採用し、ダイヤモンド生成に必要な温度の確保、実験ガスの放電部分への安定供給、ならびに反応容器内部に充填された水素/メタン混合ガスの流動状態に与える影響を少なくすることを目的として、メッシュ構造としている。これは、GDEF開発以前に実施されていたDCプラズマCVD法による実験方法を踏襲している。

また、そのメッシュの形状は、四角錐に近い形状であり、底面に当たる8mm角の面が陽極に対面している。

ただし、Mo素材のメッシュ構造は、そのままでは打上げ時の振動環境に耐えられず変形してしまうため、補強部品としてメッシュの内側に振れ防止板(セラミック)を実装し耐振設計を施している。


また、陽極と同様、放電部からの熱の散逸を少なくするため、陰極メッシュ部を固定している陰極ホルダ(Mo)は、断熱ナット(セラミック)を介して反応容器上面に固定しており、電流経路は径の細い導電線によってのみ行っている。


また、陰極から反応容器上面への放電を防止するため、反応容器上 面の近傍に、異常放電防止板(セラミック)を実装している。

(b) プラズマ加熱器(CNV)

プラズマ加熱器は、コントロールボックスからの電極および出力電力の 設定切替え信号により、反応容器内の放電電極に対して各極独立に電力を 供給し、プラズマを放電させる装置である。

実験中、約100W(Low 設定時、出力電流:260mA(Nominal))、128W (Hight設定時、出力電流:294mA(Nominal))の2種類の電力を定電流制御により供給している。

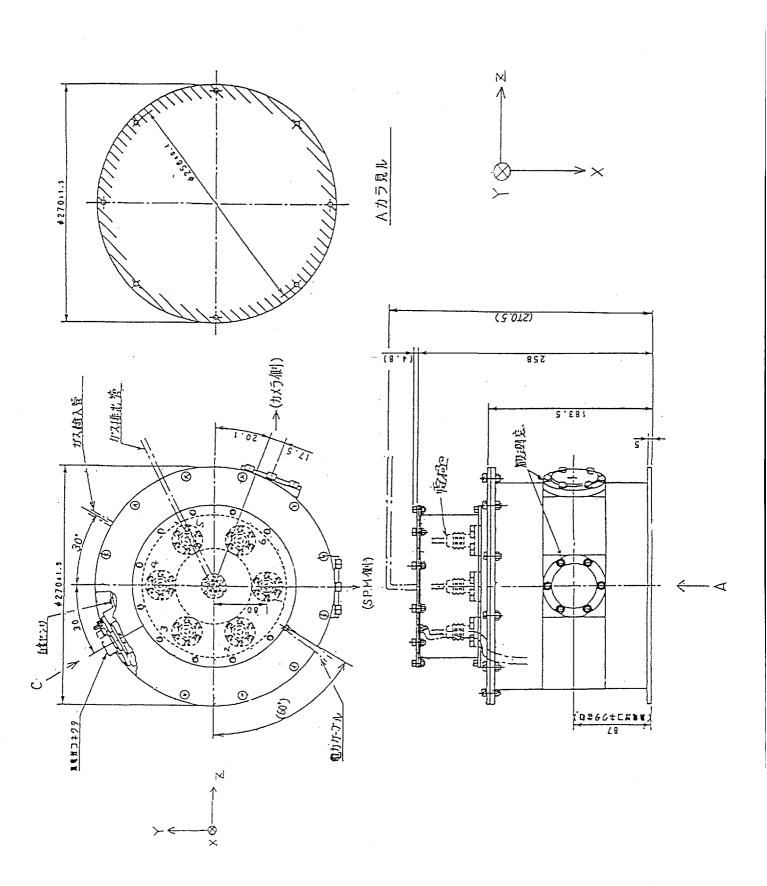


図2.2.2-2 反応容器外観図

(2) ガス供給系

ガス供給系は、実験ガスの貯蔵、供給および流量・圧力の制御を行っている装置である。実験ガスの貯蔵・供給については、2つのガスボンベに、実験に必要な2種類の水素/メタン混合ガス(メタン濃度:0.8%、1.0%)を各々約54N 0($9.2kg/cm^2$ A)充填し、配管を通して反応容器内に供給している。実験ガスの流量は、流量制御器により $2sccm\sim58sccm$ に制御しており、また反応容器内の圧力は、オリフィスにより $2Torr\sim50Torr$ に制御している。

尚、実験後のガスについては、サーマルブランケットの外側に突出して配置されている排気ポートにより宇宙空間に排気される。

(3) 反応観察系

(a) 画像取得装置(SC)

画像取得装置は、プラズマ発光状態の静止画像を取得すると共に、民生品活用のための技術データの取得を行うことを目的として、民生品のスチルカメラを改造して搭載化したものである。

民生品フロッピーディスクカメラをベースとして、これにGDEFシステムとの電気的インタフェースを付加すると共に、耐振対策、および記録媒体であるフロッピーディスクが正常に動作するように気密対策を施している。

(b) 分光測定装置 (SPM)

分光測定装置は、プラズマ観察実験における水素・メタン混合ガス中に発生したプラズマの分光測定を行うことのできる装置であり、その分光データから、プラズマ中の反応生成化学種の評価や励起状態の評価、プラズマ電子温度を評価することができる。

SPMは、その実験目的・計測対象に適合するために400nm~700nmの 波長範囲が測定できる仕様となっており、水素原子のバルマー系列($H\alpha$ 、 $H\beta$ 、 $H\gamma$)や、 C_2 、CH、 H_2 等の発光スペクトル強度が計測できる。 GDEF実験では、プラズマのほぼ中央部、基材(陽極)上1.6mmの部分の発光スペクトルを、1分間に1スペクトルの頻度で計測している。

この分光測定装置は市販品をベースとして、光学系の耐振性等を考慮し、 宇宙実験用として開発したものである。

(4) 計測制御系

(a) コントロールボックス

コントロールボックスは、GDEFの装置状態を管理し、各構成機器のデータの収集、変換および転送を行うとともに、予め設定されたオンボー

ドソフトウェアに従い各構成機器を制御し、規定の実験シーケンスを自動 的に行う装置である。

また、各構成機器の動作状況並びに実験状態を確認するために、各種実験データおよびハウスキーピングデータを収集、編集して、EFFU/SFUに送出する機能を有している。

(b) 電力分配器 (PSDB)

電力分配器は、SFU/EFFUから供給される非安定1次電圧をGDEF各部に対して分配または降圧した安定化2次電圧を各構成機器に供給する装置である。

(c) 分光測定装置・電力分配器(SPM-PSU)

分光測定装置・電力分配器は、電力分配器より分配供給される非安定化 1次電圧を安定した2次電圧に降圧し、分光測定装置に供給する装置であ る。

(5) 熱制御系

熱制御系はコールドプレートおよびサーマルブランケットから構成される。 コールドプレートは、フレオンを単相で循環させ、GDEFの構成機器の 中で熱的にクリティカルな反応容器、プラズマ加熱器、および流量制御器の 熱を移送し、EFFUに搭載されているラジエータから宇宙空間に放熱する ことにより熱制御を行う能動素子である。

またサーマルブランケットはEFFUとの熱の入出力を遮断することを主な目的として装着されている。サーマルブランケットはアルミ蒸着プラスティックフィルムを多層に重ねた構造になっており、さらにフィルム間に熱伝導を防ぐためのネットが挿入されている。GDEFは直接宇宙空間に露出することが無いため、最外層には耐久性のあるアルミ蒸着カプトンフィルムをアルミ面を外側にして使用し、内側の各層には両面アルミ蒸着マイラフィルムを使用している。

また、試料ガスを宇宙空間に排気するために取付けている排気ポートは、GDEFを熱的に安定させることを目的として、白色ストライプの塗装を施している。

(6) 構造系

構造系は、搭載パネルおよび機械計装類からなり、各構成機器を固定・支持している。搭載パネルは、軽量化を計り、なおかつ必要な強度を保つため、アルミ合金平板をアイソグリッドに削り出した構造としている。また、各構成機器の取付けは、ロックへリサート方式にしている。

2. 2. 3 性能

GDEFのシステム性能を表2.2.3-1に示す。

表2. 2. 3-1 GDEFシステム性能(1/2)

項目	性能	EFFU インタフェース 条件
<u>打上げ/回収</u> 打上げロケット 打上げ時期 回 収 回収時期	H-IIロケット 平成7年3月 NSTS 平成8年1月	0
<u>運用軌道</u> 軌道高度 軌道傾斜角	約500Km 約28. 5°	0
<u>重量/寸法</u> 重量 寸法	約65Kg 365mm(高さ)×600mm(幅)×600mm(長さ) 以上3区画(インタフェース ポイントからの寸法)	0
<u>電</u> 力 瞬時最大電力 最大電力 1周回平均電力 非動作電力	412W以下 301W以下 225W以下 5W以下 (定常電圧:32,5~51,5(VDC))	0
<u>信賴度</u> 信賴度	規定なし	
<u>コマンド</u> 信号数 シリアルコマント゛ヒ゛ットレート シリアルコマント゛ ワート゛長	ディスクリートコマンド:1 c h シリアルコマンド : 1 c h 1 6. 0 K b p s 8 ビット	0
テレメトリ 信号数 シリアルコマント゛ビ゛ットレート シリアルコマント゛ ワート゛長 シリアルテレメトリテ゛ータ伝送速度	シリアルテレメトリ : 1 c h パッシブアナログテレメトリ: 1 c h 3 7 5 b p s 1マイナフレーム/1. 0 2 4秒 3スロット/マイナフレーム 1 2 8 ビット/スロット 1 6. 0 K b p s	0
<u>反応容器系</u> ・プラズマ加熱器 方式 放電電圧 放電電流 電極用電力	DC加熱 1KV以下 500mA以下 150W以下	
・反応容器 電極(陰/陽極)数 電極間距離 陽極温度	6 個 10.25mm 800~1000℃	

表2. 2. 3-1 GDEFシステム性能(2/2)

項目	性能	EFFU インタフェース 条件
ガス <u>供給系</u> 搭載ガス ガスボンベ数 搭載ガス量 実験圧力/流量	H2/CH4ガス2種類(CH4:0.8、1.0%) 2 個 35N&/個以上 3±2Torr/2SCCM(着火時) 20±5Torr/19SCCM 30±3Torr/31SCCM 50±5Torr/58SCCM	
<u>反応観察系</u> ・分光測定装置	プラズマの反応種スペクトルの観測 測定波長/分解能:400nm~700nm/1.3nm スペクトル測定速度 :820ms±10ms/1スペクトル スペクトル取得頻度 :1スペクトル/1分 スペクトル測定位置 :陽極電極上 1.6mm(離値) 信号量 :1024bit/1スペクトル測定	
・画像取得装置	プラズマ画像の記録(静止画像、民生カメラの活用) 記録媒体 : ビデオフロッピーディスク 撮影枚数 : 最大50枚 撮像画素総数 : 40万画素 信号方式 : NTSC	
<u>計測・制御系</u> ・コントロールボックス	シリアルテレメトリ 信号数 :1ch 転送能力 :375bps 転送クロック:16KHz シリアルコマンド 信号数 :1ch 転送クロック:16KHz SPMシリアルテレメトリ 信号数 :1ch 転送クロック:800KHz	
・電力分配器	2次電圧出力系統 +5V : 1系統 ±15V : 1系統	
・分光測定装置・ 電力分配器	2次電圧出力系統 +5V : 1系統 ±15V : 1系統	
熱制御系 能動熱制御 受動熱制御	断熱制御 流体ループ(コールドプレート) 冷 媒 : フレオン114 供給圧力: 8. 5 K g/cmabs以下 差 圧 : 0. 2 K g/cm以下 サーマルブランケット	0
許容温度	-10~40℃(動作時) -30~60℃(非動作時)* -20~50℃(ターンオン) *民生コンポネントは-20~50℃	
<u>構造系</u> 剛 性	100Hz以上	0

2.3 開発スケジュール

GDEFの開発は、1988年7月より予備設計、1989年4月より実施された基本設計および反応容器、プラズマ加熱器の仕様の確認を行なった要素試作試験の実施に始まり、1990年5月より詳細設計、1992年3月より維持設計、および1993年12月より性能向上作業を実施し、1994年8月に、GDEFをEFFU/SFU側に引き渡しを行った。

開発スケジュールを表2.3-1に示す。

なお、1992年12月より行った地上対照実験は、陽極基材上に安定したドーム状発光のプラズマ放電が形成され、かつより良質のダイヤモンド合成を行うことの出来る電極の選定、水素/メタン混合ガス濃度の選定、および分光測定装置の光軸の最適位置の再確認を目的として実施されている。また、性能向上作業は、GDEFフライトモデルに対して、地上対照実験によって得られた確認結果の反映を行った作業である。

2. 4 開発上の留意点

GDEFの開発、試験、フライト実験および各種地上実験を行う上で、留意した点を以下に示す。

(1) 民生品の搭載化

本実験装置においては、民生品の有効利用という観点から、民生品のスチルカメラならびに流量制御器を使用し、電気的インタフェース、機械的インタフェース、ならびに耐環境性(熱、振動)を有するように改造して、搭載化している。

宇宙搭載用として開発する上で、考慮した内容を以下に示す。

(a) 画像取得装置

画像取得装置は、市販のスチルカメラを搭載化した装置である。

スチルカメラの内部部品は、その構造上、比較的振動に弱い部品が使用されている。したがって、スチルカメラ本体については、耐振対策の一環として、加振スクリーニング作業を実施し、搭載化するカメラの選定を行った。

また、スチルカメラの記録媒体であるフロッピーディスクについては、カメラへの装着状態において、フロッピーディスクとフロッピーディスクを保持しているフレーム間に隙間があり、加振した場合、フロッピーディスクのホールド位置が変動して画像を正常に記録することができなくなるため、このフレーム間の隙間を排除する必要があった。

しかし、脱着を行う部品でもあり、また、構造上、ネジ等で強固に保持することができないため、フロッピーディスクの端面にシリコンラバー片を取り付け、フレームに対しガタツキが発生しない構造とした。

また、フロッピーディスクのディスク部分は、160mmHg以下の気圧下ではディスクが浮遊せず記録ヘッド部に吸着してしまい、画像を正常に録画することができない。そのため、カメラ全体を気密ケース内に封入する構造とし、打上げに際しては、純窒素を1.2kg/cm²Aで封入した。

(b) 流量制御器

流量制御器は、市販の質量流量制御器を搭載化した装置である。質量流量制御器は、ガスの流量をセンサ部で検知し、その情報を流量制御バルブ部にフィードバックし流量制御を行っている。この流量の検知は、流れるガスによるセンサ部の熱の移動量の測定によって行われている。しかし、真空環境下で動作させた場合には、熱の移動量が変動してしまうため、大気中で較正した設定流量と実流量との間に差異が生じてしまう。このため、搭載品については、電気部分と機械部分とを分離してそれぞれケースに収め、センサ部が装着されている機械部分のみを真空状態にするようにし、真空下において流量調整(電気較正)を行った。

また、許容温度範囲も通常の搭載品に比べクリティカルなため、熱制御装置であるコールドプレート上に配している。

(2) DCプラズマ実験装置の地上研究モデルの搭載化

本実験装置の開発に当たっては、地上実験において使用されていたDCプラズマ実験装置の機能を損なうことなく、SFUに搭載可能な実験装置とするため、小型軽量化および省電力化、およびそれに伴う実験条件の変更を設計に反映することが大きな課題であった。搭載化の実現に当たって施された設計内容を以下に示す。

(a) 小型軽量化およびそれに伴う実験条件の確保

GDEFでは搭載寸法および重量の制約から、実験数(電極数)を確保しつつ、反応容器を小型化する必要があった。また、その他実験上の制約として、反応容器内の各電極に対するガス流れを均一にする必要があったため、反応容器の形状は円筒形状とし、上面および下面の中央部にそれぞれガス吸入口および排出口を設け、その周囲に円環状に6本の電極を配する構造とした。

但し、反応容器の小型化に伴い、各電極と反応容器壁面部とが近接した 構造となり、壁面に放電する現象が見られたため、壁面上にポリイミドフィ ルムを貼付ける等の絶縁対策を施している。

(b) 省電力化およびそれに伴う実験条件の確保

DCプラズマ実験装置の地上研究モデルにおいて、ダイヤモンドの生成

を行うためのプラズマ放電量としては、以下に示す実験条件が代表的なパ ラメータであった。

- · 放電電圧1000V
- ·放電電流300~500mA
- ·放電電力300W~500W

しかし、SFUの電力的なリソースの制約から、放電電力を300W以上とすることは不可能であったため、放電電圧を抑えることにより放電電力を落とし、ダイヤモンドの成長速度に対し支配的である電流値を確保する設計とする必要があった。

このため、その他搭載化のための条件を考慮した上で、以下に示す内容を設計に反映した。

- (i) プラズマ加熱器を定電流制御とし、SFUより供給される一次バス電圧の変動(32.5 $V \sim 51.5V$)に依らず、一定の放電電流を出力する。 プラズマ放電電力としては、100W、128Wの2モードとする。
- (ii) 放電電圧を抑え、また同時に安定したプラズマ放電を確保するために、 陰極メッシュと陽極との相対位置を最適とするための検証試験を行っ た。試験の結果、電極間の距離を10mm、陰極メッシュの底面を8mm 角とした。
- (iii) ダイヤモンド成長に必要な陽極基材温度 (800℃~1000℃) を確保するために、陽極基材からの熱伝導が小さくなるよう陽極基材の素材および陰極を含めた構造の選定を行い、また陽極基材放電面に放電が集中するよう、石英ガラスハットの実装および反応容器内壁面への放電防止処置を行った。
- (c) 耐環境性およびそれに伴う実験条件の確保
 - ①耐熱環境

軌道上実験においては、反応容器およびプラズマ加熱器が他の搭載品に比べ、大きな発熱量を持っていることから、反応容器およびプラズマ加熱器の下部に充分な排熱容量をもつコールドプレートを配し、積極的に排熱を行う設計とした。

②耐振動環境

メッシュ構造の陰極は、打上げ時の振動環境に耐えられないため、補強として、振れ防止板を実装した。

(d) 排気ポートの設計

試料ガスの宇宙空間への排気については、排気ポート先端の、SFU座

標系における Z軸方向に沿った両側 2 カ所のみに、 ϕ 3.5mmの排気口を設け、発生する推力を打ち消す設計とした。

なお、作業者への安全対策としてシャープエッジのない形状としている。

(3) NASA安全審査対応

GDEFはSFUに搭載された状態で、NSTSにより回収されるため、NASAの安全要求を満足した設計とする必要があった。また、使用する部品・材料等についてもNASAの規格を満足するよう設計に反映している。

GDEFは圧力をかけたガスおよび冷媒を使用しているため、ガス供給系およびコールドプレートの構成部品の選定、保持方法、および配管形状等の設計に配慮している。特に、圧力システムとして申請した反応容器については、設計圧力以上の圧力がかからないよう、ガスライン中に、リリーフ弁および冗長としての電磁バルブを配し、また、実験運用に関しても、実験の制御を行うオンボードソフトウェアによって、常時、圧力の監視を行い、異常発生時には実験を中止しガス排気などの緊急措置をとる設計を行った。また、爆発性の高い水素/メタン混合ガスを搭載するため、ガス供給系の設計に当たっては、NASAの規格を満足すると共に、2Failure Toleranceを確保する設計とした。

また、各GDEF構成機器のベースプレートへの固定は、全てNASAの認定品であるMSネジを使用した。

表2. 3-1 GDEF開発スケジュール

	1.988	1990
年/月	8 9 10 3 4 5 6	·
1. 予備設計	子備設計	
2. 基本設計	基本設計/要素試作試験	試驗
3. 詳細設計		詳細設計
		EM製作
H	1991	1992 1993
H / H	1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4	5 6 7 8 9 10 11 12 1 2 3
3. 詳細設計	詳細設計	
	EM製作	
	EM試驗	
		米 佐勃計
	EM→FM改修 FM試験	試験
	H H	EFFU組 <u>み合わせ試験</u>
	航空機実験#1	SFUシステム試験
年/月	1993 7 E E 7 E O 10 11 19 1 2 3 4 E E 7	1995 0 10 11 19 1 2 3 4 E E
4. 維持設計	SFUシステム試験	
5. 性能向上作業	性能向上作業に係わる設計/解析	7
	在能向上作業	(打上げ、3/18)
	地上対照実験装置を用いた予備実験	E F F U組み合わせ試験
		射場作業

3. GDEFの運用

3. 1 GDEF射場運用結果

GDEFの射場運用については、1994年9月19日から1995年2月24日にわたり実施し、GDEFの機能・性能に問題のないことを確認した。

3. 2 GDEF軌道上運用結果

3.2.1 概要

GDEFは、ミニマム・サクセスフェーズから、サクセス・フェーズ、サフィシエント・サクセスフェーズ、およびエキストラ・サクセスフェーズに至る全FO実験運用において、SFU/EFFUとの機械的、電気的、熱的、および流体のインタフェース上の問題もなく、またGDEFの各構成機器についても、コントロールボックスからのシーケンス制御により正常に動作し、予定された実験FOを全て正常に実施することができた。

また、各構成機器に関しては、全軌道上実験運用を通じて、打上げ前のシステム 試験および射場試験結果とよく一致していることから、劣化等の問題もなく機能・ 性能上に問題のなかったことを確認した。

3. 2. 2 運用結果

GDEFは、1995年3月27日に実施したミニマム・サクセスレベル実験運用において、打上げ後最初の電源投入を行い、反応容器およびガス供給系内に封入されていたArガスの排出運用を行い、GDEF構成機器の機能・性能に問題のないことを確認した。

GDEFのサクセスレベルの実験運用は、1995年5月8日から5月22日にわたり実施し、本フェーズで予定されていたアクチベーション運用、プラズマ観察実験(8実験)、ダイヤモンド成長実験(5実験)が全て正常に実施された。

サフィシエント・サクセスレベルの実験運用は、1995年7月4日から7月14日にわたり実施され、本フェーズで予定されていたプラズマ観察実験(16実験)は全て正常に実施された。ただし、本サフィシエント・サクセスレベル実験の最終実験であるFO-083において、プラズマ着火時の放電電流値のバタツキ現象が発生する兆候が確認された。本現象は、多数回のプラズマ放電の繰り返しにより陰極電極が劣化するために発生するものと考えられ、リファレンスデータ取得のために実施した地上実験においても同様の現象が確認されている。

これに伴い、エキストラ・サクセスレベル実験においては、プラズマ加熱器の保護および結晶成長実験により生成されたダイヤモンド薄膜に対する影響を回避する

ために、予定されていたプラズマ観察実験(4実験)を全て中止し、オプション実験として電磁弁の動作および装置系内のガスの流動が与える微小重力環境への影響を確認するための微小重力計測実験(2実験)、ならびに実験圧力の昇圧段階(5Torr→約50Torr)におけるプラズマ放電状態を観測するためのプラズマ着火画像取得実験(2実験)を、1995年8月12日から8月14日にわたり実施した。なお、プラズマ着火画像取得実験は、サクセスレベル実験ならびにサフィシエント・サクセスレベル実験における実験時間を基に、複数の試験用単発コマンドの組み合わせにより実施した。

また、ガスボンベ内の残存ガスを投棄する運用であるGDEF回収準備は、回収後に残存ガスの成分分析を行うために、実施していない。

表3.2.2-1に運用経緯を示す。

表3.2.2-1 SFU/GDEF運用経緯(1/2)

	平成6年度			平成7年度			
	3	4	5	6	7	8	6
打上げ 初期軌道フェーズ	▲ 3/18						
ミッションフェーズ							
ミニマム・サクセス ・SFU ・GDEF	3/26	3/26~3/30 3/27					1
サクセス ・SFU ・GDEF			3/30~6/24 5/8~5/22				
サフィシエント・サクセス ・SFU ・GDEF	·				$6/24 \sim 8/12$		
<u>エキストラ・サクセス</u> ・SFU ・GDEF						8/12~8/31 8/12~8/14	
日食による中断		4/29, 30	, 30				
ポストミッションフェーズ							
回収準備/回収フェーズ							
回収後地上作業							
SFUの日本への輸送							

表3.2.2-1 SFU/GDEF運用経緯(2/2)

			平成7年度	年度			
	6	, 111	1 2	1	2	3	4
打上げ		~					
初期軌道フェーズ							
ミッションフェーズ							
ミニマム・サクセス ・SFU ・GDEF							
サクセス ・SFU ・GDEF							
サフィシエント・サクセス ・SFU ・GDEF							
エキストラ・サクセス ・SFU ・GDEF 日食による中断							
ポストミッションフェーズ	\sim						
回収準備/回収フェーズ							
				∇1/13 S ▼1/2	▽1/13 SFU回収 ▼1/20 NSTS着陸	(KSC)	
回収後地上作業							
SFUの日本への輸送							

3. 2. 3 軌道上実験運用結果

軌道上実験結果に関しては、微小重力による無対流の影響により陽極基材上温度が上昇し、上限値である「テーマ1実験:350℃以上、テーマ2実験:300℃以上」を越える可能性があること、および着火時の異常放電の発生等が懸念されたものの、全実験期間を通して特に問題もなく、GDEFのミッションであるプラズマ観察およびダイヤモンド生成に関し、有効なデータを取得することができた。

実験上の重要なパラメータであるプラズマ出力電流/電圧/電力、実験流量、実験圧力、実験電極温度に関しては、全FO実験を通して安定しており、また地上リファレンス試験の結果とほぼ同等の値を示していることから、実験環境としては、ほぼ同一であったものと考えられ、1G環境下と微小重力環境下における実験結果を比較検討する上で有効な実験条件を確保することができたと考える。特に、ダイヤモンド生成実験に関しては、良質なダイヤモンドを生成する事ができた地上リファレンス実験時と比較して、ダイヤモンド生成の指標となる「実験開始時から実験終了直前にかけてのプラズマ出力電圧の降下量」が、全5実験において同等もしくは大きいため、地上リファレンス試験時と同様に、良質なダイヤモンド生成がなされたと推定された。

表3.2.3-1に軌道上プラズマ観察実験データサマリを、表3.2.3-2に軌道上ダイヤモンド成長実験サマリデータを示す。

また、軌道上実験運用を通して明らかとなった事項を以下に示す。

なお、プラズマ放電の電源であるプラズマ加熱器が一次バス電圧に対して入出力特性を持っているため、軌道上運用においては、日照/日陰の変動に同期してSFUから供給される一次電圧が約50.5Vから約39.0Vに切替る(太陽電池供給からバッテリ供給に切替わるため)に従いプラズマの放電電力が変動している。プラズマ観察実験およびダイヤモンド成長実験の各実験における日照/日陰の変動と出力値の相関を表3.2.3-3ならびに表3.2.3-4に示す。

また、軌道上実験運用結果を検討する上で、比較検討を行った地上リファレンス試験の実施内容を3.2.3.1項に特記する。

(1)ガス排出時間

軌道上実験結果と打上げ前に実施した地上リファレンス試験の結果とを比較した結果、実験終了時の圧力から計測圧力の下限値(2.63Torr)に達するまでの排出時間が、約4~5分程度、軌道上実験の方が早くなっていることが確認された。(表3.2.3-2参照。)

本件については、プラズマ観察実験ならびにダイヤモンド成長実験を通して、約30分の一定時間でガスの排気が終了していることからGDEFの性能の変動に起因するものではなく、SFUミッション軌道(高度:約480km)における宇宙空間(真空度= $2\times10^{-7}\sim4\times10^{-7}$ Torr: SEM計測結果)での排気能力が、地上実験時に使用するターボ分子ポンプおよびスペースチャン

バと同等か、あるいはそれ以上と認識してよいことを示す実験結果であった と考える。

本事象は、今後の宇宙環境利用実験において、宇宙空間にガス排気を行う必要のある実験装置の開発、およびその場合の時間的な条件を検討する上での前提として活用できる修得内容である。

(2) 圧力昇圧時間

軌道上実験結果と地上リファレンス試験の結果とを比較すると、計測圧力の下限値(2.63Torr)から着火圧力(4.8Torr)に達するまでの時間が、最大約4.5分(約0.9Torrに相当)軌道上実験の方が早くなっている。

本現象に対する推定原因としては、流量制御器並びにコントロールボックス等の各構成機器は実験中正常に動作していることから、圧力センサの経年変化による変動分、および解析上、重力環境の相違によって生じることが判っている約0.3Torrの変動分が合致した結果であると考えられた。なお、圧力センサの経年変化による変動分については、3.3.1項「GDEF回収後作業」に示すように、回収後作業にて圧力センサの較正値を確認した結果、打上げ前と比較して約0.6Torr上昇していることが確認されている。

また、地上試験においては、軌道上実験と同等の真空度に到達するまでの排気を行っていない(2.63Torrまでの排気は実施)ことによる差異、および微小重力環境による影響(微小重力環境下においては熱対流がなくなるとともに、ガスの挙動も異なると考えられる)も原因として考えられるものの、特定するまでには至っていない。

ただし、圧力センサに関しては、単体での試験並びに評価は行っておらず、また、圧力センサの較正精度が1.32Torr以内であるため、厳密には微小重力の影響によって変動しているものか、あるいは較正値の変動によるものなのか特定できていない。したがって、今後の低圧領域において実験圧力を制御するような実験を行うためには、高精度・高信頼性の圧力センサを開発する必要があるものと考える。本件に関しては、3.6項の今後のミッションへの反映点に詳細を記述した。

なお、流量制御器については、軌道上実験中、流量値並びに反応容器圧力が変動していないこと及び回収後に実施した校正値確認試験に於いても顕著な変動が生じていないことから、微小重力環境の影響を受けていないものと考えられ、設計の妥当性が確認された。

(3) 電極温度

電極温度(陽極温度)ならびに電極温度の推移状況に関しては、打上げ前に実施した地上リファレンス試験の結果と比較すると、ほぼ同じ値を示していることから、ダイヤモンド生成を行う陽極基材上の温度については、生成に必要な温度が確保されていたと考える。

また、軌道上実験においては微小重力環境下であるために対流による熱輸送が行われず、プラズマ放電により発生する熱が電極付近に局在化し、電極温度が地上における実験時より上昇するのではないかということが懸念されていた。しかし、ダイヤモンド成長実験における5時間のプラズマ放電を行った後の電極温度においても、地上リファレンス試験時とほぼ同じ値であり、コーションリミットである300℃を越えることもなく、実験運用上も良好な状態であった。このことから、電極並びに反応容器の熱設計及びコールドプレートによる排熱が妥当であったことが確認された。

なお、電極温度については、

- ①「電極の構造上、陽極基材表面上の温度を直接計測しているものではなく、放電面下部の陽極ホルダー部(図2.2.1-1反応容器・内部コンフィキ、コレーション参照)の温度を計測しているものである。|
- ②「陽極ホルダー部の排熱に関しては、軌道上実験時は反応容器底部を 介したコールドプレートによる強制排熱の作用が大きいと考えられる のに対し、コールドプレートによる強制排熱を行っていない地上リファ レンス試験では、GDEFが設置された雰囲気場(恒温漕内)の対流 による排熱作用が大きいと考えられるため、陽極基材から反応容器取 付部に至る温度勾配は軌道上実験時のほうが大きいと考えられる。」

また、打上げ前の地上実験において実施された無対流模擬実験(石英ガラスの円管を用いて、陽/陰極間の放電空間を熱的に閉じた状態を模擬した実験)においては、5時間のプラズマ放電後、電極温度が278℃(基材表面予測温度:950℃)に達しているのに対し、地上リファレンス試験等においては電極温度が約240℃であり、その際の陽極基材表面温度は、ほぼ同一条件下で実施した他の地上試験の実績から、約800~850℃と推定される。

そのため、電極温度と陽極基材表面温度には、以下に示す関係があることが推定される。

③「電極温度(ホルダー部温度)が上昇した場合には、陽極基材表面 温度も同様に上昇する。」

したがって、軌道上実験ならびに地上リファレンス試験において取得されている実験電極温度(陽極ホルダー温度)を比較した場合、ほぼ同じ傾向を示していることから、上記に示した①③の事象より、軌道上実験においては、無対流模擬実験で模擬したような顕著な熱の局在化の現象はなく、陽極基材表面温度についても地上リファレンス試験とほぼ同じ値であると考えられ、また②の事象も併せて検討しても、温度上昇分は僅かであったものと考えら

れる。また、軌道上ダイヤモンド成長実験における陽極基材表面温度は、陽極ホルダー温度が227 \mathbb{C} \sim 235 \mathbb{C} の範囲内であることから、ダイヤモンド生成を行う上で最適と考えられる800 \mathbb{C} \sim 1000 \mathbb{C} の範囲内であったものと考えられる。

(4) GDEF実験とSFUの実験環境について

(a) 微小重力環境

本実験における微小重力環境については、EFFUの十字ビーム中央部 (反応容器下方)に設置されている加速度センサにより計測が行われた。

また、SFU全体としての微小重力環境は、SFU上部に搭載されている 宇宙環境計測装置により測定がなされている。

SFU報告によれば、SFUの微小重力環境は、気相成長実験において影響が生じると考えられる 5 H z 以下の擾乱が10⁵g程度と小さく、この微小重力擾乱のGDEF実験に対する影響は極わずかであり、気相成長実験の微小重力環境としては、理想的な環境下で実験が行われたものと考えられる。

なお、この微小重力擾乱は、欧州宇宙機関の宇宙実験プラットフォーム衛星ユーレカ(EURECA)と同程度であり、現在の無人プラットフォーム衛星の標準的な環境であると考えられる(詳細については宇宙科学研究所発行の「宇宙科学研究所報告特集第35号」(1997年3月)参照のこと)。

また、GDEFの外部に対する微小重力擾乱の発生要因としては、実験に使用したガスの放出や電磁バルブの開閉時の振動が考えられるが、ガスの排気ポートは180度反対の方向に開けた2つの穴より放出しているため、加速度の発生は抑制されており、SFUの加速度計測結果にも影響は生じていない。 また、GDEFの電磁バルブ開閉に伴う擾乱は、EFFUの外部に対する擾乱源とはならない程度の大きさであることを確認した。

(b) 真空環境

GDEFは前述したように反応に使用したガスを放出するため、そのSF Uの周囲の真空影響に対する影響を考える必要がある。ただし、GDEFで 放出されるガスの大部分は水素であり拡散が早く、またその量も微量である ことから、真空環境に対する影響はほとんど生じないものと推定した。

SFUに搭載されている宇宙環境計測装置による真空度や質量分析機の計測では、GDEFのガス放出により測定結果に変化が生じることはなかった。このことは、今後宇宙ステーション等での実験を考える際に同種の問題を考える上での指針となると思われる。

3. 2. 3. 1 地上リファレンス試験

地上リファレンス試験は、1994年2月から8月にかけて実施された性能向上作業の一環として実施され、軌道上実験の結果を検討する上で有用な地上リファレンス試験データを取得するとともに、性能向上作業時に行われた陰極形状等の仕様変更が、ミッションの達成および軌道上の運用上、問題のないことを確認することを目的として実施した。地上リファレンス試験は、地上リファレンス試験 I および地上リファレンス試験 II の2度実施している。

地上リファレンス試験 I は、1993年の7月~11月にかけて実施した地上対照実験によって確定した電極仕様および実験ガス濃度を反映して実施したが、本試験によって生成したダイヤモンドを分析した所、膜質的に良質とは言えないという見解が示された。また、ダイヤモンド生成に必要と考えられたドーム状プラズマ発光の状態も不安定であり、特に実験ガスの CH_4 濃度が0.6%の試験においては、その傾向が顕著に現れた。

上記事象の原因検討として二次側出力電力値およびプラズマ放電状態等の比較検討を行った結果、地上対照実験において使用したプラズマ加熱器(エンジニアリングモデル)と地上リファレンス試験において使用したプラズマ加熱器(フライトモデル)との出力電力値の微細な仕様の差異から、最適な陰極形状(Moメッシュ底面角寸法等)に違いが生じたと推定された。

このことから、プラズマ加熱器ならびに反応容器ともフライトモデルを使用した地上実験を実施し、陰極形状等実験パラメータの最適化を図った。

地上実験におけるドーム状プラズマ発光の状態および生成ダイヤモンドの膜質 分析等の結果より、陰極Moメッシュ底面角:8×8mm、実験ガス濃度:GB1 (0.8%) GB2 (1.0%) のパラメータ設定が最適であることが確認された。

また、その他、軌道上実験として予定された33の実験について、それまでの実施順序においてはダイヤモンド生成実験前に電極1によるプラズマ観測実験が8回実施されおり、その際のプラズマ放電がダイヤモンド生成用の陽極基材に損傷を与えることも推定されたため、実験順序の再検討を行い、実験順序の変更を行った。この実験順序は、軌道上実験に反映されている。

以上の内容を反映し、地上リファレンス試験IIとして再度地上のリファレンスデータを取得したところ、二次側出力電力値ならびにプラズマ放電状態とも良好な結果が得られ、生成したダイヤモンドの成膜状態に関しても良質であるとの分析結果が得られた。また、同時に、画像データの取得ならびに分光データの取得等、GDEFの機能・性能に関し問題のないことが確認された。

以上のことから、本地上リファレンス試験により軌道上実験の結果を検討する 上で有用な地上データの取得を達成し、また陰極形状等の仕様変更がミッション の達成および軌道上の運用上問題のないことが確認された。

地上リファレンス試験Ⅱにおけるプラズマ観察実験データサマリならびにダイヤモンド成長実験データサマリを、それぞれ表3.2.3-1軌道上プラズマ観察実験データサマリ並びに表3.2.3-2軌道上ダイヤモンド成長実験データサマリ中に、1G TESTとして示す。

表3.2.3-1 軌道上プラズマ観察実験データサマリ (1/3)

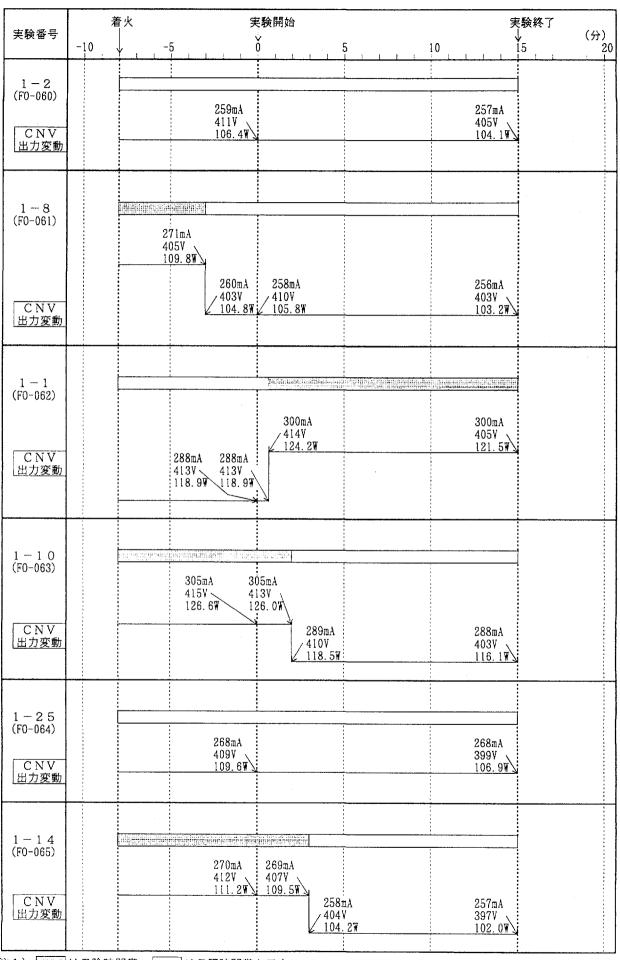
AT40℃	20年20日 (金)
3 69:32:51 31.55 259 0.00 +1	33 69:32:51 31.55
- 31.65 258 1 13:12:08 31.74 258 - +0.09 0	- 31.65 :12:08 31.74 - +0.09
- 31.45 288 6:25:09 31.55 288 - +0.10 0	31.45
59:42:07 31.65 305 0.09 +17	31.74
9:56:09 31.65 257 - 0.00 +11	- 31.65 56:09 31.65 - 0.00
- 31.55 258 9:35:36 31.55 270 - 0.00 +12	31. 55 36 31. 55 0. 00
31.74 258 10:25:09 31.74 259 — 0.00 +1	31.74 31.74 0.00
31.55 288 33.16 31.65 306 - +0.10 +18	31.65

表3.2.3-1 軌道上プラズマ観察実験データサマリ (2/3)

サフィシエント・サクセスレベル

電力差(W) 11 K(K) 101. 9 11 K(11.5 103. 5 11K(B) 106.3 11代時 実験中は日照現境下。 実験中は日照塊塩下。 は日医療境下。 1450N: 実験開始 9分46秒後 実験中は日照環境 11股時 107.1 || 陸馬 11四年11 뺲 **= =** 0rbit -42 -10.9 +2.71 +2.71 0rbit -4 -1.9 +2.03 +23 0rbit -8 -7.3 -1.65 +13 0rbit -8 -7.0 -1.74 +10 0rbit | -34 5.7 -10.7 74 +2.9f 0rbit -14 -4.9 +2.71 +22 ಬಟ 7 16 Orbit -54 -43 -14.1 -16.3 -1.74 -2.13 1 23 0rbit -5 -2.1 +2.23 +22 16 Orbit -52 -41 -15.9 -18. '-1.94 -2.11; 霯 1G 0r -48 -12.5 : +1.55 : +21 16 -15 -4.8 +1.65 +20 . 2 16 -2 -1.3 -1.36 +16 16 -5 -2.1 +1.07 16 -51 -15.7 +1.74 +25 - EE 16 -4 -1.8 +1.1 16 -3 -1.5 +11 了点部 D D D V DDD P 7227 1 34 747余巻 質反(で) 14.1 11.2 11.2 1 6. ŀ 1 ł 1 0. 1 ١ 1 Ξ 53 10 長変調 (°) 돌 237 ç, 215 205 7 210 +4 206 7, 4 249 +6 248 49 259 +12 211 258 258 271 ₹ 101.9 97. 5 99. 3 107.6 B 2 -+4.7 116. 115. 103. 102. 101 112. ٠ <u>-</u>0 ض ف ٠ 1 98. ಝ 106. 112. 102. 102. 103. 102. 102. ÷ ;;; (3) 蚁 7 +2 7 +16 399 396 T 395 399 397 393 375 390 367 +24 371 391 錖 机纸 ကို 7 Ę, -2 260 258 288 လှ 288 260 258 260 257 260 258 259258 260 258 2-290 288 290 29] +1.16 1. 1/2 (Torr) +1.08 49.54 49.25 +1.16 39 23 28 \$ 58 58 22 77 82 29 26 35 8 8 : 5 54 7 57 20. ö 33. 23 23. Ó, 20. 19. ó. 22. <u>-</u>0 53. -i 49. 49. 53. 54. 747年巻 温泉(で) 1.8 11.7 6.8 7.5 ഹ 1 9.8 1 ŀ 1 1 1 1 \perp 1 1 1 1 1 6 ê. ę. œ 点表質及 (3) 弑 ÷ 2-217 2+ ಭ ţ ڡؚ 189 194 191 195 194 227 7 234 227 232 25] ₹ (¥) (¥) -0.8 104.3 109.2 +4.9 103.9 +4.9 117.7 110.0 131.0 +1.2 -0.6 ġ. 112. 109. 104. Ġ. 110 120. 104. 105. 105. +0 123. 122. 123. 杂 3E 丟 414 414 0 398 403 +5 399 2 402 +5 402 ₹ 431 436 ÷ 423 7 423 \$ 425 4 407 404 401 431 续 (祖) (四) တို 6 292 259 270 270 +10 5-7 262 271 262 260 260 260 292 +12 292 261 261 304 ₹ 11: 15 (Torr) 21.78 59 78 2 49 78 9 51.77 74 74 8 8 53 00 82 38 48 67 48 00 67 67 8 0 ٠. +0 21. o. ó. ė, 31. 51. 2 21. 21. 21. 21. 21. 5 51. 5. 51. 21 :45:45 Pyr ON #K.Workfill :47:26 95 22 07 90 21 火粉粉 46: 1 1 . 56 48: 26 1 1 1 + : 46 573 } 9 33 ₩. 05 0 03: 03. 57 ガース 禁門時間 (分:後) 31:15 31:15 03 3 22 48 33:41 :32 1 1 ı -1 25: ı 1 1 26: 28 :92 26. 30 4740°C 光霜录画 (今:多) + 0:33 0:19 - 0:18 0:10 1:05 1:10 1:46 1:13 1:12 1:12 1:46 1:12 1:46 0:12 0:11 0:53 1:03 実験圧力 昇圧時間 (分:後) + 0:26 0:22 - 0:19 0:24 - 0:24 + 0:24 - 0:21 0:26 + 0:22 6:13 6:37 6:38 6:13 6:40 7:06 6:35 7:02 6:33 6:12 5:47 6:13 6:32 6:13 5:49 6:13 5:51 9 A大三カ 大田町町 (多:参) 19:05 17:45 - 0:22 + 4:46 - 1:20 19:56 19:32 + 9:07 0:27 18:38 3 3 35 39 25 38 33 88 88 20: + 33: 8 ≘ : 60 18 19: 15. 8 12 80 33 1G TEST ON-ORBIT △ (08T-1G) 1G TEST ON-ORBIT △ (0BT-1G) 1G TEST ON-ORBIT △ (0BT-1G) 1G TEST ON-ORBIT △ (0BT-1G) A (0BT-1G) △ (08T-1G) △ (0BT-1G) A (08T-1C) △ (0BT-1G) ON-ORBIT ON-ORBIT ON-ORBIT ON-ORBIT ON-ORBIT TEST TEST TEST TEST TEST 2 9 2 9 2 F0-078 FO-076 F0-070 F0-074 F0-077 必必の 1-22 1-15 1-21 1-1 1-3 1-5 1-6

表3.2.3-1 軌道上プラズマ観察実験データサマリ (3/3)


サフィシエント・サクセスレベル

電力差(W) 11 BKUS 115. 2 11 JK(8.5 112. 9 火験中は日脳環境下。 実験中は日照環境下。 実験中は日照環境下。 汉駁中は日照環境下。 11123.15 123.7 11時間 96.2 強二/翌日 * 16 Orbit -47 -73 # -14, 2 -28, 2 +1, 25 +1, 74 +23 +20 0rbit -59 -15.2 -1.74 +21 0rbit 78 -78 -6 -23.8 19 -2.03 19 +26 0rbit -59 -19.4 +1.84 +20 -43 -19.9 +1.45 Orbit, 一開始直後 罢 16 0 -7 -2.6 +0.77 16 0 -20 -5.9 +1.35 0.6 2 26 23 10 APWr: -51 APWr: -15.6 AP : +1.07 AT : +6 16 -7 -2.2 +1.2 +20 16 -9 -3.5 +14 15 -54 -16. +0.1 -加河J D D D PWr DDD Pyr A D D V * ンセン会を 請成(*C) 14.1 11.4 11.0 10.8 9 1 1 -1 1 1 1 6 高養置 (℃) 寚 259 270 250 44 258 43 230 229 270 7 = 265 269 T 251 Ξ 91.9 语 (€ 104.7 110.0 -15.8 91.8 104.4 110.5 103.1 -7.4 109.2 -7.2 2 ÷ -12. (103. 103. 102. # 7E * 361 +21 424 -68 411 353 -58 406 406 389 383 -58 -31 354 淡 近 (BA) 290 2-254 255 44 9+ ÷ 254 260 7 254 284 285 288 71: J) (Torr) 52.93 53.12 19 4 2 80 12 70 28 88 22 58 91 84 32 8 꼾 ÷0. 4, 53. 53. 52. 49. ó, 32. 31. 51. 49. 42 53. 53. ō, 747会終 貧炭(で) 8.2 7.5 9.3 7.5 ŀ ١ 1 1 1 I g. 海南温度 (°C) 敍 253 +13 230 ÷3 8 210 ç, 4 230 208 248 243 242 249 = #: J(€) +0.9 127.1 10... 120. 129. 110. 123. တို 107. بأع 105. 9. ÷6. ₩ 106. 126. 130. ;;; (3) 噩 +13 415 412 413 415 425 443 136 430 -3 -1 431 431 427 燅 (mA) +12 256 ₹ 258 270 +14 256 256 292 256 4 305 2 287 287 291 (Torr) 51.77 86 67 13 67 38 53 60 65 22 51.77 ... 57 10 57 20 51. 9 51. 51. -0. ó, -0 31. 31. 51. 51. ė, 3 3:41:05 61: 11:47:08 Pwr ON 統國時間 10:47:08 10:31: 1 1 1 ı ガス 対射 旧時間 (分:砂) # 31:19 30:50 31:09 31:16 31:01 1 1 1 ; ı ı 1 i AT40℃ 岩質時間 (分:多) + 0:38 ~ 0:08 + 0:39 - 0:13 - 0:10 1:10 1:02 0:54 1:09 1:47 1:08 1:47 1:14 1:06 0:53 1:04 0:54 大阪エカ 井川時間 (分:や) + 6:30 0:24 0:20 5:02 11:32 6:36 6:12 5:52 6:12 6:40 6:40 6:44 6:13 6:12 0:21 0:31 5:51 着大压力 开压時間 (分:卷) 17:19 18:15 18:40 + 0:25 21:42 18:41 17:47 20:46 14:42 - 3:01 99 + 4:51 18:41 + 3:59 18:41 40 13:01 .21 + 5: 1G TEST ON-ORBIT △ (0BT-1G) IG TEST ON-ORBIT △ (08T-10) △ (08T-1G) △ (08T-10) 1G TEST ON-ORBIT △ (0BT-1G) IG TEST ON-ORBIT ∠ (08T-1G) ON-ORBIT △ (0BT-1G) ON-ORBIT ON-ORBIT TEST TEST TEST 9 9 10 F0-079 F0-082 F0-083 F0-081 F0-057 1-26 。 第 2 2 3 1-19 1-27 1-28 1-18 1-23

表3.2.3-2 軌道上ダイヤモンド成長実験データサマリ

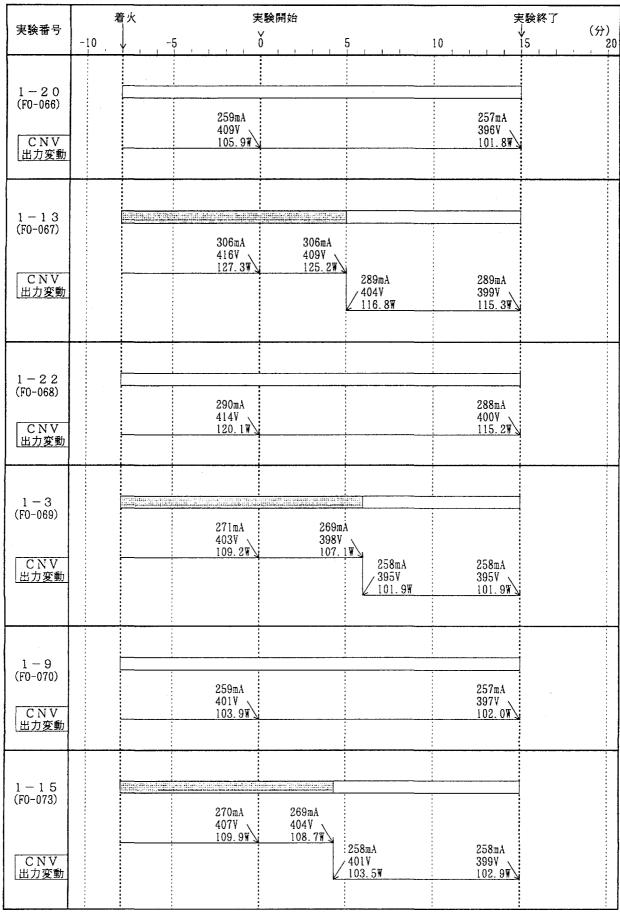

	T							,	_		,					
	電力差(順)	1 I KKILIS	98.5 7.4 7.4 7.4	0 ·/B	LIKHI	28.6 4.8 6.6	87.4	TIKALI.	100.5	97, 7 96, 0	TI KAR		94. 6 94. 7	1118(815)		
4	第二二點	整:	100.6	S		108.8	S	<u>45</u>	102. 102.		출:	102.4		1000	102.9	100.8
	=	=	= ====	ξ <u>±</u>		1#1	9	<u> </u>	2 2 2 2 2 3 3 3 3			_≌:	0 # #		1 1 2	
3	了在第一開始直後	Orbit	. G	-1.2 +27	Orbit	÷=:	+27	Orbit	중우.	-1.1	Orbi t		-1.1	Orbi t	27	÷ 28
	置	20.5	ئى ھەرد 2 ھەرد	-0. 13 +27	22.5	-34 -10.3		 ည	-13.6	-0. 19 +27	25	-15 -15 5.1	-0. 10 +26	25	-4.9	+2. 13 +26
	対しる	,	· · · ·		,	A P.	4Z 7Z		Δ Δ γ γ γ γ γ · · · · ·	Z Z	;	Pwr	7 Z Z		Pwr:	4 Z Z
	747年巻 第長(20)	ł	15.4	1	-	15.6		ı	15.4	ı		15.2		-	9.4	ı
iii ji	岩麦温度 (で)	230	231	7	230	227	5-	234	231	-3	231	233	+2	232	235	+3
٠,	7 (JE)	94. 4	96.8	+2.4	96.5	8.96	+0.3	94.2	95. 5	+1.3	95.0	94.2	-0.8	101.1	98.0	-3.1
*	3 E	370	378	\$	380	378	7-	37.1	373	+5	374	368	9-	401	385	-16
火	'IL W. (mA)	255	256	-	254	256	+5	254	256	+2	254	256	7+	252	256	+4
	/E // (Torr)	31.36	30. 29	-1.07	31.45	30.39	-1.06	31.36	30.39	-0.97	31.55	30.39	-1.16	33. 78	37.26	+3. 48
	77.47.0E的 温度(°C)	ı	11.5	ı	I	10.7	ı	ı	13.6	ı	1	9.5	1	ı	16.0	1
被	·近極温度 (°C)	203	204	7	203	200	-3	202	205	-2	205	206	7	206	207	7
ı W	(F)	103.2	106.3	+3. 1	106.8	107.9	+1.1	105.8	106.3	+0.5	1.901	106.3	+0.2	106.0	Ξ.	+5. 1
	11 (Y)	400	409	6+	414	415	+1	410	412	+2	413	412	-	411	413	7+
以 黎	.ध. १५६ (mA)	258	260	7+	258	260	7+	258	258	0	257	258		258	269	11+
	II: JJ (Torr)	31.55	31.55	00.00	31.65	31.55	-0.10	31, 55	31.55	00.00	31.65	31.55	-0.08	31.65	31.74	+0.09
火颗條了	Pwr ON 統過時間	Î	10:58:15		1	11:42:43	ı	į	12:11:30	i	i	12:42:21	ı	ı	10:56:01	1
7, 7,	提高時間 (分:秒)	35:21	31:57	- 3:24	34:53	30:30	- 4:23	34:53	30:41	- 4:12	35:13	29:42	- 5:31	34:09	28:54	-5:15
2740°C	开温時間 (分:秒)	1:12	1:16	+ 0:04	1:11	1:14	+ 0:03	1:16	1:17	+ 0:01	1:15	1:15	00:0	1:11	1:13	+ 0:02
化制制 打	F. 正時間 (分: 秒)	6:23	6:36	+ 0:13	6:28	6:34	90:0 +	6:27	6:38	+ 0:11	6:27	6:38	+ 0:11	97:9	6:34	+ 0:08
% ×IF JI	光/記憶 (今:後)	12:30	17:29	+ 4:59	20:51	17:44	- 3:07	21:08	16:47	- 4:21	20:42	17:02	- 3:40	19:44	17:27	- 2:17
		IG TEST	ON-ORBIT	F0-056 4 (0BT-1G)	1G TEST	ON-ORBIT	1 (0BT-1G)	1G TEST	ON-ORBIT	F0-084 \(\text{//} \(\text{//} \text{//} \)	1G TEST	ON-ORBIT	△ (0BT-1G)	ig test	ON-ORBIT	1 (0BT-1G)
	X 以 数 o		2- 1 (F0-056 Z		2-2	F0-072 \(\triangle (08T-1G)		2-3	F0-084 Z		2-4 (F0-085		3- 1 (F0-059 A (0BT-1G)

表3.2.3-3 軌道上プラズマ観察実験・日照/日陰の変動と出力値の相関(1/4)

注1) は日陰時間帯、 は日照時間帯を示す。 注2) 図中の数値はプラズマ出力電流、電圧および電力を示す。


表3.2.3-3 軌道上プラズマ観察実験・日照/日陰の変動と出力値の相関(2/4)

注1) は日陰時間帯、 は日照時間帯を示す。

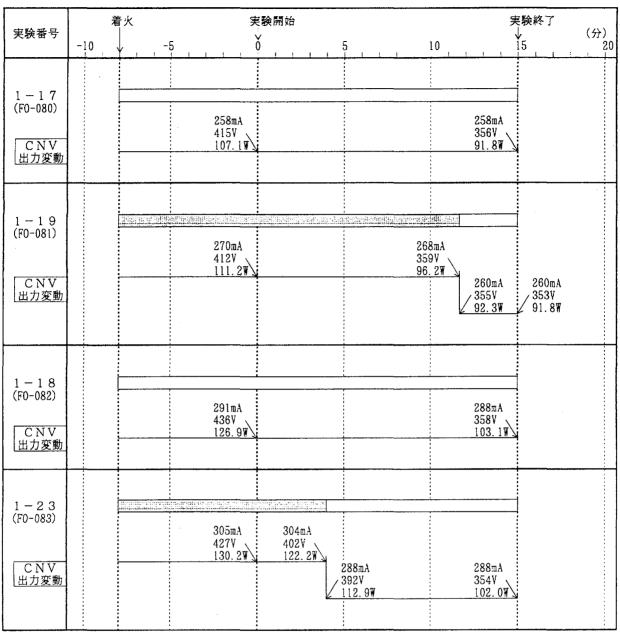

注2) 図中の数値はプラズマ出力電流、電圧および電力を示す。

表3.2.3-3 軌道上プラズマ観察実験・日照/日陰の変動と出力値の相関(3/4)

注1) 国工 は日陰時間帯、 は日照時間帯を示す。 注2) 図中の数値はプラズマ出力電流、電圧および電力を示す。

表3.2.3-3 軌道上プラズマ観察実験・日照/日陰の変動と出力値の相関(4/4)

注1) 福祉 は日陰時間帯、 は日照時間帯を示す。

注2) 図中の数値はプラズマ出力電流、電圧および電力を示す。

10/11 個時の単十年を報がしている は ゴーグイケエンド 北戸中陸・ アーと こと主

寒	着火 実験開始 10 0:00	始 0:10	0:50	0:30	0:40	0:20	1:00	1;10	1:20	1:30	1:40	1:50	2:00	2:10	2:20 (時:分)
2-1				-	1			t one object of the	A CONTRACTOR						
のCVV出力変動	260mA 409V 106.3#\				256mA 397V 101.6W	259nA 397V 102. 8W		265mA 394V 104 41		256mA 392V 100.4W				256mA 386V 98.8W	······································
22 - 27 - 070- 07 - 072 - 072	260mA 115V 107, 9F				256mA 401V 102. 7#	260mA 402V 104.5W		3 6 6 1	264mA 393V 103. 8W	256mA 3391V 100.1W				2000 0000 0000	260nA 3877 386V 98.8W
2 - 3 (P0-084) 慢慢进压 <rca< td=""><td>258mA 412V 106.3W</td><td></td><td></td><td></td><td>25 395 10</td><td>256mA 395V 101. IW</td><td>259mA 396V 102. 6W</td><td></td><td>264mA 391V 103. 2W</td><td>256mA 390V 99.8W</td><td></td><td></td><td></td><td></td><td>256mA 383V 383V 383V 98. 0W</td></rca<>	258mA 412V 106.3W				25 395 10	256mA 395V 101. IW	259mA 396V 102. 6W		264mA 391V 103. 2W	256mA 390V 99.8W					256mA 383V 383V 383V 98. 0W
2 - 4 (F0-085) (P0-085) (PO-085)	258mA 412V 106.3W				2000	256mA 393W 100.6W	260mA 393V 102, 2W	A. Periperina	265mA 387V 102. 6¥	256mA 386V 98.8W					258mA 3799 97.8W 3799 3799 97.0W
3 - 1 (F0-059) (F0-059)	270mA 411V 413V 111. 5W 109.3W	MA V 3W 257mA 410V 4 105. 4 W						256mA 399V 102. 1W	259mA 400V 103.6W	264mA 387V 102. 2W	256mA 385V 385V 98. 6W) MS			

表3.2.3-4 動道トダイヤモンド成長宝路・日昭ノ日陰の変動と出力値の相関(9.7.9)

10 14 20 4 30 4 4 10 4 20 4 30 4 4 4 4 4 4 4 4 4	果%終了 (時:分)	256mA 378V 96.8W	256mA 378V 96.8W	256mA 373V 95. 5¥	256mA 368V 94.2W	256mV 385V 98.6W 98.6W
10 4 1	4:30		6W 258m 380v 98.	264nA 375V 99. 0W	256 369 94	
264mA 3844V 3854V 3854V 3854V 3864V 3864V 3864V 3864V 3864V 3864V 3876V 99.5W 3876V 99.5W 3876V 99.5W 3876V 38	3:50 4:00 4:10			258mA 376V 97.0W		
	3:00 3:10 3:20			256m		255 3850 98.50

3. 3 GDEF回収後作業結果

1996年5月から1997年3月に亘り実施した回収後作業の結果を以下に示す。 また、表3.3-1に本回収後作業の経緯を示す。

3. 3. 1 GDEF回収後作業

GDEFの回収後作業については、SFUからの引渡し後、GDEFの機能確認試験を実施し、機能上問題ないことを確認した。なお、本作業の一環として実施した外観検査の結果、サーマルブランケットへのデブリの痕跡および顕著な変色等は認められなかった。

その後、軌道上実験において画像取得装置により取得されたプラズマ発光画像を 再生し、取得された画像内容の確認を行い、全プラズマ画像が取得されていること を確認した。

また、軌道上実験後の反応容器内部の状態確認を行うとともに、陽極電極及び陰極電極等を取り外し、生成物の解析ならびに評価を行った。解析結果については、本稿第Ⅱ編GDEFの実験結果を参照のこと。

なお、反応容器内部の状態に関しては、プラズマの放電による変色等は見られる ものの、異常放電の痕跡等、特に問題となる事象および特記すべき事象は確認され なかった。

また、軌道上実験の妥当性を確認するために、GDEF搭載ガスボンベ内に残存している実験ガス(残圧:3.6kg/cm²A、22.3Nℓ)の成分分析、分光測定装置(以下SPM)の光軸確認、反応容器圧力センサの較正値の確認ならびに流量制御器の較正値の確認を行い、打上げ前に実施した確認結果との比較評価を行った。評価を行った結果、実験ガスの成分の変動、分光測定装置の光軸の変動は認められなかった。また、反応容器圧力センサ並びに流量制御器の較正値については弱冠の変動が認められたものの、反応容器圧力センサの較正値の変動は、0~100Torrの範囲において約0.6Torr、また流量制御器の較正値の変動は、実験時に設定する流量範囲である0~60SCCMにおいて最大0.3SCCMであるため、実験への影響は少ないと考えられる。

3. 3. 2 分光測定装置および画像取得装置評価結果

(1) 分光測定装置評価結果

宇宙放射線による暗電流増加、長期の被曝による影響、長期にわたる受光素子(フォトダイオードアレイ)への影響、真空環境での熱サイクルに対する影響等について、軌道上での実験結果、フライト後の機能確認試験により評価を行った。

その評価結果として、軌道上、回収後においてもSPMおよびその測定データは健全であり、打上げ時の振動による光軸のずれ等が生じていないことを確認した。また、フォトダイオードアレイに対する軌道上での長期曝露による素子の劣化について、打上げ前とフライト後での有意差は認められなかった。そして、温度変化等によるバックグラウンドの変化も分光データ評価の観点からは無視できる程度であることが確認された。

これらにより、軌道上で取得されたデータは地上で行われている実験データ と同様な評価を行えること、また分光測定装置は10ヶ月にわたる軌道上での 長期間ミッションにおいても問題なく機能を発揮できることがわかった。

本GDEF実験開発で取得した技術的成果は、今後の分光測定を必要とする宇宙実験ミッションへに対しても役立つものとなると考えられる。なお、本実験で使用したSPMとほぼ同じ設計の分光器が、平成8年9月に打ち上げられた宇宙実験用小型ロケット(TR-IA)5号機の観察技術実験装置に搭載され、コロイド結晶の反射スペクトル計測に用いられた。

(2) 画像取得装置評価結果

フライト実験(プラズマ観察実験)にて取得したプラズマ発光画像を回収後 再生した結果、画像の取得が正常に行われていることを確認し、またその画質 についても問題ないことを確認した。

このことから、本GDEF実験における民生品の搭載化の手法の妥当性が確認されたと考えられる。民生品の宇宙実験での活用は、宇宙実験の低コスト化にとって不可欠なものであり、今後も実験上必要となる観察機器等について、GDEF実験の経験を活用し民生品の搭載化を進めてゆく必要があると考える。

3. 3. 3 GDEFフライト後実験

GDEFフライト後実験は、軌道上実験において遭遇した熱環境条件、および日照/日陰に伴う供給電力の変動(SFUからの一次電圧の変動により、プラズマ発生電力が変動する。)を模擬して実験を行い、ダイヤモンド生成結果ならびにプラズマ放電現象に対する重力の影響を明確にすることを目的として、1996年9月から1997年2月にわたり実施した。

実験内容ならびに実験評価を以下に示す。

(1) 実験内容

プラズマ放電状態ならびにダイヤモンド生成に影響を与える要素としては、 プラズマの放電電力および反応場の熱環境が考えられる。 軌道上実験においては、日照/日陰の変化によりGDEFに供給される一次バス電圧が変動するため、これに伴いプラズマ加熱器の出力値が変動する。また、EFFUからGDEFに供給される冷媒の供給温度も絶えず変動する。しかし、打上げ前に実施した地上リファレンス試験においては、上記に示した内容を模擬していないため、プラズマの放電状態ならびにダイヤモンドの生成状態に何らかの影響が生じる可能性があることが指摘された。

そのため、本フライト後実験においては、上記2事項に関する軌道上実験環境を模擬するため軌道上実験における実測データを基に、一次バス電圧については日照/日陰時各々の時間帯におけるノミナル値を設定値とし、冷媒供給温度については、プラズマ放電を行っている時間帯におけるノミナル値を設定値として、実験を実施した。

表3.3.2-1に各実験実施において設定した一次バス電圧を、表3.3.2-2に冷媒 供給温度を示す。

実施したFO実験については、軌道上実験におけるサクセス、サフィシエント、及びエキストラレベルの順番で実施し、プラズマ放電の出力電流/電圧値等の工学値データ、プラズマ発光画像データおよびSPMデータの取得を行った。

(2) 実験評価

プラズマ観察実験ならびにダイヤモンド生成実験に関し、各工学値データ、 プラズマ発光画像データならびにスペクトルデータは、全て正常に取得され た。

また、プラズマの着火状態に関しては、実験初期において、プラズマのドーム状発光状態の発生ならびに発光状態の変動に伴うプラズマ加熱器の出力電圧の変動が見られるものの、プラズマ加熱器の出力電流/電圧/電力に異常放電が発生した時に見られるような大きな変動もなく実験終了時まで安定していた。また、特に放電が不安定な状態にある着火時の出力電流に関しても大きな変動は見られず、安定した着火が行われ、軌道上実験と同様、実験状態として良好であった。

表3.3.2-3にフライト後実験プラズマ観察実験データサマリを、表3.3.2-4にフライト後実験ダイヤモンド成長実験データサマリを示す。

表3.3-1 GDEF回収後作業スケジュール

1997	12 1 2 3 4 5	△ (輸送/返却、3/17)						フライト後実験	フライト後実験評価支援	
1996	5 6 7 8 9 10 11	{ { SFU/EFFU回収後作業	△ (回収後機能試驗、5/24)	△(輸送前外観檢查/機能確認試験/支給/輸送、6/13)	△ (輸送後外観校查/機能確認試驗、6/14)	フライト後解析の準備	フライト後実験準備			
fi m	7 \ +	1. 回収後作業								

表3.3.2-1 一次バス電圧・設定値(1/3)

実験番号	着火			 験開始			4	実験終了 「		(分)
X 8 8 7	Ŏ	5	Ŏ	1 1 1 1	5	10	1 1	15		(75)
1 - 2 (F0-060)		1	:					_		
								<u> </u>		
		00:04:	51							
1-8 (F0-061)			:					1		
(10 001)										
				20.00.04						
1 - 1				00:00:04 						
(F0-062)	•									
					1					
				00:01:45	• • •				,	
1 - 1 0 (F0-063)	Constitution of the state of th			Description	1]		
			:							
1-25								j		
(F0-064)						•				
						<u>;</u>		 		
1-14			na Westarikani Populari	00:02:55	<u> </u>			i		
(F0-065)			:					-		
1-20			<u></u>		!					
(F0-066)		:	:	· · · · · · · · · · · · · · · · · · ·		:		-		
	:							<u>:</u>		
				· · · · · · · · · · · · · · · · · · ·	00:05:01					
1 - 1 3 (F0-067)		######################################				:]		
								-	 	
						:				
1 - 2 2 (F0-068)								1		
					00.05.40					
1 - 3 (F0-069)	anany		ativitaidamini	usorane metalli nelativa	:00:05:46			j		;
(600-01)										
			:			!		:		:
1 – 9		<u> </u>	<u>:</u>			i		i		
(F0-070)						5 6 8		:		
								:		- :
1-15		- interpretation and the	agirdenhihibatine	00:04:28				<u>:</u>		
F0-073)	10 11 10 10 10 10 10 10 10 10 10 10 10 1					:		<u>.</u>		
								:		

表3.3.2-1 一次バス電圧・設定値(2/3)

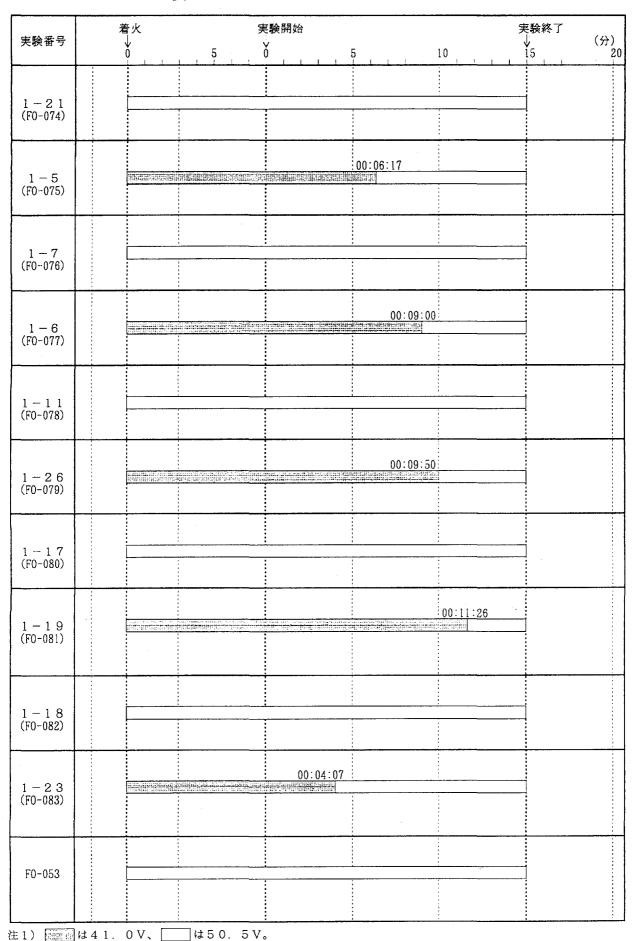


表3.3.2-1 一次バス電圧・設定値 (3/3)

			-			ļ		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
中除来户	着火 実験開始											
大学性で	0 00:0	0:10 0:20	0:30	0:40	0:50	1:00 1:	1;10	1;20 1;30	1;40 1;50	50 2:00	2;10	2;20 (時: 分)
2 – 1				00:47:44				01:23:21				02:21:54
$(F\overline{0}-05\overline{6})$							The second secon					
2-2				00:48:55		A CONTRACT OF THE CONTRACT OF		01:24:33				02:23:05
(F0-072)												
8 - 3					00:52:10	52:10 01:27:50	and the second	01:27:50				02:26:20
(F0-084)												
c					00:54:17			01:29:58				:02:28:56
(F0-085)												
	00:08:34				ļ 	01:05:08			01.40.49			
3 1			-	-					TILL TO LITE			
(40-028)								•••				
- 5												実験終了
実験番号 2:30	2:40	2;50 3;00	3;10	3:20	3;30 3	3;40 3;50	50 4:00	00 4;10	4;20 4;30	30 4;40	4:50	5;00 (時: 分) 5;10 5;10
		02:57:31					03:56:04		0	04:31:41		•••
2 - 1 (F0-056)			-				KAN AND SE			 -	-	
7000 0.0												• • • •
$\begin{array}{c c} 2 - 2 \\ (F0-072) \end{array}$		02:58:43					03:57:14) .	04:32:52		
		03	:01:59	-				04:00:29	0	04:36:09	-	
2 - 3 (F0-084)	Committee of the commit											
0			03:04:37					04:03:05		04:38:47		
(F0-08 <u>5)</u>												
رم ا	02:39:17	7	03:14:50	:50				04:13:25			04:48:58	
(FO-059)												
			***************************************						-	-		

表3.3.2-2 冷媒供給温度

実験番号	冷媒供給温度(℃) 設定値
実験番号 1-2	1 3. 2
実験番号 2-2	1 7. 5 1 4. 5
実験番号 <u>2 - 2</u> 実験番号 <u>2 - 3</u>	14.5 15.0
実験番号 2 - 1 実験番号 2 - 2 実験番号 2 - 3 実験番号 2 - 4	1 4. 0
実験番号 2- 4 実験番号 1- 8	1 4. 0 1 3. 6 1 3. 1
実験番号 1-1	13.1
·実験番号 1-10	10.0
実験番号 1-25 実験番号 1-14	9.6
実験番号 1-14	10.0
実験番号 1-20	12.2
実験番号 1-13	9. 1
実験番号 3-1	17.5
実験番号 1-22 実験番号 1-3 実験番号 1-9 実験番号 1-15	13.0
実験番号 1-3	9. 2 9. 7
実験番号 1- 9	9. 7
	8. 9 12. 8 9. 1
<u>実験番号 1-21</u> 実験番号 1-5	12.8
実験番号 1-5	9. 1
実験番号 1- 7	9, 9
実験番号 1-6	9. 3
実験番号 1-11	10.5
実験番号 1-26	9. 8
実験番号 1-17	10.3
実験番号 1-19	8. 6
<u>実験番号 1-27</u> 実験番号 1-28	11.5
実験番号 1-28	9. 9 9. 3 10. 5 9. 8 10. 3 8. 6 11. 5 12. 5
実験番号 1-18	
実験番号 1-23	9. 2
FO-053	12.0

表3.3.2-3 フライト後実験プラズマ観察実験データサマリ (1/3)

																								_		
1		11.18		13 rr: -3.7	27	Ι.	r: -2.6		1 .	r: -5.6			10 3.6			8 2. 4	• • •	·	٦٠ 		1.	rr: -3.8			rr: -4.9	1
		11—11日本	+->	3 APWT	<u>2</u>	1	6 4 P.Yr.	23. 2. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	; t	6 A Per	55 7 A	, t	5 2 PWr	2 4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	;	2 V V	8 4 ∠ 7 ∠	١ ١	7 4 5	$\Delta \Delta$	L`	2 Pwr	00	٠,	0 2 Pmr	771
			0rbi	ငှင်	-23	Orbi	-2.6	+25	Orbi		+24	Orbi	-10.5	5+22		-2.7	+ 13	1	9.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00		Orbi		+24	ı	6 -12.0	_
			=	APWr: +0.3			Δγ : -1 ΔΡγγ : -0.2	ı. [7.	APwr: 0		75小後(APWr: -5.4		١.	ΔV +1 ΔPWr: +0.3		75小後	4 - 1 - 1 - 2 - 3 - 5 - 3 - 5 - 5 - 5 - 5 - 5 - 5 - 5	+12	١.	APWr: -0.3	. F	١.	APrr: -5.6	r + 7
	ルなが低船		13.2	14.2	1.0	13.6	13.8	0.2	13.1	11.8	-1.3	10.0	11.4	1.4	9.6	8.7	-0.9	10.0	1.1	1.1	12.2	13.4	1.2	9.1	11.7	2.6
温温	紅灰温度	3	225	227	2	226	233	1	239	242	3	236	243	7	225	236	=	223	227	4	227	234	7	235	239	4
<u></u>	判		106.6	104. 1	-2.5	107.4	103.2	-4.2	125.6	121.5	-4.1	120.8	116.1	-4.7	106.9	106.9	0.0	107.1	102.0	-5.1	107.1	101.8	-5.3	122.1	115.3	-6.8
*	#2 EE	3	410	405	-5	413	403	-10	416	405	-11	415	403	-12	411	399	-12	412	397	-15	412	396	-16	418	399	-19
火廠	第、	(BA)	260	257	ကို	260	256	-4	302	300	-2	291	288	£-3	260	268	∞	260	257	-3	260	257	£-	292	289	ည
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(Torr)	30, 51	29.91	-0.6	32.73	34.07	1.34	30.41	30, 20	-0.21	32. 73	33.68	0.95	32, 44	33. 58	1.14	30. 22	30.00	-0.22	32.73	34. 45	1.72	30. 22	29.91	-0.31
	とか気を		13.2	12.1	1.1	13.6	13.4	-0.2	13.1	14.4	1.3	10.0	8.5	-1.5	9.6	10.4	8.0	10.0	8.9	-1.1	12.2	1	ı	9.1	6.4	-2.7
級	治東温泉 7	- 1	207	204	-3	214	208	9-	223	218	ις	223	221	-2	218	223	5	211	509	-2	212	210	-2	828	529	-
T)I UX	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		06.3	06.4	0, 1	107.6	05.8	-1.8	125. 6	118.9	-6.7	26.2	9.92	0.4	9 '901	9.60	3.0	110.7	111.2	0.5	107.4	105.9	-1.5	27.7	27.3	-0.4
噩	:= :::::::::::::::::::::::::::::::::::	+	409	411	2	414	410	þ-	416	413	6,	418	415 1	£-3	410 1	409 1	-	413	412	-1	413	409	-4	420 1	416 1	V
錗	活(\dashv	260	259	-	790	258	-2	302	288	-14	302	305	က	260	892	&	892	270	2	260	259		304	306	2
X	7	\dashv	30, 99	31, 55	0.56	31.37	31.74	0.37	31.08	31.55	0.47	31. 28	31.65	0.37	31. 28	31. 65	0.37	30.89	31.55	0.66	31. 28	31.74	0.48	30. 99	31.65	99 .0
火颗終了	Par ON	_	1	69:32:51	1.	1	13:12:08	-	ı	6:25:09	l	ı	59:42:07	ļ	i	9:56:09	1	-	9:35:36	1	1	10:25:09	1		9:38:16	1
	が記録に対している。	,	1	31:33		-	29:14	_	-	28:21	-	1	29:11	1	-	28:30	ı	ı	29:14	1	ı	29:36	1	- 1	29:16	-
7.07	大道県三大道県10人では、10人で	75.40	1:07	1:46	0:39	1:09	1:46	0:37	1:01	0:53	-0:08	1:05	0:53	-0:12	1:10	0:53	-0:17	1:09	1:47	0:38	1:10	0:53	-0:17	1:02	0:54	-0:08
1 210		100.11	6:31	6:13	-0:18	6:32	6:13	-0:19	62:9	6:13	-0:16	6:26	6:13	-0:13	10:42	10:39	-0:03	6:32	6:12	-0:20	6:32	7:06	0:34	6:28	7:06	0:38
16.114.8	大田 大田 大田 東京 大田 大田 大田 大田 東京 大田 東田 大田 東西 田田	7.60	1	18:41	1	ı	16:52	. –	ı	18:40	ı	ı	18:40	_	ı	17:45	ı		17:45	-	1	18:40	-	1	17:47	1
	/		7ライト後TEST	ON-ORBIT	∠ (08T-1G)	754A後TEST	ON-ORBIT	△ (08T-1G)	フライト後TEST	ON-ORBIT	∠ (08T-1G)	フライト後TEST	ON-ORBIT	△ (0BT-1G)	75小後TEST	ON-ORBIT	△ (08T-16)	フライト後TEST	ON-ORBIT	△ (08T-1G)	フライト後TEST	ON-ORBIT	△ (08T-1G)	フライト後TEST	ON-ORBIT	A (0BT-1G)
	/ (*) (*) (*)	r	7.	1-20	FO-060	7,	1-8	F0-061	75	1-1	FO-062 A	75	1-10	F0-063	7.5	1-25 ON	F0-064	77	1-14 0	FO-065 A	7.7	1-20 0	FO-066	7.5	1-13 0	FO-067

サクセスレベル

表3.3.2-3 フライト後実験プラズマ観察実験データサマリ (2/3)

・サクセスレベル

フィシェン

16 II -54 -14.1 -1.74 +22 1611 -48 -12. 5 +1. 55 +21 1G II -3 -1. 2 -1. 06 +11 16 II -51 -15.7 +1.74 +25 1G II -5 -2. 1 +1. 07 +17 16 II -52 -15. 9 -1. 94 +26 一開始直後 7741½ 0rbit ∠Pr 0 -34 ∠Pr 0.0 -10.7 ∠Pr 1 ∠Pr +2.13 +2.90 ∠Pr 1 ∠T +2.6 +31 ∠T 1 - AV +2 -8 AV : - APwr: -2.7 -7.0 APwr: AP -0.67 -1.74 AP -1.74 7444 7444 771/& Orbit

2V +4 -8 -8
2Ppr: -2.2 -7.3
2P -0.77 -1.65
2T +11 +13 771/& Orbit AV -1 -5 APW: -0.3 -2.1 AP +1.55 +2.23 AT +118 +22 771後 Orbit △V : -2 -42 △Pwr: -0.5 -10.9 ∠ △P +1.84 +2.71 ∠ △T : +17 +27 △ Orbit -14 -4.9 +2.71 +22 7711後 +2 +0.2 +1.74 +15 菜 7477 747会終 信成(で) 10.5 9.7 9.3 13.0 9.2 8.9 10.3 1.4 12.8 9.9 9.1 2.3 0 o. 旧奏唱成 (C) 237 246 6 205 6 207 211 242 255 13 258 256 267 11 256 15 207 105.3 120. 5 115. 2 104.5 # (*) 1.3 -2.4 0 3 6 ŝ 5. လု 105. 6. -10. 125. -13. 124. 00 102. 99. 108. 101 æ. S 粱 416 414 -14 402 395 -2 386 397 \equiv 405 9-405 9--23 385 430 -40 391 -36 蝵 ₹. 260 258 4--2 2-2 260 260 4 260 260 292 4 292 291 it (II) 261 JE JJ (Torr) 82 42 45 1.63 26 94 48 1.33 38 93 යි & 1.45 35 32 33 22 :: 25 97 22 ... 87 22 5 20. 32. ợ 22. 20. ė. 22. 24. 50. 49. Ó. 54. 50. ö 53. 747年巻 高坂(で) 13.0 -1.2 12.8 11.7 2 8.9 9.1 ıo 9.7 6 ė. જાં ó. ςį g. œ. 6 8 o, 0 6 ٠ 高機能成(で) 2 -2 193 -2 0 7 10 222 196 199 ī 193 221 Ξ 237 230 231 -1.4 (M) 112. 2 0 0 છં 10. 10. ö ó ≈ 05. Ġ. Ó. ¥ 8 8 06. 03 03. 98. 00 24. 23. 131 ₩ 7E == 417 2 412 ႏ 19 -2 398 403 406 424 427 432 427 397 ≦¥ Ή. ∰ (mλ) -2 2--2 268 270 2 269 260 292 292 259 $\overline{}$ 268 260 304 11: J) (Torr) 48 74 59 13 65 59 53 13 65 38 19 28 90 48 48 09 0 o. 31. ö 0 21. ö 0 50. 51. 2 21. 21. 51. 21. 22 51. 51 2 03 05 . 56 80 Pwr ON 新過時間 22 :07 21 12 _ 11:26: 46: 47: 26: 1 £. 1 1 8 46: - 57: 8 021 10: 03: 03 2 57 ガース 単田時間 (分:多) 25:16 \$ 03 30 22 7 32 1 1 1: 1 1 28: 1 1 26: 33. :92 26: 30: 3 AT40℃ 片価時間 (分: 多) 1:13 -0:10 1:14 1:46 1:13 -0:18 1:12 1:46 -0:18 1:46 1:05 1:09 0:53 0:32 0:33 0:53 33 0:53 1:04 1:1 0:34 Ö 0 次数用力 好用時間 (分:多) 6:13 6:13 6:13 6:42 0:16 6:40 -0:27 6:13 6:12 0:04 0:04 6:25 0:28 -0:29 7:02 60 60 13 0:41 6:41 -0:01 00 が大用力 岩田専門 (3):***) 45 33 32 38 32 38 3834 34 1 1 1 1 1 .. 17: 19: 9: ... 19: 8 6 8 7ライト後TEST ON-ORBIT フライト後TEST ON-ORBIT プライト後TEST ON-ORBIT 754k後TEST ON-ORBIT フライト後TEST ON-ORBIT 7ライト後TEST ON-ORBIT フライト後TEST ON~ORBIT フライト後TEST フライト後TEST ON-ORBIT A (08T-10) △ (08T-10) △ (08T-1¢) A (0BT-1G) A (0BT-1G) △ (0BT-1G) ON-ORBIT △ (0BT-1G) A (08T-16) ∠ (0BT-1 F0-078 077 890 1-15 1-22 多る 1-21 1-5 1-1 1-3 1-7 1-6 1-9

表3.3.2-3 フライト後実験プラズマ観察実験データサマリ (3/3)

ガフィジエント・サクセスレベル

		T																					
	開始直移	101	1GII AV:-51 APwr:-15.6 AP:+1.07 AT:+6			1G II APwr: -2.6 AP : +0.77 AT : +20			16 II 17 : -20 27 : -5.9 27 : +1.35 27 : +21			1G II AP : -7 APPr: -2.2 AP : +1.26 AT : +20			1G II AV : -9 APWr: -3.3 AP : +0.29 AT : +14			1G II V : -54 Pwr: -16.6 P : +0.19 T : +22			16 II 27 : -47 28 : -14.2 29 : +1.25 21 : +23		
1	華 道	hit	43 19.9 <u>A</u>	1. 45 2 2	1	0rbit -59 2 -15.2 2 -1.74 2 +21			0rbit -59			445						0rbit -78 AV -23.8 APwr -2.03 AP +26 AT			0rbit -73 -28.2 4 +1.74 4 +20		
是		10 84	7547後 Orbit -3 -43 r: -5.6 -19.9 : +1.26 +1.45 : +6 +4			754/後 0r: +2 r: +0.5 -0.29 : +19			754/後 0r : +3 r: -2.6 - +1.74 + : +25 +		·後 Orbi	754%後 0r +4 : +1 : +1.35 +15			754F後 Orbit : 0 r: 0 -0.68			75个6後 Ort : +3 -7 r: +0.4 -2 : -0.29 -2 : +27 +2			774/後 0rl : -9 -/ r: -8 -/ +1.64 +/		
		77.4	ΔV :-	4 + 	77.	APwr: +	7 Z	77.4	APyr:	+ +	17.1		4 4 	751	2 V	4 4 	1	ΔV : +; ΔPvr: +;	4 4 	17.1	APyr: -5		
	7747年終 (で)	8 6	-	1.6	10.3	11.0	0.7	8.6	9.6	1.0	11.5			12.5			11.7	14.1	2.4	9.2	10.8	1.6	
温	后表記版 7	257	270	13	243	254	=	247	258	=	223			221			260	569	6	256	569	13	
Ţ Ē	# (F)		110.0	-15.9	111.8	91.9	-19.9	113.4	91.8	21.6	108.4			107.6			127.7	03.1	-24.6	26.7	05.0	-24.7	
滋	# # #	+-	-	-48	430	356	-74	436	353	-83	417			414			439	358	-81	434 1	354 1	-80	
錖	, (BA)		288	7	260	258	-2	260	260	0	260			260			291	288	-ع	292	288	4-	
Ϋ́.	71: 72 ": (Torr)		53. 12	0.67	50.71	49.64	-1.07	52.74	53. 70	0.96	32. 63			30.31			50.61	49.54	-1.07	52.83	53.31	0.48	
	7747年8月 7	1	 	-1.6	10.3	9.6	-0.7	8.6	7.5	-1.1	11.5			12.5			11.7 5	9.3	-2.4	9.2 5	7.5 5	-1.7	
級	電板循度 77 (で) 強	251	566	15	224	233	6	222	238	91	208			207			233	243	10	246	249	3	
ih hi	(E) (E)	1	29.9	-1.6	111.3	107.1	-4.2	116.0	111.2	-4.8	107.4	+		107.6			27.3 2	26.9 2	-0.4	34.7 2	30.2	-4.5	
- -	H (S)	+	425 13	6	428	415 10	-13	433	412	-21	413 10	-		414 10			436 12	436 12	0	 -	427 13	- 16 -	
≨ ≨	11. VAE 11. (mA)	303	304	_	7 092	, 258	- 2-	7 892	270 ,	. 2	7 092			260 4			7 762	291	-	304 4	305 4	1	
Χ.	11: 11 11 (Torr)	51.19	51.67	0.48	51.00	51.38	0.38	51.00	51.86	98.0	31.28	1		30.99			50.90	51.57	0.67	51.19	51.57	0.38	
×.		+	; 			3:41:05 5		22									35	\ 2		19		0	
火粉株了	Pwr ON Mexicon Mexi		0 10:47:08		1			 	3 10:31:19				\ -					\		1	11:47:08		
-'I	(多:多)		30:50	l	1	31:09	ı	1-	31:19	i	1			1	:	DOMESTICAL PROPERTY OF THE PRO	-	31:16	ı	1	31:01	1	
7.740%	(多:多)	1:07	0:54	-0.13	1:20	1:47	0:27	1:12	1:47	0:35	1:13			1:13			1:06	0:53	-0:13	1:07	0:54	-0:13	
10.20 (13.1)	(多:多)	11:10	11:32	0:22	6:13	6:12	-0:01	6:12	6:12	00:0	6:33			6:31			60:9	6:13	0:04	6:07	6:12	0:05	
11:114:31	第12章 大郎寺記 (名: 章) (A:		18:40	1		18:41	1		17:47	1	ı		1	ı			1 -	18:41	ı	1	18:41	1	
-		フライト後 TEST	ON-ORBIT	∠ (0BT-1G)	フライト後TEST	ON-ORBIT	⊿ (0BT-1G)	フライト後 TEST	ON-ORBIT	△ (0BT-1G)	フライト後TEST	ON-ORBIT	△ (08T-1G)	フライト後TEST	ON-ORBIT	⊿ (08T-1G)	フライト後 TEST	ON-ORBIT	(0BT-1G)	フライト後TEST	ON-ORBIT	∠ (08T-1G)	
	/ 祭 o ·	75	1-26 0	F0-079	7.	1-17 0	F0-080	75	1-19	F0-081	75	1-27 0	F0-058	75	1-28 0	F0-057 A	77	1-18	F0-082 \(\triangle (0BT-1G)	75	1-23	F0-083	

表3.3.2-4 GDEFフライト後実験ダイヤモンド成長実験データサマリ

急水	終了真前一開始直後	Jrbit	-9,5 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-1.20 2F :	0rbit 16II -37			rbit	-38 AV -38	-1.16 AF +26 AT)rbit	-12.1 \\\ \rangle \text{Pvr} \cdot \-11.1 \\\ \rangle \text{Apvr} \cdot \cdot \cdot \cdot \\ \rangle \cdot \	-1, 16 AF :	Orbit 1GI -28		
	**		APWr: -4.5			ZPwr: -5			APyr: -5		75小後	APWr: -5.2	ZT : -0.06	75小後	APWr: -5.9	
_	ルわル桁 温度(で)	17.5	15.4	-2.1	14.5	15.6	1.1	15.0	15.4	0.4	14.0	15.2	1.2	17.5	9.4	-8.1
温	電機循版 (*C)	828	231	က	230	227	£-	226	231	+5	230	233	£÷	242	235	L-
_	(∰) (∰)	103.6	96.8	-6.8	105.8	96.8	-9.0	104.0	95.5	-8.5	103.7	94.2	-9.5	104.0	98.0	-6.0
	(X) 11:	400	378	-22	407	378	-29	400	373	-27	388	368	-31	403	385	-18
※ ※	it it (mA)	259	256	-3	260	256	Þ-	260	256	þ-	260	256	\$ -	258	256	-2
	JE JJ (Torr)	30.41	30, 29	-0.12	30.31	30, 39	0.08	30, 22	30.39	-0.17	30.31	30.39	-0.08	39.98	37.26	-2.72
	7レオングに松 仏((*)(*)	17.5	11.5	-6.0	14.5	10.7	-3.8	15.0	13.6	-1.4	14.0	9.5	-4.5	17.5	16.0	-1.5
海	:旧奏偏波 (で)	211	204	L-	207	200	<i>l</i> -	214	205	6	213	206	1-	216	207	6-
	'(¶) (¶)	108.1	106.3	-1.8	108.9	107.9	-1.0	109.0	106.3	-2.7	108.9	106.3	-2.6	109.9	111.1	1.2
E	(V)	419	409	-10	419	415	b -	421	412	6-	419	412	L-	413	413	0
以 : 数 -	ili (Mt (mA)	258	260	2	260	260	0	259	258	7	260	258	-2	366	569	က
	/I: // (Torr)	30, 99	31, 55	0.56	31.08	31, 55	0.47	30.99	31.55	0.56	30.99	31.55	0.56	31.28	31.74	0.46
大阪教工	Pwr ON KH.過時間	ŧ	10:58:15	i	-	11:42:43	ı	-	12:11:30	Ι	I	12:42:21	1	1	10:56:01	I
ガス	表記時間 (分:移)	33:12	31:57	-1:15	33:33	30:30	-3:08	30:26	30:41	-0:53	32:16	29:42	-2:44	36:26	28:54	-7:32
7110°C	牙配時間 財間時間 (分:秒) (分:秒)	1:11	1:16	0:05	1:12	1:14	0:02	1:23	1:17	90:0-	1:18	1:15	-0:03	1:10	1:13	0:03
2.数月.万	74.1E時間 (分:秒)	6:28	6:36	80:0	6:31	6:34	0:03	6:28	6:38	0:10	6:28	6:38	0:10	82:9	6:34	90:0
7. 大川 力	75.15 (分:45)	ı	17:29	l	1	17:44	1	1	16:47	1	ı	17:02	ı	1	17:27	ı
		75小核TEST	ON-ORBIT	F0-056 \(\triangle (0BT-1G) \)	フライト後TEST	ON-ORBIT	F0-072 A (0BT-1G)	フライト後TEST	ON-ORBIT	F0-084 \(\triangle (0BT-1G)	フライト後TEST	ON-ORBIT	F0-085 A (0BT-1G)	フライト後TEST	ON-ORBIT	F0-059 A (0BT-1G)
	N S S S	17	2- 1	F0-056	17	2- 2	F0-072	,`	2-3	F0-084	<u> </u>	2- 4	F0-085		ج - -	FO-059

3. 4 GDEF運用のまとめ

GDEFは、1995年3月18日に $H-\Pi$ ロケット3号機により打上げられ、1995年3月27日から8月14日までの延べ約5ヶ月にわたり、予定された全29実験(プラズマ観察実験およびダイヤモンド成長実験)、および追加実験として微小重力計測実験等4実験を行い、全て問題なく実施することが出来た。

本実験で得られた実験データに関しては、微小重力環境下において取得された24枚のプラズマ発光画像、および5つの生成ダイヤモンドも無事回収され、軌道上運用時に得られたプラズマ電力等の実験データおよびプラズマスペクトルデータと共に、微小重力環境下における気相に係わるプラズマCVD実験として有意義なデータを取得することができたと判断する。

また、画像取得装置ならびに流量制御装置に民生品を搭載化して使用するとともに、 DCプラズマ実験装置の小型軽量化および省電力化を実現してダイヤモンド生成を行 うことのできる装置を開発できたことも、大きな成果となったと言える。

したがって、GDEFは、その開発から軌道上運用を通して、微小重力環境下における気相からのダイヤモンド結晶成長技術および今後の宇宙実験装置開発に必要となる基礎技術の取得を行うことができたものと考える。

3.5 装置側からみた今後の宇宙実験ミッションへの要望

GDEFのシステム試験、フライト実験および各種地上実験を通して判明した問題点等を踏まえ、今後、プラズマCVD用実験装置を開発する上で反映すべき事項ならびに課題点を以下に示す。

(1) 取得画像の情報量の増加

プラズマ発光画像の取得方法については、開発当初の計画としては、プラズマ放電状態の時間的な推移を確認できるVTRの搭載、並びに画像データを地上へダウンリンクすることも検討されていた。しかし、SFUより割り当てられた電力、重量ならびにデータ伝送量等のリソースに制限があったため、それらの計画は実現不可能であった。

これらの事由により、本実験装置に搭載された画像取得装置は、静止画像のみの取得に留まった。

したがって、今後開発する実験装置には、連続画像の取得が可能であり、 更に測定分解能が高く画像処理上優位な、デジタル方式のVTRあるいはハイビジョン方式で記録する装置の搭載化が必要と考えられる。装置開発、ならびに実験装置が搭載される衛星等のバス機器側との調整に当たっては、画像データを地上へダウンリンクすることを前提とする必要があると考える。

(2) ガス濃度の調整機能の付加

プラズマCVD実験において、ダイヤモンドの成長速度および生成物質の 最適化を計るためには、放電電流密度および基材温度の確保と同時に、メタ ンガスの濃度の最適化が重要である。また、原料ガスの濃度を任意に可変に 出来ることは、実験条件の範囲を広げることにつながる。

したがって、本実験装置においては、2つのガスボンベに、2種類のメタン濃度の異なるガスを充填して実験を行ったが、今後開発する実験装置としては、水素とメタンガスをそれぞれ別々に貯蔵し、流量制御器の流量を任意に可変して混合器内で混合させ、任意のメタン濃度のガスを作って実験できるような構成とすることが望まれる。

(3) 低圧力用高精度・高信頼性圧力センサの開発

本実験装置においては、印加電圧が低い条件下においてプラズマ放電を発生させ、かつダイヤモンドを生成させるために、実験時の反応容器内の圧力を0~100Torrの範囲で制御し、かつ、少なくとも1Torr単位で測定できる精度を持った圧力センサが必要であった。尚、着火時の圧力は、着火時のプラズマ放電の安定性を左右する重要なパラメータである。

しかし、現状では $0\sim100$ Torrの範囲を測定することができる宇宙用の圧力センサが無いために、宇宙用圧力センサとして最も低圧力用のもの(測定範囲:1.2kgf/cm 2 AF·S)を $0\sim100$ Torrで再較正して使用している。

そのため、実験上特に問題は発生していないものの、経年変化により、打上げのためEFFU/SFU側へ引き渡してから回収までの約2年間で約0.6Torrの圧力変動が発生していた。

したがって、実験装置を長時間運用するためには、プラズマCVD実験が行われる圧力範囲に適合した高精度・高信頼性圧力センサの開発が必要である。

また、万一、圧力センサの較正値が大幅に変動した場合でも対応ができる様に、制御装置の設定内容を変更できるシステムを確立する必要があると考える。

(4) リーク確認およびガス置換に要する時間の短縮

プラズマCVD実験においては、反応容器およびガス供給系内の清浄保持および実験ガス以外のガス成分の排除を行う必要がある。そのため、実験ガスの充填および実験の実施に当たっては、リーク確認ならびに実験ガスによるガス置換が不可欠である。本実験装置においても、各開発試験、地上実験並びにフライト実験の実施に先だって、リーク確認並びにガス置換を行っているが、ガス供給系を構成する配管の径が細く、また実装上の問題より変節点が多く、またオリフィスが配されていたために、真空排気に多大な時間を要してしまっている。

したがって、開発コストの削減のためにも、NASAの安全要求を考慮し

た上で、配管のレイアウトを検討し圧力インピーダンスを小さくするととも に、真空排気専用のラインを付加する等、設計に反映する必要がある。

(5) 実験条件および実験パラメータの早期確定

本実験装置の開発に当たっては、2.4項に示したように、地上モデルを基 に小型軽量化ならびに省電力化を計り、装置の開発を行った。しかし、装置 を開発する上では新規性が高く、また実験条件の変更に伴う装置への反映事 項が多く、最適化を計るまでに多大な時間を要している。

また、実験条件ならびに実験パラメータ等については、BBMモデルを使用して検証を行ったものの、BBMモデルとFMモデルとの個体差および各種条件により確定することができず、最終的には、反応容器とプラズマ加熱器のEMモデルを用いた地上評価用の実験装置を新たに製作して、実験ならびに評価を行い、最適条件の確認を行った。

このことから、今後の実験装置の開発においては、実験条件を早期に確定させると共に、極力FMモデルと同等の特性を有するモデルを製作し、実験を行い、実験条件ならびに実験パラメータの妥当性を評価しておく必要がある。

(6) 反応容器のベーキング方法

工場出荷後打上げまでの数ヶ月の間、反応容器内の状態をダイヤモンド合成に影響を与えないように保持しておくことは困難であると考える。

今回の実験においては、工場出荷前にArガス(1.4kg/cm²A)にて封入を行い、打上げに供しているものの、充分な管理とは言えない。

そのため、より良い実験条件を確保するためには、今回実施したように、 地上においてはガス封入を施し、軌道上においては、実験開始前に水素ガス にてプラズマ放電を行うことにより反応容器全体をベーキングし、吸着して いる水分等を除去した後実験を行う手順とする必要があると考える。

(7) 陽極基材表面温度の測定

本実験装置の開発に当たっては、搭載容積、リソースならびに開発条件等の問題から、直接陽極基材上の温度を測定することができなかった。そのため、本実験においては、陽極基材を固定しているホルダ部の温度を熱電対によりモニタし、地上実験の際に非接触温度計にて取得した基材表面温度との関連から、軌道上実験における基材表面温度を推察している。しかし、各実験条件における陽極基材上の温度を正確に取得し、ダイヤモンドの生成状態を把握するためには、非接触温度計を実装し、リアルタイムでモニタする必要がある。

今後、同様な実験を行う場合には、搭載用の非接触温度計を開発し、搭載することが望まれる。

第 II 編 GDEFの実験結果

1. 航空機を用いた微小重力予備実験結果

1. 1 実験概要

気相からの結晶成長は、高品質の単結晶や機能性材料を得る最も有力な手法の一つである。しかしながら、CVD法などの気相成長では、化学反応のための活性化エネルギーの供給や固体原料の蒸発などのために実験系の加熱が不可欠であり、地上では、熱対流による擾乱は避けて通ることのできない課題である。地上におけるCVD法による材料製造では、重力に起因するこの種の擾乱を低減させるために、外部から大量のガスを定常的に流入排出し、強制流(層流)支配下で成長させる手法がとられている。したがって、地上の世界に限ってみれば、完全な拡散支配下での結晶成長は一つの夢と考えられていた。

一方、宇宙の微小重力環境下では、温度差に起因する熱対流が大幅に低減し、熱や 反応ガスなどの物質の輸送が拡散支配下に近づくことが知られている。したがって、 宇宙における気相合成法では、地上では防ぐことのできない熱対流の影響を低減させ た条件のもとで化学反応を行い、さらに基板上へ拡散律速のもとで反応物質となる活 性化学種を運ぶことができるものと期待される。このため、宇宙の微小重力環境特性 を利用すれば、対流の擾乱のない条件のもとで、気体の輸送過程、反応のメカニズム、 核形成やその成長過程などの気相成長に係る基本的なデータを取得することも可能で ある。

閉管系を含めると、気相成長に関する宇宙実験は1970年代のスカイラブの時代から行われておりその歴史は古いが、微小重力下における気相の流れ挙動に関する直接的な計測実験は例がなく、その知見は必ずしも明確ではない。したがって、宇宙において気相成長実験を取り行うためには、まず始めに気相対流に及ぼす重力の効果を明らかにする必要がある。

本研究は、以上の認識に立ち、航空機による微小重力環境を利用して熱対流挙動の計測を行い、気相流体の流れに及ぼす重力の効果を実験的に明らかにすることを目的として行ったものである。

なお、本実験は、1994年に我が国のH-II ロケットを用いて打ち上げられる宇宙実験・観測フリーフライヤ(SFU:Space Flyer Unit)に搭載されるSFU搭載機器部気相成長基礎実験装置(EFFU/GDEF:Exposed Facility Flyer Unit/Gas Dynamics Experiment Facility)を用いた軌道上実験の予備実験として行った。

1. 2 実験方法

SFU/EFFU/GDEF計画では、宇宙の微小重力環境下において直流放電によるプラズマCVD法によりダイヤモンドの気相合成を行う予定である。一般に、ダイヤモンドの気相成長法としては、メタンー水素系が用いられている。この系では、メタンの濃度は高々数%なので、流体力学的には、系の流体を水素で近似することが許される。

また、水素は2原子分子であり、高温では解離に伴う熱流体特性の大幅な変化が危惧されるが、3000K程度までは解離度は数%程度であり、流体としては水素分子の一成分系としての取り扱いが許される。しかしながら、本実験はMU-300航空機を用いた定常実験の初年度に行うものであり、安全面で慎重を期し、試料ガスとしては熱物性値が水素分子に極めて近いヘリウムで代用した。

本実験系の概要を模式的に図1.2-1に示した。直径200mm、高さ200mmの円筒状の反応容器中にヘリウムを封入あるいは定常的に循環させ、反応容器の中央に配置した基板を加熱することにより熱対流を発生させた。基板および反応容器の温度は、外部からそれぞれ独立に制御した。気体の流れパターンは、容器中の気体にトレーサ微粒子(TiO_2 あるいはp-ヒドロキシクマリンのいずれかを用いた)を気体中に微量注入することにより可視化した。なお、スライス状の白色光を観察軸の直角横方向から容器中に導入し、トレーサからの散乱強度を高めることにより、観察画像をより明瞭なものにした。

また、熱線プローブ型温度センサーを反応容器中に配置し、基板上の定点(基板の上端から25mm上方)における気体の温度変化を計測した。これらから得られるデータを用いて、流れ場の解析を行い、気相対流に及ぼす重力変動の効果を検討した。本実験のパラメーターを表1.2-1に示した。

1.3 実験結果および考察

(1) 対流パターンおよび流速に及ぼす重力の効果

基板温度を300℃に設定し、Heガスの内圧を60Torr(平衡圧力)に保った場合の放物飛行中のガス流れパターンを図1.3-1に示した。図1.3-1は、画像処理によりコントラストを強調して示している。また、図1.3-1の観察視野は、反応容器の直径が200mmであるのに対して、横方向で約60mmである。

通常の重力環境下(図1.3-1(A))では、この圧力においても基板からの熱供給に起因する熱対流が存在し、反応容器内の気体は基板付近で上昇流となる。また、対流流速は、あとに示すようにトレーサ粒子の拡散速度よりも大きい。このため、基板上面付近はガス流れのウェーク空間となるので、トレーサ粒子はこの領域に回り込むことができない。したがって、この部分ではトレーサ粒子の濃度は小さく、散乱強度が小さいことから画像上では暗く見えることになる。一方、図1.3-1(A)の白く見える領域がトレーサ粒子からの散乱光強度の大きい部位であり、この白い部分と暗部の境界線が熱対流の流線に対応している。なお、この流線は、圧縮性流体の流れ場の数値解法であるICE法をもとに、境界条件および収束判定条件に関して本実験条件を考慮して改良・工夫を加えた数値シミュレーション結果ともよい対応を示している。図1.3-1の(A)の実験条件に対応する数値シミュレーションによるフローパターンを図1.3-2に示した。図1.3-2で破線の四角で囲った部分が本実験における観察視野である。なお、この数値シミュレーションにより求めた定常状態における流速は194mm/sであり、そ

れは次節で示す実験値ともよい対応を示している。

なお、気体の圧力や基板温度条件を変えた実験から、このような1g条件下での熱対流は、基板の温度が40℃、圧力が20Torrにおいても存在していることがわかった。

図1.3-1(C)は、微小重力環境に入って1秒後の、図1.3-1(D)および(E)は同じく3秒後および9秒後の対流パターンの観察像である。図から明らかなようにほぼ2~3秒でガスの流れが停止し、対流存在下では明瞭であった流線が消失し、全体が均質の暗い像となる。これは、輸送が対流支配から拡散支配に移行しトレーサの分布が空間的に均質化したためと考えられる。一方、微小重力に入って約20秒経過すると、航空機は放物飛行を離れるため再び2g環境下におかれる。これにより、熱対流はほぼ瞬時に引き起こされ2~3秒で定常状態に達することがわかった(図1.3-1(F))。

熱対流の流速が定常状態に達する時間 (τ) のオーダーは、

$$\tau ≒ L^2 / \nu$$
(L:系の代表長、 ν :動粘性係数) (1)

で示される。本実験系における代表長を反応容器の半径L=100mmにとると $\tau \leftrightarrows 2.5$ 秒であり、実験結果と理論値はよい対応を示している。

また、図1.3-1から、重力加速度の大きい環境下では(図1.3-1(B))、図1.3-1(A)と比較するとわかるように、流線が容器の中心軸によるが、これは、重力加速度の増加により、後に示すように、対流流速が大きくなり、基板近傍での境界層が薄くなったためと説明できる。

図1.3-3には、基板温度を300℃に設定し、全圧を40Torrにした場合の重力と流速(最大流速)を示した。この場合、対流流速は、p-ヒドロキシクマリン粒子をトレーサとして使用し、画像解析により、トレーサの軌跡を追うことにより算出した。図からわかるように、対流流速は重力に大きく存在している。すなわち、1g下では平均180mm/sであった流速が2.3g下では340mm/sまで加速され、微小重力環境になると、約2~3秒の時間で、ほぼ0mm/sまで低下している。微小重力環境下での流速データが一部欠落しているのは、微小重力下では対流が停止し、基板近傍にあるガスはこの付近に滞留するため発熱体である基板からの熱供給を直接受けるためにガスが膨張し、これに伴いトレーサ粒子が観察の視野外に押しやられたため計測不能となったからである。

(2) 微小重力下でのガス対流に及ぼす強制流の効果

GDEFにおけるダイヤモンド成長実験は原料ガスの供給のために、フロー系(開放系:~40SCCM)で行うことを計画している。微小重力下では熱対流による物質輸送はほぼ0になると見なせることは前節までに示した実験により明らかになったが、微小重力下において強制フローが系に与える影響を予め計測する必要がある。フライト実験の計画では、ガス圧40Torrにおいて、40SCCMの流入、流出があるが、これが与

えるガスの流れの大きさは、ガスが容器の下方から上方に均一に流れると仮定すると、

V=Vex (SCCM) ×
$$\frac{760(Torr)}{p(Torr)}$$
 × $\frac{1}{\pi r^2(cm^2)}$ = 0.04cm/s

(V:流速, Vex:流入量, r:容器半径, p:圧力) (2)

であり、熱対流の大きさに比べて、無視し得る大きさであることが予想できる。実際、航空機の微小重力のフライト中にフロー系 (0~100SCCM) の実験を行ったが、強制対流によるフローパターンの変化は、重力環境のゆらぎによる微小な変動よりも小さく、その影響は認められなかった。

(3) 微小重力下でのガス温度のゆらぎ

図1.3-4には、微小重力下での熱線プローブによるガス温度の計測結果を示した。この図に示した実験における基板の温度は800℃、圧力は100Torrである。図1.3-4の下のグラフが重力加速度、上が基板上25tmmの位置における気体の温度である。図1.3-4において微小重力開始約20秒前にガス温度が急激に下がりその後急速に元に戻るのは、反応容器中に常温のヘリウムガスでシードしたトレーサ微粒子を注入したためである。図1.3-4からわかるように、基板上25tmmの位置における気体の温度は、tgや、tg条件下に比べて微小重力環境下では約60℃も低下する。これは、熱源である基板からの熱輸送が、tgやtg条件下では図1.3-3に示したように強い対流支配で行われるのに対し、微小重力環境下では輻射と伝導モードのみに限定されるためと考えられる。

一方、図1.3-5は、図1.3-4の微小重力の部分を拡大して示したものである。興味深いことに1gや2gなどの重力存在下では見られなかった微小な重力変動に対応した気体温度のゆらぎが明確に示されている。温度変動幅は大きいところで50℃にも達している。また温度ゆらぎの位相は、重力変動のそれから0.3秒程度遅れている。これは重力の変化に対するガス系の運動の応答時間とみることができる。

また、航空機の残留重力は、図1.3-5にAで示した周期2.12s(振動数0.47Hz)の低振動数成分と、Bで示した周期0.17s(振動数6.1Hz)の高い振動数を持つ2つが主成分になっていることがわかる。前者の加速度の変動振幅は平均して0.05g、後者では0.01gである(ここで、gは地上における重力加速度:980cm/s²を示すものとする)。気体の温度変動をみると、Aの重力変動に対応した変化は明確に認められるものの、Bについては必ずしも明確な対応は認められない。すなわち、低振動数成分の重力変動の方が高い振動数をもつ重力変動に比べて強く気体の温度ゆらぎを誘起することを示している。このような微小重力下での残留重力変動による気体温度のゆらぎ、すなわち不安定性の誘起は、今回の航空機実験により実験的にはじめて明らかにされたものである。

(4) 気相対流に及ぼす重力変動の効果

前節において、GDEFで計画している実験条件の範囲では、数十Torrの低圧下でも1g下では熱対流が存在し、微小重力への移行により2~3秒で対流がほぼ停止し拡散支配の系となることを示した。しかしながら、微小重力下では、0.05g程度の残留重力変動があっても気体の温度場は大きくゆらぐことがわかった。しかもこの温度ゆらぎの誘起については、振動数や変動強度などの重力変動条件によって効果が大きく異なる。このことは、環境条件によっては、残留重力が与える宇宙実験への影響は極めて大きくなる場合があり得ることを示している。

ここでは、残留重力の効果の評価手法として広く用いられているオーダー評価手法 (Order of Magnitude Analysis: OMA) を用いて気体の温度場に与える重力変動の効果について考察する。モデル系としては、図1.3-6に示すように、系の一端の温度がTh、他端の温度がTc (Δ T=Th-Tc>0) の一様な温度勾配下に存在する一定の密度塊の運動を考えることにする。このような系に重力の変動があると、粘性が小さい場合には、重力変動が密度塊に慣性力として働きゆらぐようになる。ここで、時間の関数である重力場g (t) は、時間に依存しない定数項 g_0 と時間に依存する1成分の変動項の線形和で表現されると仮定する。

$$g(t) = g_0 + a_0 \cos 2 \pi ft$$
 (3)

(3)式右辺の第一項は定常的な残留重力であり、簡単のため第二項の重力の変動は振幅a_v、振動数fの正弦波で近似するものとする。一般に流体系のエネルギー輸送方程式は、

$$\frac{d\mathbf{T}}{dt} + \mathbf{v} \cdot \nabla \mathbf{T} = \mathbf{a} \nabla \cdot \nabla \mathbf{T} \tag{4}$$

T: 温度

a: 熱拡散率

V: 流速ベクトル

VT:温度勾配ベクトル

で示されるが、本実験のように気体を試料としているため粘性が低いので位置と時間の関数である密度塊の流速ベクトルV(r,t) は重力変動と同じ振動数fで振動するものと仮定し、さらに温度場T(r,t) も重力変動による流れのない場合の温度場 (T_0) と流れにより引き起こされる摂動項 (T_1) とに分離できる、すなわち

$$T(r, t) = T_0(r) + T_1(r) \cos 2\pi ft$$
 (5)

で表現できると仮定すると、上式から温度変動幅のオーダー $O[T_1(r)]$ は、

$$O[T_1(r)] = \frac{v \cdot \nabla T_0}{\sqrt{4\pi^2 f^2 + (a/L^2)^2}}$$
 (6)

と見積られることが知られている。ここでLは系の代表長、 ∇T_0 は重力変動による流れのないときの温度勾配ベクトル、・は内積である。同様に流れの流速(v(r))もオーダー評価することが可能であり、

$$O[v(r)] = \frac{\delta \rho}{\rho} \frac{a_0}{\sqrt{4\pi^2 f^2 + (v/L^2)^2}}$$
(7)

ここで、 ν は流体の動粘性係数、 ρ は密度、 δ ρ は系の温度勾配に対応した密度差である。この結果を(6)式に代入すると最終的に残留加速度による温度ゆらぎ δ Tは、

$$\delta T = a_0 \frac{(\nabla T/L)(\delta \rho/\rho)}{\sqrt{4\pi^2 f^2 + (\upsilon/L^2)^2} \sqrt{4\pi^2 f^2 + (a/L^2)^2}}$$
 (8)

で示される。

(8)式に本実験の実験条件を代入し、温度変動幅 δ Tを振動数fと残留重力の振幅 a_0 に対してプロットした図が、図1.3-7である。図中のAおよびBは、図1.3-5のA、Bにそれぞれ対応している。この図から明らかなように、Bで示した高い振動数成分の重力変動は約2 $^{\circ}$ 2程度の温度ゆらぎしか誘起しないのに対し、Aで示した低振動数の重力変動では重力の変動幅はBに比べ約5倍しか違わないのに、100 $^{\circ}$ 2近くもの温度変動が起こり得ることがわかる。このように、温度ゆらぎに対しては、残留重力の変動幅はもちろんのこと、むしろ振動数により大きく依存することが図1.3-7から見てとることができる。

1. 4 SFU実験に向けての結論

SFUプロジェクトは無人宇宙実験システムを利用するため、残留重力は機械振動に 起因する数十Hz以上の高い振動数が主成分となるものと想定される。したがって、軌 道上実験ではこのような残留重力の影響は小さいものと考えられる。

本実験では、航空機の微小重力環境を利用し、重力変化に伴う気相熱対流特性の挙動を計測した。1g条件下では、ガスの内圧が20Torr、基板温度が40℃においても熱対流が発生し、微小重力環境への移行により約2~3秒で対流が停止することを確認した。さらに、SFU/EFFU/GDEF計画で想定しているような強制流の範囲では、微小重力下でもこの流れがガスの挙動に影響を与えないことを示した。

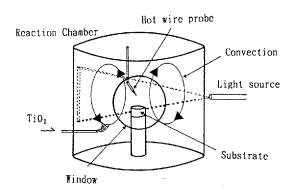


図1.2-1 本実験で使用した実験容器の概念図

表1.2-1 Experimental Conditions

Size of chamber $200\,\mathrm{mm}\,\phi \times 200\,\mathrm{mm}$ Size of model substrate $25\,\mathrm{mm}\,\phi$ Gas He
Pressure $20\mathrm{Torr}{\sim}180\mathrm{Torr}$ Gas flow $0\mathrm{SCCM}, 50\mathrm{SCCM}, 100\mathrm{SCCM}$ Temperature of substrate $60\,\mathrm{^{\circ}C}, 300\,\mathrm{^{\circ}C}, 800\,\mathrm{^{\circ}C}$ Temperature of chamber $20\,\mathrm{^{\circ}C}$

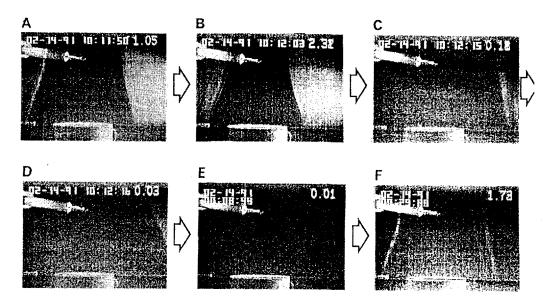


図1.3-1 流れパターンの鉛直断面図

気体の圧力は60Torr,模擬基板の温度は300℃である.

A:1.0g, B:2.3g, C:0.1g (微小重力開始1秒後)

D:0.03g(微小重力開始3秒後), E:0.01g(微小重力開始9秒後)

F:1.7g

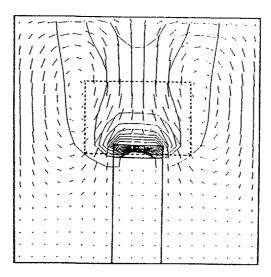


図1.3-2 ICE法を改良した数値シミュレーション法により計算した流れパターンと温度分布。 入力条件は図1.3-1(A)に示したものと同じである。波線は図1.3-1に示した写真の観察領域にあたる。流速の最大値は194mm/sである。

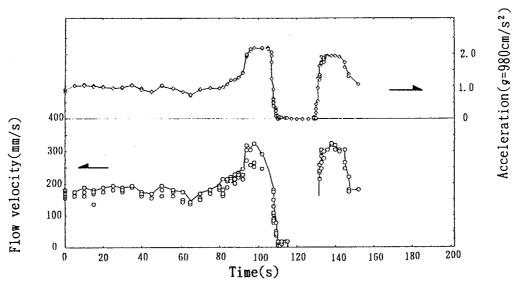


図1.3-3 流速と重力加速度. 気体の圧力は40Torr, 模擬基板の温度は300℃である.

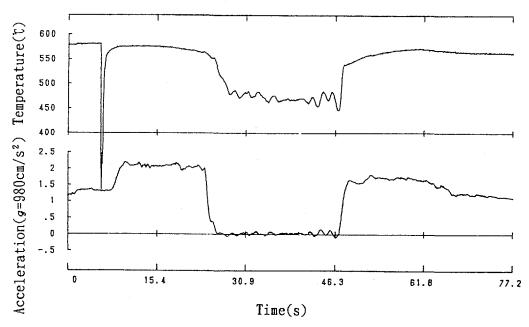


図1.3-4 模擬基板上25㎜の固定点における気体の温度(上)および重力加速度(下)

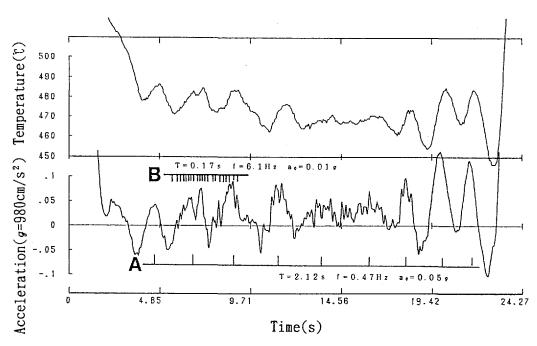
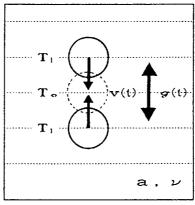



図1.3-5 図1.3-4の微小重力環境条件下の拡大図

T h

図1.3-6 残留重力変動のよる密度塊の運動の模式図

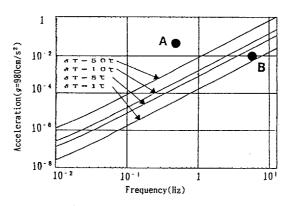


図1.3-7 残留重力の強度と振動数の関数として示された 気体の温度ゆらぎの大きさ。A と B は、それぞ れに、図1.3-4で示したMU-300の 2 つの残留重力 成分に対応している。

2. プラズマ観察実験結果

2.1 実験の目的

微小重力環境では、温度差に起因する熱対流が抑制され、熱および物質輸送機構などが地上のそれとは異なることが予想される。ここでは、種々の実験条件においてプラズマからの発光スペクトルを計測し、直流放電プラズマCVDにおけるプラズマの発生状態を地上の状態と比較することにより、プラズマ特性に与える重力の効果を明らかにすることを目的とする。

2. 2 実験方法

2. 2. 1 実験概要

(1) 実験内容

GDEF実験では、No.1電極上に生成させたプラズマについて、基板上約2mmの位置からの発光をSPMを用いて分光計測した。分光計測は、実験開始から、着火、昇圧、定常状態(15分間)、さらに消火、実験終了まで1分おきに行った。SPMは、Hのバルマー系列、 C_2 (スワンバンド)、CH、 H_2 などの発光線がある可視光域(400nm~800nm)について計測した。

また、定常状態に入って10 分後のプラズマの画像をカメラで撮影した。撮影は、 一つの実験について一枚取得した。

(2) データの取得状況

計測したSPM実験データは、SFUからのテレメトリデータとして地上で受信し、ただちにデータ処理装置に取り込んだ。実験運用の項で述べたように、「サクセスレベル」、「サフィシエントサクセスレベル」、および「エキストラサクセスレベル」までの24実験について、分光データを取得した。

(注) 「エキストラサクセスレベル」で行った微小重力環境計測実験では、SPM データは取得していない。

2. 2. 2 実験条件

(1) 着火条件

GDEFでは、3±2Torrで着火を行っている。SPMデータを見る限り、地上実験と比べて、安定に着火した。典型的な計測例を図2.2.2-1に示した。図から明らかなよ

うに、着火から安定状態に達するまでのデータのばたつきは、宇宙実験の方が大幅に 小さくなっている。

(2) 電力、温度、圧力、濃度条件

本実験の電力、温度、圧力、濃度条件は、第1編の表1.3.1-1に示している。

(3) 観察系の配置関係

発光の計測位置は、基材の上方1.6mmの部分であり、水平方向に4mm、鉛直方向に0.5mmの領域からのプラズマ発光をSPMに取り込んでいる。位置関係を図2.2.2-2に示した。

2. 2. 3 プラズマ発光分光

(1) プラズマスペクトル

メタン/水素系のプラズマ発光では、表2.2.3-1のスペクトルが観測されることが知られている。可視域に発光のある代表的なものが、Hのバルマー系列、C2(スワンバンド)、CH、H2などである。本実験では、H α 、H β 、H γ 、C $_2$ 、CH、一連のH $_2$ バンドを計測することができた。

(2)温度測定

一般に、熱平衡プラズマ中で電子励起状態にある気体の発光スペクトル強度は、(1)で示される。

$$I = a g A / \lambda exp (-E / k T)$$
 (1)

ここで、I:発光強度、a:定数、g:統計比重、A:遷移確率、 λ :波長、E: 励起エネルギー、k:ボルツマン定数、T:温度である。したがって、気体の(励起)温度は、(2)のようになる。

$$T = -0.625 E / log (I \lambda / g A) - log a$$
 (2)

水素のバルマー系列の α , β , γ 線については統計比重などのパラメータは詳細に解析されており、これに従って、2線比較法により温度を算出した結果を表2.2.3-2に示した。表からわかるとおり、プラズマの温度は、数百度程微小重力下で減少している。

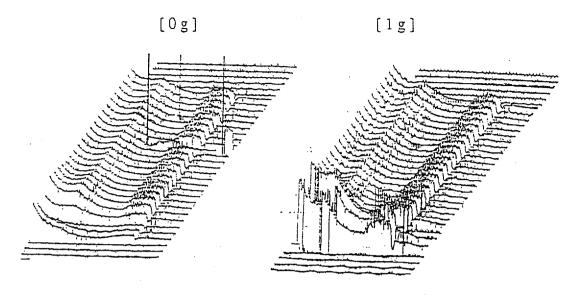


図2.2.2-1 S P M の時系列データ (実験 1 - 8)

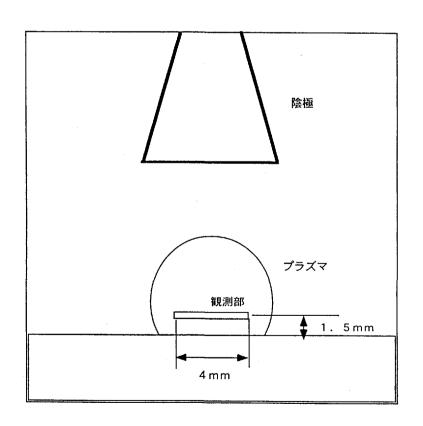


図2.2.2-2 SPMの計測位置

表 2. 2. 3-1 メタン/水素系のスペクトル (1/2)

化学種	波長 (nm)	帰属	備考
Н	656.3	$n = 3 \rightarrow n = 2$	Balmer (H α)
	486.1	$n=4\rightarrow n=2$	<pre>// (H β)</pre>
	434.1	$n = 5 \rightarrow n = 2$	// (Hγ)
	410.2	$n = 6 \rightarrow n = 2$	'(Hδ)
H_2	601.6	$d^3 II u \rightarrow a^3 \Sigma g^+$	α bands, R
	448.9	$k^3 II u \rightarrow a^3 \Sigma g^+$	eta bands, R
	402.3	$n^3 II u \rightarrow a^3 \Sigma g^+$	γ bands, R
	588.4	$h^3\Sigma g^+ \rightarrow c^3 II u$	
	590.6	$g^3\Sigma g^+ \rightarrow c^3 II u$	
	582.5	$i^3 \mathbb{I} g \rightarrow c^3 \mathbb{I} u$	
	576.0	$j^3 \Delta g \rightarrow c^3 II u$	
	487.1	$f^{3}\Sigma u^{+} \rightarrow a^{3}\Sigma g^{+}$	
	442.6	$p^3\Sigma g^+ \rightarrow c^3 II u$	
•	440.4	$r^3 \mathbb{I} g \rightarrow c^3 \mathbb{I} u$	
	441.8	s³∆ g -→ c³Ⅱ u	
	429.2	$m^3 \Sigma u^+ \rightarrow a^3 \Sigma g^+$	
	394.5	$t^3\Sigma u^+ \rightarrow a^3\Sigma g^+$	
	797.2	$K \rightarrow C^1 II u$	R
	785.6	$G^1\Sigma g^+ \rightarrow C^1 II u$	R
	773.5	$I^1 \mathbb{I} g \rightarrow C^1 \mathbb{I} u$	R
	753.7	$J^{1}\Delta g \rightarrow C^{1}II u$	R
	729.0	$D^1 \mathbb{I} u \rightarrow E^1 \Sigma g^+$	R
	721.0	$H^1\Sigma g^+ \rightarrow C^1 II u$	R
	547.5	$P^1\Sigma g^+ \rightarrow C^1\Pi u$	
	472.7	$Q^1 \mathbb{I} g \rightarrow B^1 \Sigma u^+$	R
•	466.6	$\mathbb{K} \longrightarrow \mathbb{B}^1 \Sigma u^+$	R
	462.6	$G^1\Sigma g^+ \rightarrow B^1\Sigma u^+$	V
	458.3	I¹II g → B¹Σ u +	V.

表2.2.3-1メタン/水素系のスペクトル(2/2)

化学種	波長(nm)	帰属	備考
H_2	451.3	$J^{1}\Delta g \rightarrow B^{1}\Sigma u^{+}$	V
	493.4	$H^1\Sigma g^+ \rightarrow B^1\Sigma u^+$	V
	433.6	$L^{1}\Sigma g^{+} \rightarrow B^{1}\Sigma u^{+}$	
	431.1	$M^1\Sigma g^+ \rightarrow B^1\Sigma u^+$	
	401.5	$N^1\Sigma g^+ \rightarrow B^1\Sigma u^+$	`
	~ 500	continuous spectra (co	ontinua)
С	247.9	2S2P ² (⁴ P) 3S-2S ² P ³	
C_2	515.9	A³II g →X³II u S	Swan bands
	385.0	$c^{1} \mathbb{I} g \rightarrow b^{1} \mathbb{I} u \mathbb{I}$	Deslandres-d' Azambuja
	251.1	$C^3 II g \rightarrow X^3 II u F$	
С,	340~410	$A^1 \mathbb{I} u \to X^1 \Sigma g^+$	
СН	431.4	$A^2\Delta \rightarrow X^2II$	V
•	388.8	$B^2\Sigma^- \rightarrow X^2II$	R
	314.5	$C^2\Sigma^+ \rightarrow X^2II$	V
CH ₂	330~362	$c^{1}A_{1} \leftarrow a^{1}A_{1}$	abs.
	500~900	$b^{1}B$, $\leftarrow a^{1}A$,	abs.

表 2. 2. 3-2 プラズマ温度

		12.2.	. 4.	3 - 2		八、価及	
実験No.(FO)	電極	濃度	電力	流量	圧力	μg	l g
1-2(60)	1	N	N	F	N	1930K	2 2 5 0 K
2-1(56)	2	N	N	F	N		•
2-2(72)	3	Н	N	F	N	<u> </u>	_
2 - 3 (84)	4	N	N	F	N		_
2- 4 (85)	5	Н	N	F	N		_
1- 8 (61)	1	N	N	С	N	2180K	2980K
1- 1 (62)	1	N	Н	F	N	2120K	3850K
1-10 (63)	1	N	Н	С	N	1780K	-
1-25 (64)	1	I	N	С	N	2070K	6020K
1-14 (65)	1	Н	N	F	N	2100K	3 2 2 0 K
1-20 (66)	1	Н	N	С	N	2060K	2 4 2 0 K
1-13 (67)	1	Н	Н	F	N	2060K	3070K
3-1(59)	6	N	N	С	N		_
1-22 (68)	1	Н	Н	, C	N	2060K	2720K
1 - 3 (69)	1	N	N	F	L	1660K	2470K
1- 9 (70)	1	N	N	С	L	1760K	2570K
1-15 (73)	1	H	N	F	L	1950K	2550K
1-21 (74)	1	Н	N	С	L	2060K	- .
1- 5 (75)	1	N	N	F	Н	4 3 1 0 K	(1 1 8 3 0 K)
1- 7 (76)	1	N	N	С	Н	2590K	2910K
1 - 6 (77)	1	N	Н	F	Н	2470K	2400K
1-11 (78)	1	N	H	С	Н	2470K	2 2 2 0 K
1-26 (79)	1	I	Н	С	H	2930K	2860K
1-17 (80)	1	Н	N	F	Н	2690K	2 3 3 0 K
1-19 (81)	1	Н	N	С	Н	2320K	2830K
1-27 (58)	.1	Н	N	С	N	_	2760K
1-28 (57)	1	Н	N	F	N	_	2110K
1-18 (82)	1	H	Н	F	Н	2490K	3 4 9 0 K
1-23 (83)	1	Н	Н	С	Н	2570K	2830K

(3)活性種分布

 H_{α} 、 H_{β} 、 H_{γ} 、 $H_{2\alpha}$ 、CH、 C_2 の発光強度を表2.2.3-3に示した。さらに、これらの発光線について、地上実験との比を表2.2.3-4に示した。

 $H\alpha$ については、圧力、電力、メタン濃度に係わらず、いずれの条件でも微小重力実験の発光強度が地上実験のそれよりも大きくなっている。しかしながら、 $H\beta$ については、圧力が比較的低い条件(20、30Torr)では地上実験の方が大きなスペクトル強度を示している。圧力が50Torrの条件では大きな差は認められなくなる。さらに、 $H\gamma$ については、20Torrの場合のみ、微小重力実験の方が強度が小さく、圧力が高まるにしたがって、差はなくなる。

 $\rm H_2$ について見ると、20、30 $\rm Torr$ では微小重力実験の方が強度が小さく、50 $\rm Toor$ では逆に微小重力実験の方が強度が大きくなっている。

傾向が顕著なのは、CHである。このスペクトル強度は、すべての実験条件で、微小重力環境下で減少している。

2. 2. 4 プラズマ画像解析

(1) プラズマ発光パターン

直流放電では、陰極から放出される電子が陽極に引きつけられる過程において気体 分子を励起することによって発光の空間分布(放電構造)を形成する。図2.2.4-1に典 型的な発光パターンを示した。特徴的な発光部あるいは暗部には以下の名称がつけら れている。

- ①アストン暗部 (aston dark space)
- ②陰極発光(cathode grow)
- ③陰極暗部 (cathode dark space)
- ④負グロー (negative grow)
- ⑤ファラデー暗部(Faraday dark space)
- ⑥陽光柱(positive column)
- ⑦陽極暗部(anode dark space)
- ⑧陽極発光 (anode glow)

それぞれの形成メカニズムは、次のようである。電子は陰極から1eV以下のエネルギー放出され、これは分子を励起するのに十分でないためアストン暗部が形成される。電場によって電子は、励起に十分なエネルギーにまで加速され、陰極発光が生じる。電子が引き続き加速され、分子の励起断面積が極大を越えて小さくなり発光は止まる(陰極暗部)。ここでは、高エネルギーの電子によってイオン化が進行する。イオン化層によって電場が下がり、電子の加速エネルギーが減少することによって、再び励起断面積が増加し、負グローと呼ばれる発光領域が生じる。その後、電場の低下によっ

て、電子は急激にエネルギーを失い、ファラデー暗部が形成される。ファラデー暗部中で徐々に電場が増加し、陽光柱を維持できる電場で一定化する。陽光柱は、比数的に均一なプラズマ状態を形成し、非平衡プラズマの独特のプラズマ不安定化を呈する。陽極近傍では、電子が強く加速されるため、再び励起断面積が減少し陽極暗部が生じ、その後は陽極発光を呈する。

(2) 画像解析

直流プラズマの放電構造は、陰極-陽極間に発光部と暗部が交互に現われる点に特徴がある。特に、GDEF実験では陽光柱はドーム構造を持ち、微小重力下ではドーム形状、位置あるいは発光強度が変化すると期待される。ここでは、画像取得装置によって取得された画像を次の手順によって処理した。

- ①プラズマ発光画像のデジタル化(カラー)
- ②256階調のグレイスケールへの変換
- ③陽極-陰極間の空間発光分布の図化
- ④発光分布の圧力、メタン濃度、電力、重力効果等の評価
- ⑤発光スペクトルとの対応

表2.2.3-3 発光スペクトル強度

· · · · · · · · · · · · · · · · · · ·		12	14.4	# th	- E	X I	= 0		טר כ יי, וו	י יייון אוו		117	E .	6	CH	==	ι	
			37.63		· ·	7 (2)	3 1/	- s	11	=	3 1/	1 1	8 1/	36	8 //	1 12	1 "	2
1 – 2	0 9	_	z	z	r	z	143.7	27.2	15.1	91.7	1.14	=	23.1	0.11	1.97	2.67	0.68	16.1
2 – 1	9 9	2	2	2	Ŧ	z	I	1					1	1	1	,		
2-2	7.2	е	=	z	F	z	1	i	ı	ı	1	í	1	1	1	,		
2 – 3	8	-	z	z	H	z	1	,	1	ı	ı	ı		ı		ı		1
2 - 4	8 5	2	Н	z	ī.	z	,	ı	-	,	1	-		1		1	1	
1 – 8	6.1	1	z	z	U	z	125.1	111.2	14.9	16.6	86.95	1.33	20.9	24.5	2.70	6.23	1,22	1.34
	6.2	-	z	=	T	z	148.1	116.8	16.2	18.7	=	1.33	23.9	23.8	\$.05	68.9	1.59	1.43
1 – 1 0	63	1	z	Ξ	J	z	135.9	1	14.9	1	1.2.1	,	21.1	,	\$0.8	1	0.63	ı
1 – 2 5	6.4	1	ı	z	υ	z	127.5	116.8	14.9	0.81	1.41	1.42	20.9	25.3	3.49	7.12	0.63	0.00
1 - 1 4	6.5	1	Œ	z	r	z	122.4	110.3	13.9	1.91	0.95	0.76	20.9	24.0	3.18	6.10	0.95	1.45
1 – 2 0	99	1	=	z	υ	z	115.9	108.4	13.2	16.8	1.52	1.78	21.9	22.1	3.49	5.78	0.48	2.07
1-13	6.7	1	=	я	Ŀ	z	125.4	106.5	15.3	15.9	1.22	1.02	22.1	22.5	4.32	7.12	1.52	2.00
3 1	5.9	9	z	z	ပ	z	1	1		,	,	,	1	ı	,	ı		1
1-22	8 9	1	=	=	ပ	z	114.0	110.1	13.8	14.8	96.0	0.89	20.1	22.2	4.12	8.45	Ξ	1.52
1-3	69		z	z	íı.	-1	260.1	211.6	20.9	28.6	=-	1.27	23.6	35.8	5.40	8.26	08.0	1.27
1 – 9	7.0	1	z	z	U	1	237.2	197.2	20.0	25.4	0.95	1.33	26.1	15.6	4.13	7.82	080	1.59
1-15	7.3	1	Ħ	z	Ŀ	1	217.5	164.6	19.1	23.5	1.52	7.7	15.2	30.2	4.13	8.12	0.89	1.9.1
1-21	7.4	-	×	z	0	r	194.6	166.9	18.2	22.9	SO'I	1.14	24.0	17.18	3.97	8.12	1.38	71.0
1 - 5	7.5	-	z	z	ĹĿ,	11	84.4	24.8	10.8	6.52	0.95	0.88	20.2	12.6	2.38	5.34	0.95	0.38
1-7	9 /	_	z	N	ນ	11	82.5	74.1	11.4	10.4	1.33	1.14	21.0	18.5	16.1	16.8	00:0	0.38
1 – 6	7.7	1	z	Н	i.	н	83.5	72.4	1	10.7	1.33	1.52	18.7	18.2	7 00	6.10	0.89	1.87
1-1-	7.8	1	2	Н	၁	11	83.8	73.9	10.6	9.11	1.1	97.0	19.61	17.3	4.00	5.95	0.63	1.60
1-26	7.9		I	Н	S	н	75.3	67.5	11.8	10.7	0.57	0.38	17.6	17.2	3.81	6.48	0.63	1.34
1-17	8 0	-	=	Z	Ĺ	H	71.9	60.5	9.53	8.96	1.14	1.59	17.7	14.8	4.29	\$.08	0.79	2.86
1-19	8.1	-	H	z	ပ	æ	84.5	62.6	89.6	10.80	1.33	1.02	17.2	15.7	3.43	4.45	0.77	0.95
1-27	5.8	-	Н	Z	၁	z	-	1	ı	í	1	1		ı	1	ı	- 1	ı
1-28	5.7		æ	z	(ъ.	z	1	,	,	,	ı	,	ı	ı	ı		ı	ı
1-18	8 2	-	Н	H	E.	=	74.3	71.5	10.2	12.2	1.72	1.52	17.2	18.0	3.62	7.62	0.95	0.97
1 – 2 3	83	1	=	æ	ນ	=	72.2	58.1	10.2	10.7	0.57	1.42	17.2	16.7	3.34	5.34	0.48	1.56
1-4	. 9 8	1	z	н	lz,	ı	1	ı	1		, 	1		1	-	1	1	i
1-12	8.7	-	z	H	ပ	1	ì	1	1	1	1	1	1	1	-		ı	1
1-16	8 8	-	Ξ	×	iz.	1	1		1	1		1	ı	ı			ı	,
	8 9	1	11	Н	ပ	_	,	1	-		-			-	,	,	1	1
1: 混合比	N (Nominal)	08%.	H (High)	1.0%,	•2: Ath	J N (Nominal)	minal) 100W,	W, H (High)	ligh) 128W	,								

] (Intermediate) 0.8~1.0%. *3:周/阳 F (Flow) 開放系, C (Cluse) 開發系 *4:压力 L (Low) 2017on.

*4 : (E.J.) L. (Low) 20Torr, 11 (Nominal) 30Torr, 13 (High) 30Torr

表2. 2. 3-4 発光スペクトル強度の比較

								11 011		1	113	
大铁路市	FO.No.	鱼	186 K·1	X 73°2	M/B3	压力。	87	8 1 8 1	21 / 31	8 8 1	B / B //	18 18
1 - 2	6.0	_	z	z	<u>:-</u>	z					,	
2 – 1	5.6	2	z	z	፡-	z		1	1	ı	1	ı
2 - 2	7.2	3	=	z	:-	z	1	I	1	ı	1	1
2 - 3	84	4	z	z	:-	z	-	ļ	1	1	1	ı
2 – 4	8.5	5	H	z	ŗ	z	1	1	1	1	I	ŧ
1 - 8	6.1	-	z	z	U	z	1.125	868:0	0.714	0.853	0.443	0.310
11	6.2	-	z	11	£1.	z	1.268	9986	0.835	1.004	0.733	1.787
1 - 1 0	63	-	z	Ξ	υ	z						
1-25	9 9	-	-	z	U	z	1.092	6883	0.993	0.826	0.430	0.0
- 1 - 1	6.5	-	=	z	tr	z	011.1	0.863	1.250	0.871	0.521	0.655
1 - 2 0	99	-	=	z	υ	z	1.069	0.786	0.854	0.991	0.604	0.232
1-13	6.7	-	H	11	la,	z	1.168	0.962	1.196	0.982	0.607	092'0
3-1	5.9	9	z	z	υ ·	z						
1-22	8 9	-	=	=	ນ	z	1.035	0.932	1.079	\$06.0	0.488	0.730
1 - 3	6 9	-	z	z	í=	L.	1.229	0.730	0.874	659.0	0.654	0.630
6 – 1	7.0	-	z	z	၁	ت	1.203	0.787	0.714	6,713	0.528	0.660
1-15	7.3	-	Ξ	z	ía.	:	1,323	1180	1.333	0.840	605.0	0.466
1 - 2 1	7.4	-	=	z	υ		1.166	262.0	126.0	.27.0	0.489	1,792
1 - 5	7.5	-	z	z	ä	=	3,403	1.656	1.080	1.603	9'110	2.500
7-1.	91	-	z	z	ວ	=	1.113	1.096	1.167	581'1	0.323	
1 - 6	11	-	z	н	쇼	=	1.153	1.037	518.0	1.027	0 656	
	7.8	-	z	Ξ	ບ	=	1.134	0.914	1.500	1,133	0.672	0.394
1 - 2 6	1.9	-	-	11	3	11	9111	1.103	1.500	1.023	0.588	
1 - 1 7	8 0	-	=	N	습	=	1.188	1.064	717.0	1.196	0.844	0.276
1 - 1 9	8 1	-	=	z	ပ	=	1.350	968.0	1.304	1.096	177.0	0.811
1 - 2 7	5.8	-	=	Z	۲	Ż	_	1		1	ı	1
1 - 2 8	5.7	1	=	z	i	N	-	-	3	1	ì	1
1 - 1 8	8.2	-	=	=	ধ	H	1.039	0.836	1.132		0.475	0.979
1-23	8.3	-	=	×	C	Н	1.242	0.953	0.401	1.030	0.625	901.0
1 - 4	8.6	1	N	11	Ŧ	1	-	•	-	ı	ı	ı
1 - 1 2	8.7	1	н	Ξ	ט	T.	t	ī	-	ļ	_	1
1 – 16	88	-	11	=	Œ	رر	1	1	1	1	1	1
1-24	8.6	1	н	Н	C	_	:			-	1	ţ
•1: 複合比	N (Nominal) 1 (Intermedia	(Nombral) 0.8%, II (High) (Intermediate) 0.8~1.0%	11 (High) 1.0%	1.0%	•2; ₹ ∄		N (Nominal) 100W, II (Iligh)	High) 128W				

*3:聞/聞 F (Flow) 開桃系, C (Cluse) 関策系 *4:用沙 l. (Low) 2011:nr, N

*4 ; H.J. 1. (1.0.w) 20Tivit, N (Nominal) 30Tori,
II (11841), 50Tori

-86-

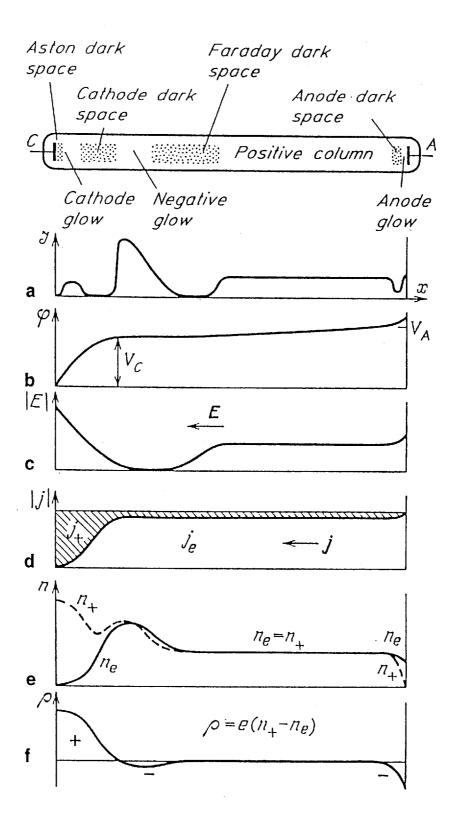


図2.2.4-1 グロー放電の発光パターン

2.3 実験結果と考察

2.3.1 プラズマ発光分光

(1) 発光スペクトルの特徴

プラズマ放電実験は、ガス圧力、電力、メタン濃度およびフロー条件を次の範囲で変化させ、放電状態に及ぼす微小重力の効果を調べた。

· 圧力 : 20Torr (Low) , 30Torr (Nominal) , 50Torr (High)

·電力 : 100W (Nominal) , 128W (High)

・メタン濃度:0.8% (Nominal), 1.0% (High)

・フロー : 開放系 (Open) , 閉管系 (Closed)

画像取得装置で撮影した画像の例を図2.3.1-1に示す。上部のメッシュが陰極であり、下部に陽極がある。放電構造で特徴的なのは、陽極上部に見られるドーム状の陽光柱である。ドームの形成は、ダイヤモンドの生成に有利に作用することが地上実験で確認されている。メタンの存在がドーム形成を促進する効果があることが知られているが、その生成条件については明らかではない。ドームは2重構造を持つのが見てとられるが、3重構造あるいは多重構造を持つドームも確認された。地上実験と比べると、微小重力下でのプラズマ発光は、陰極発光、ドームおよび陽極発光いずれも輝度が弱くなっている。

本実験では、分光器を搭載することによって微小重力下でのプラズマ発光を詳細に解析した。結果の例を図2.3.1-2および図2.3.1-3に示した。なお、スペクトルを読む上で630nm以上の波長には、強度を1/8にするフィルターがかかっていることに注意されたい。これらの図で微小重力下に特徴的に見られた違いは次のようであった。

- ・H。線の強度が大きい。
- ・H。線は強度が小さい。
- ・水素分子に起因するスペクトル(520~630nm)が複雑。
- ・450nm以下の紫外域の発光が強い。

特に、 \mathbf{H}_a 線および \mathbf{H}_β 線には重力効果が強く見られており、その状況を地上実験の場合の強度の比の変化として図2.3.1-4に示した。この強度比が1と異なる程重力効果が強いことを意味している。 \mathbf{H}_a と \mathbf{H}_β 線では逆の値を示し、低圧力領域で顕著であるが、重力が高圧力で強い対流を引き起こす事実と照らし合わせると驚くべき結果であると考えられる。

(2) プラズマ温度に及ぼす微小重力効果

水素分子のバルマー系列発光スペクトルを用いて、プラズマの電子温度の算出を行った。算出方法は、実験手法で説明した電子の励起がボルツマン分布に従うとする関係によった。図2.3.1-5にボルツマンの関係に基づいて行ったプロットの一例を示した。

熱平衡にあるプラズマは、 \mathbf{H}_{α} 、 \mathbf{H}_{β} 、 \mathbf{H}_{γ} 線のプロットが直線になるが、本実験ではほとんどの場合、直線性は見られず、プラズマは非平衡状態にあることが分かった。このため、バルマー系列の α 線および β 線のみを使う、2線比較法により、プラズマ電子温度を算出した。

算出結果を図2.3.1-6に示した。用いたデータは表2.3.1-1にまとめてある。プロットしたデータは、電力100Wの場合である。微小重力実験で得られた温度は、実験条件の範囲で一様に低く、その温度差は低圧領域で1000Kにも及んだ。一方、圧力の上昇とともに温度差は減少する傾向も見いだされた。重力対流の効果は、圧力が高い程顕著であるが、この結果は予想に反して低圧程重力対流の影響が強くでることを示しており、極めて興味深い結果である。この理由については、ドーム形成のメカニズムと関連して2.3.3節で述べることとする。

プラズマ温度は、メタン濃度によっても変化することを図2.3.1-7に示した。図に見られるように1.0%系では、0.8%系に比べて一様に100°k程度高い。この結果は、プラズマ温度に強く影響を与える電子のエネルギーがメタン濃度に依存していることを意味しており、電子放出が一部メタンを源としていることを強く支持している。

(3) メタン活性種に及ぼす微小重力の効果

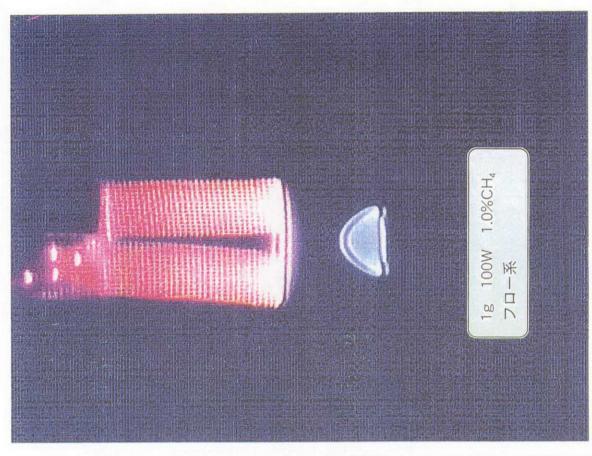
プラズマ発光スペクトルが強く微小重力の影響を受け、微小重力はプラズマ電子温度を低くすることが明らかとなった。次にこの影響が、メタン活性種にどのように作用するかを調べた。ダイヤモンドの生成は、メタンからの水素引き抜きによって炭素の重合体が形成することによって促進される。このため、ダイヤモンド合成の場として微小重力環境を評価する場合、メタンの活性種分布にどのように微小重力が影響を及ぼすかが次の論点である。

表2.3.1-2に軌道上実験で得られた水素およびメタン関連の発光スペクトル強度を示した。これらのデータを用いて微小重力の影響を評価した結果、 H_a 線とCH線の強度に最も強い微小重力効果を見いだすことができた。図2.3.1-8および図2.3.1-9に示したように H_a 線は微小重力下において一様に強度が強く、CH線は逆に一様に弱い。比較のために H_{2a} 線および C_2 線のデータも表示したが、これらのデータは、前述の組み合わせ程その影響は明確ではなかった。

この結果より、CH/H。スペクトル強度比を指標とすることによってメタン活性種に及ぼす微小重力の効果を明らかにすることができると考え、一連の条件ごとにその挙動を図化した。なお、比をとることによってスペクトル測定に伴う装置定数をキャンセルすることができ、評価の信頼性はより高まるとも考えた。示した結果は次の条件についてである。

- 1) 100W 開放系 0.8%および1.0% CH4: 図2.3.1-10
- 2) 100W 閉鎖系 0.8%および1.0% CH₄: 図2.3.1-11
- 3) 128W 開放系 0.8%および1.0% CH₄: 図2.3.1-12
- 4) 128W 閉鎖系 0.8%および1.0% CH₄: 図2.3.1-13

いずれの結果についても、例外なく微小重力下においてCH/H_a比が小さいという結果を得た。これより、CH/H_a比は、微小重力下におけるメタン活性種の挙動を評価する有効な指標になると結論することができる。


図2.3.1-14には、 CH/H_{α} 比のメタン濃度依存性を示した。今回の軌道上実験では、ダイヤモンドの生成が確認された0.8%、0.9%および1.0%の 3 濃度について実験を行ったため、濃度依存性を十分な精度で検証することはできないが、 CH_{4} の増大に伴って CH/H_{α} 比が増加する傾向にあることは確認できた。ここでも、微小重力下での CH/H_{α} 比は明瞭に1g下の値と差別化されていることが分かる。

(4) メタン活性種分布とプラズマ温度との相関

 $\mathrm{CH/H}_{\alpha}$ 比が、微小重力の影響を強く受けることが前節で明らかとなった。ここでは、プラズマ電子温度との相関において $\mathrm{CH/H}_{\alpha}$ 比の挙動と微小重力との関連について考察する。

図2.3.1-15および図2.3.1-16に開放系、閉鎖系それぞれについて CH/H_a 比と電子温度との相関を示した。これらには、軌道上実験および地上実験で得られた結果を全てプロットしてある。いずれの場合にも、 CH/H_a 比は温度の増加に対して、顕著に増加する傾向を示した。かつ、電子温度2750 K、 CH/H_a 比0.04を境界として微小重力実験は、それぞれのパラメータとも低い領域に集中した。実験条件は同一であるにもかかわらず、このように明瞭に差別化できることは極めて興味深い。また、閉鎖系ではデータのばらつきが大きく、相関が悪くなっていることから、メタン解離と反応室内での副反応が連鎖し、より複雑な反応が生じていることが予想される。

温度の上昇は、メタンからの水素解離を進行させることから、正の相関関係は理解できる。問題点は、微小重力下でなぜプラズマの温度が減少するかに集約される。この解明の糸口は、プラズマドーム形成のメカニズムの形成を考察することから得られる。次にプラズマ発光画像の解析から、ドーム形成に及ぼす微小重力の影響について検討する。

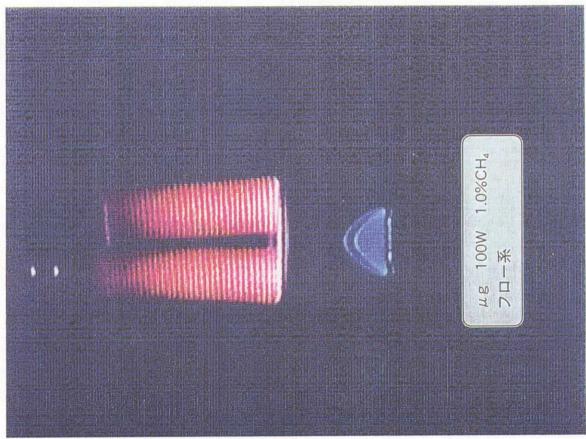


図2. 3. 1-1 プラズマ発光状態の重力依存性

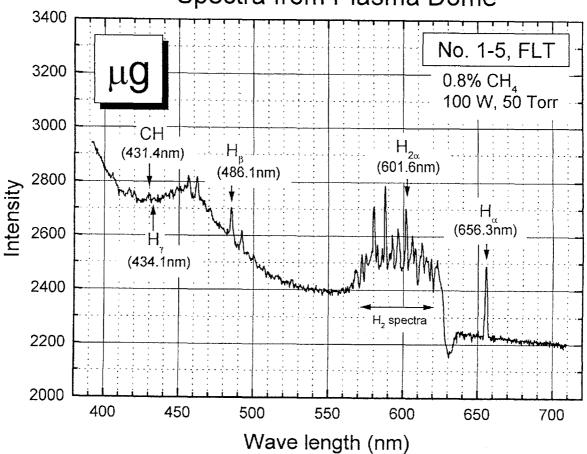


図2.3.1-2 陽光柱部のプラズマ発光のスペクトル分布(微小重力)

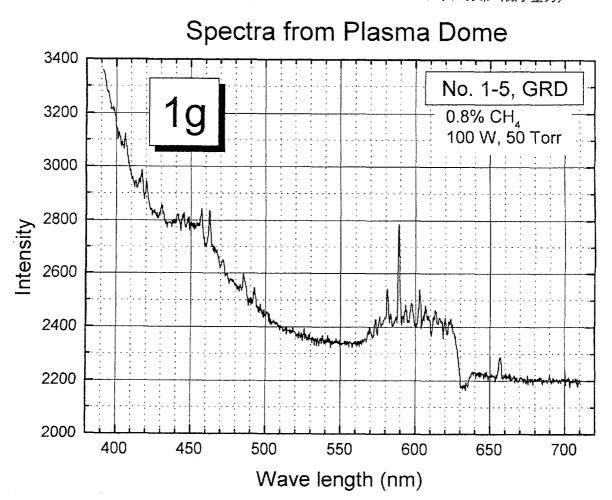
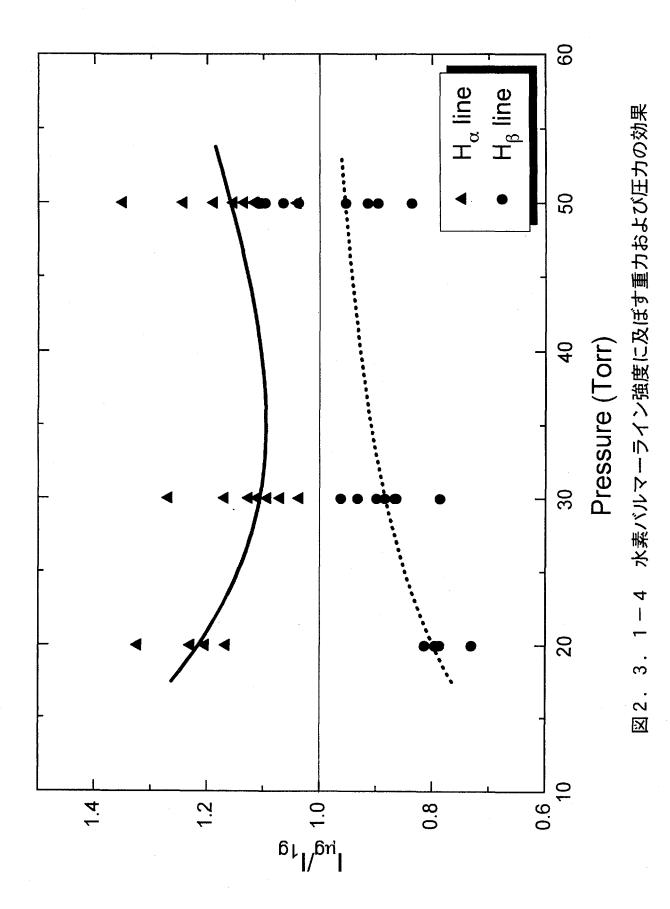



図 2 . 3 . 1 - 3 陽光柱部のプラズマ発光のスペクトル分布 (地上重力) -92-

-93-

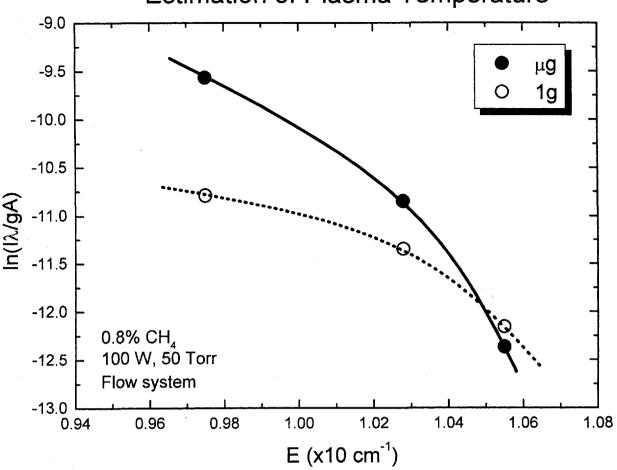


図2.3.1-5 ボルツマンプロットによるプラズマ電子温度の推定

Effects of Gravity on Temperature

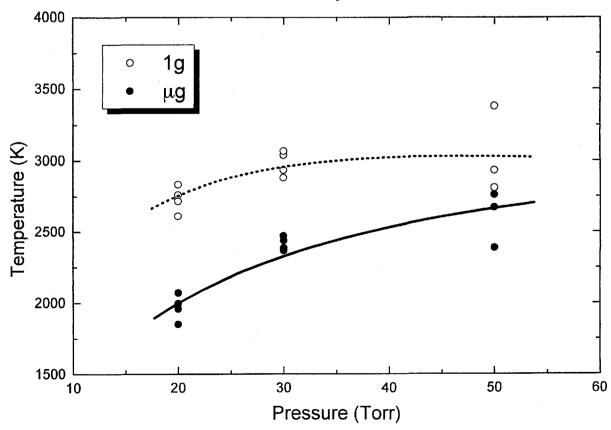


図 2 . 3 . 1 - 6 プラズマ電子温度に及ぼす重力の効果

表 2 . 3 . 1 -1 2 線 $(\mathbf{H}_{a}, \mathbf{H}_{\beta})$ 法によって算出したプラズマ電子温度

実験No.(FO)	電極	濃度	電力	流量	圧力	μg	l g	μ g/1g
1 - 2 (60)	1	N	N	F	N	2 2 5 6 K	3 0 0 5 K	0.751
2-1(56)	2	N	N	F	N		_	
2 - 2 (72)	3	Н	N	F	N		_	-
2 - 3 (84)	4	N	N	F	N		-	_
2 - 4 (85)	5	Н	N	F	N		_	<u>—</u>
1 - 8 (61)	1	N	N	С	N	2470K	2 9 3 4 K	0.842
1- 1 (62)	1	N	Н	F	N	2 3 1 5 K	.3 1 5 7 K	0.733
1-10 (63)	1	N	Н	C	N	2 3 1 6 K	_	-
1-25 (64)	1	I	N	С	N	2 4 3 6 K	3038K	0.802
1-14 (65)	1	Н	N	F	N	2 3 8 3 K	2880K	0.827
1-20 (66)	1	Н	N	С	N	2 3 6 6 K	3067K	0.771
1-13 (67)	1	Н	Н	F	N	2 4 9 1 K	2958K	0.842
3 - 1 (59)	6	N	N	С	N	_	_	
1-22 (68)	1	Н	Н	С	N	2 4 9 1 K	2693K	0.925
1 - 3 (69)	1	N	N	F	L	1851K	2715K	0.682
1 - 9 (70)	1	N	N	С	L	1960K	2608K	0.752
1-15 (73)	1	Н	N	F	L	1 9 9 5 K	2831K	0.705
1-21 (74)	1	Н	N	С	· L	2 0 7 0 K	2760K	-
1- 5 (75)	1	N	N	F	Н	2 5 8 8 K	(5915K)	0.438
1-7 (76)	1	N	N	С	Н	2760K	2807K	0.983
1 - 6 (77)	1	N	Н	F	Н	2671K	2906K	0.919
1-11 (78)	1	N	Н	С	Н	2 9 3 1 K	3 8 0 7 K	0.770
1-26 (79)	1	I	Н	С	Н	3067K	3096K	0.991
1-17 (80)	1	H	N	F	Н	2671K	2931K	0.911
1-19 (81)	1	Н	N	С	Н	2 3 8 5 K	3 3 8 0 K	0.706
1-27 (58)	1	Н	N	С	N		2760K	-
1-28 (57)	1	Н	N	F	N	_	2 1 1 0 K	_
1-18 (82)	1	Н	Н	F	Н	2760K	3 3 8 0 K	0.817
1-23 (83)	1	Н	Н	С	Н	2831K	3600K	0.786

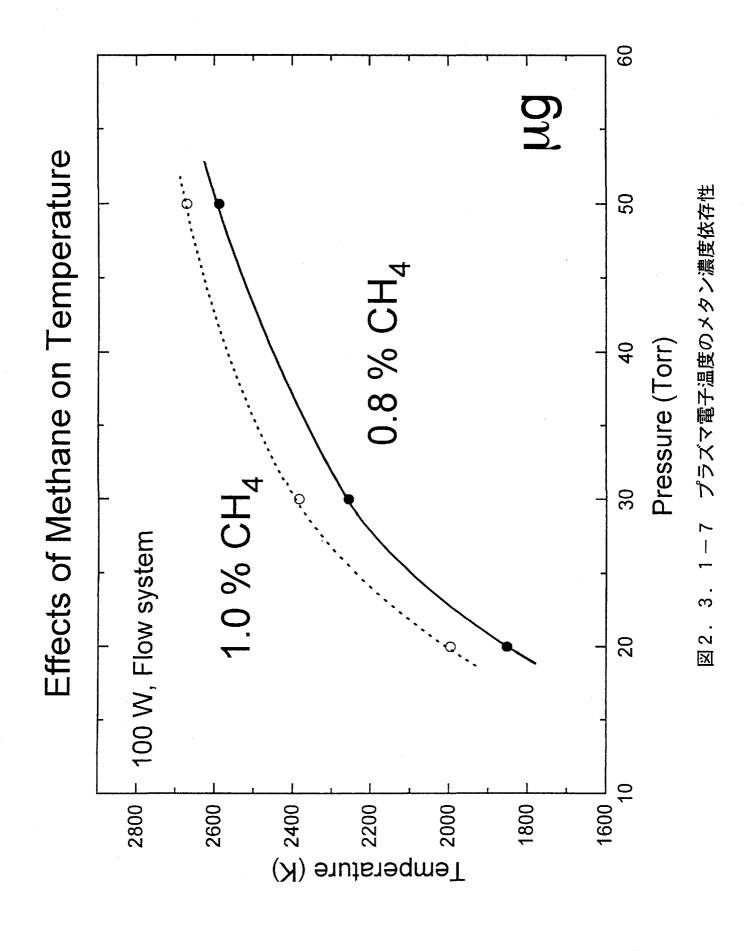


表2.3.1-2 発光スペクトルデータサマリー

# # #	S S	257 X	11.44.41	Ç f	- II		H	a	H	Н //	H	۸	H	0	CH			2
7.4.1.2.0.2.0.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1		 5 5	- 1 cm 2 m	7 (2)	- B / B	# (7 T)	8 1/	1 6	8 11	1 g	8 1/	1 g	8 1/] g	3 1/	1 g	8 "] g
1 - 2	6.0	-	z	z	ĮI,	z	143.7	27.2	15.1	4.16	1.14	11.1	23.1	11.0	1.97	2.67	89.0	1.91
2 - 1	9 9	2	z	z	Į.,	z	1	1	ı	1	1	1	ı	ı	1	ŀ	ı	1
2-2	7.2	8	н	Z	ţr.	z	1	ı	1	1	1	1	1	1	1	-	1	ı
2 - 3	8.4	4	Z	N	ഥ	z	ı	1	ı	1	ı	ı		ı		t	-	1
2 – 4	8.5	2	н	ĸ	ഥ	z	I	ı	i	ı	ı	1	,	ı	i	1	1	
1 - 8	6.1	1	z	z	U	z	125.1	111.2	14.9	16.6	0.95	1.33	20.9	24.5	2.70	6.23	1.22	1.34
1 - 1	6.2	1	Z	Н	Ĺ	z	148.1	116.8	16.2	18.7	1.1	1.33	23.9	23.8	5.05	68.9	1.59	1.43
1 - 10	63	-	z	æ	ပ	z	135.9	ı	14.9	ı	1.21		21.1	1	5.08	ı	0.63	ı
1 - 25	6.4		-	z	S	z	127.5	116.8	14.9	18.0	1.41	1.42	20.9	25.3	3.49	7.12	0.63	0.00
1-14	6.5	ı	н	Z	দ	z	122.4	110.3	13.9	16.1	0.95	92.0	20.9	24.0	3.18	6.10	0.95	1.45
1-20	99	1	н	z	ပ	z	115.9	108.4	13.2	16.8	1.52	1.78	21.9	22.1	3.49	5.78	0.48	2.07
1-13	29	1	н	н	ţ.	z	125.4	106.5	15.3	15.9	1.22	1.02	22.1	22.5	4.32	7.12	1.52	2.00
3 - 1	5.9	9	z	z	၁	z	1	1	ı	1	1	1	,	ı	1	1	ı	1
1-22	8 9	1	Н	Н	ပ	z	114.0	110.1	13.8	14.8	96.0	0.89	20.1	22.2	4.12	8.45	1:1	1.52
1 – 3	6 9	1	Z	N	н	7	260.1	211.6	20.9	28.6	11.1	1.27	23.6	35.8	5.40	8.26	08.0	1.27
1 – 9	2.0	-	Z	N	င	Г	237.2	197.2	20.0	25.4	0.95	1.33	26.1	35.6	4.13	7.82	0.89	1.59
1-15	7.3		ж	Z	F	7	217.5	164.6	19.1	23.5	1.52	1.14	25.2	30.2	4.13	8.12	68'0	1.91
1-21	7.4	1	н	z	C	Г	194.6	166.9	7:81	22.9	1.05	1.14	24.0	31.71	3.97	8.12	1.38	0.77
1 – 5	7.5	-	z	z	ţr	н	84.4	24.8	10.8	6.52	0.95	0.88	20.2	12.6	2.38	5.34	0.95	0.38
1-7	7.6	-	z	z	၁	Н	82.5	74.1	11.4	10.4	1.33	1.14	21.0	18.5	16.1	16.2	00'0	0.38
1 – 6	7.7	-	z	н	ĹŦ,	æ	83.5	72.4	11.1	10.7	1.33	1.52	18.7	18.2	4.00	6.10	68'0	1.87
1-11	7.8		z	н	၁	н	83.8	73.9	10.6	11.6	1.14	97.0	9.61	17.3	4.00	5.95	0.63	1.60
1-26	7.9			Н	С	н	75.3	67.5	11.8	10.7	0.57	0.38	17.6	17.2	3.81	6.48	0.63	1.34
1-17	8.0	-	н	z	Į.	ж	71.9	60.5	9.53	96'8	1.14	1.59	17.7	14.8	4.29	\$0.6	62.0	2.86
1-19	8 1	1	Н	Z	၁	Н	84.5	62.6	89.6	10.80	1.33	1.02	17.2	15.7	3.43	4.45	7.00	0.95
1-27	5.8	1	н	z	၁	z	-	ı	l	ı	ı	ı	j	ı	i	1	- 1	i
1-28	5.7	1	Н	Z	ĹĽ,	z	ı	1	1	i	1	1	,	1	1	,		ı
1 - 1 8	8.2	1	Н	Н	Ţ	н	74.3	71.5	10.2	12.2	1.72	1.52	17.2	18.0	3.62	7.62	0.95	0.97
1-23	83	-	ж	н	C	н	72.2	58.1	10.2	10.7	0.57	1.42	17.2	16.7	3.34	5.34	0.48	1.56
1 – 4	9 8	-	Z	ж	ᄕ	ľ	i	ı	_	ı	1	ŧ	1	ı	ı	1	ı	1
1-12	8.7	-	z	н	۵	Г	-	1	i	ŀ	1	1	,	1	1	1	1	ı
1-16	8 8	1	H	н	Ħ	T	1	ı	1	ı	ı	1	1	1	ı	1	1	ì
			H	æ	၁	_	ı	ı	1	1	1	ı	,	,	1	1	1	ı
*1:混合比 N	(Intermediate)	0.87°. 0.8∼1	H (High) 1.0%	1.0%.	*2:電力	z	(Nominal) 10	100W, H (High)	igh) 128W	A.								

-97-

N (Nominal) 30Torr,

20Топ, 50Топ

L (Low) H (High)

*4:压力

C (Close) 网络系

F (Flow) 開放系,

*3:1111/1111

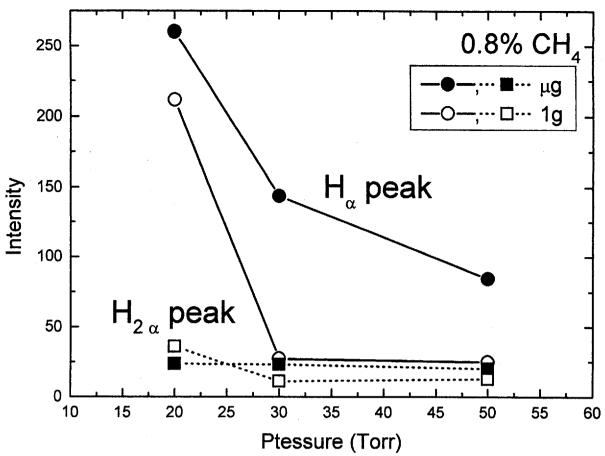


図2.3.1-8 水素原子および水素分子発光に及ぼす微小重力の影響

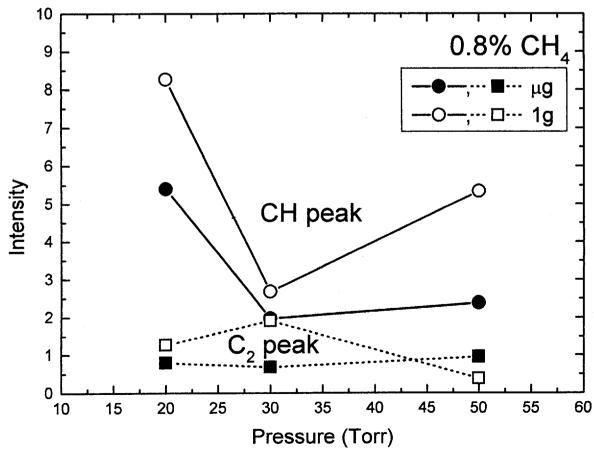


図2.3.1-9 メタン活性種の発光に及ぼす微小重力の影響

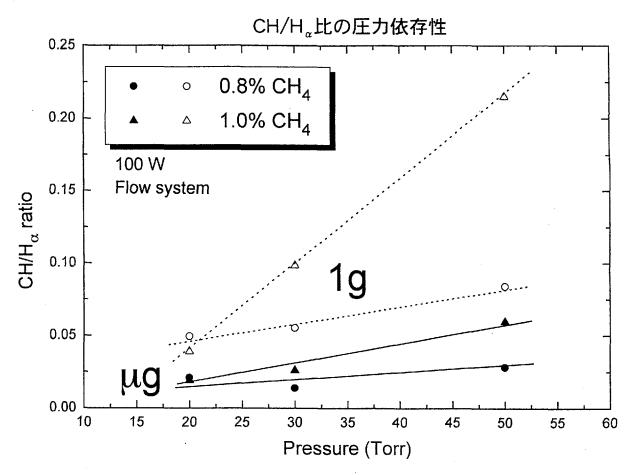


図2.3.1-10 CH/H_a比の圧力依存性と微小重力の影響

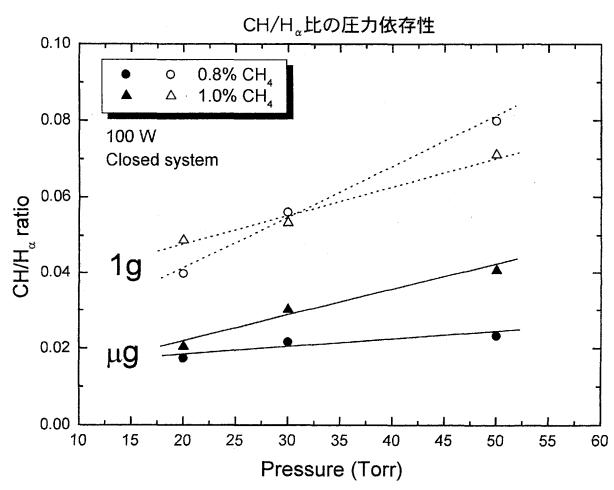


図2.3.1-11 CH/H_α比の圧力依存性と微小重力の影響

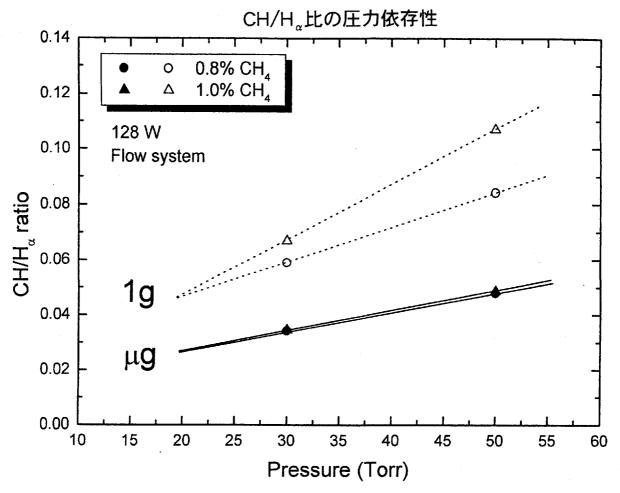


図2.3.1-12 CH/H_a比の圧力依存性と微小重力の影響

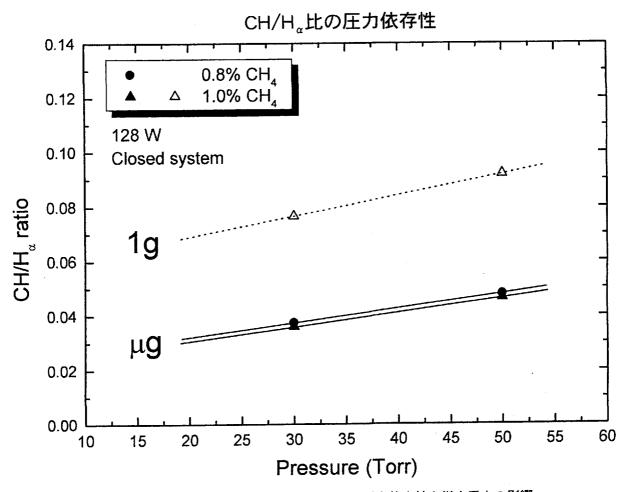


図 2 . 3 . 1 - 1 3 CH/H_α比の圧力依存性と微小重力の影響 -100-

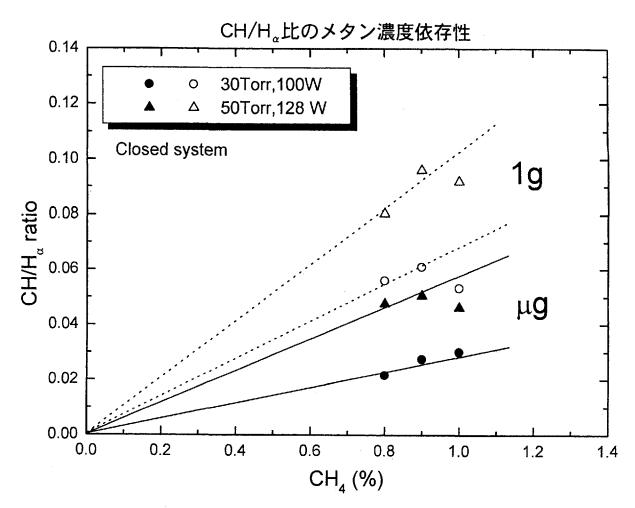


図2.3.1-14 CH/H_α比のメタン濃度依存性

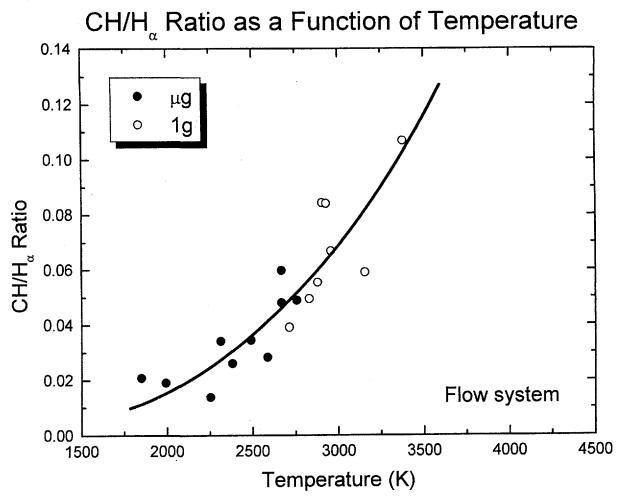


図2.3.1-15 CH/H。比とプラズマ電子温度との相関関係(開放系)

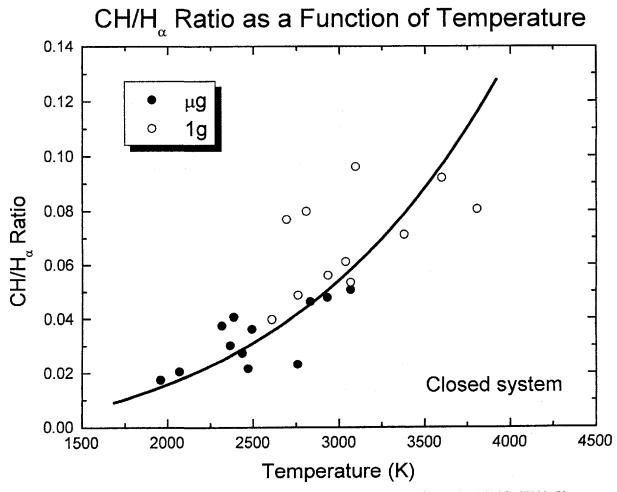


図2.3.1-16 CH/H_a比とプラズマ電子温度との相関関係(閉鎖系)

2.3.2 プラズマ画像解析

(1) プラズマドームの形成

ダイヤモンドの形成条件では、しばしばドーム状の陽光柱が現われる。ドームの形成によってダイヤモンド形成は促進されることが知られており、プラズマ発光状態を確認することが、ダイヤモンド合成の指標にもなっている。本実験では、原料ガスの流れを阻害せず、かつ電極の面積を大きくとって基板に均一なダイヤモンド薄膜を造るためにメッシュ状の陰極を用いた。陰極-陽極間の距離は10.25mmであり、陽極に対して8×8mmの面積を有する。一方、陽極はタンタルで直径4mmのサイズとした。

図2.3.2-1および図2.3.2-2に100W、50Torr、0.8%メタン濃度系での放電構造について微小重力下および地上重力下で得られたデータを比較した。横軸は、陽極と陰極の長さについて規格化して示した。陰極のすぐ近くに現われるアストン暗部は、メッシュ構造のためか、確認できなかったが、それ以外の発光パターンは、通常の直流放電の場合と同一である。ファラデー暗部は圧力の増加とともに拡大し、50Torrでは、図に見られるように陽光柱に複数のピークを持つ同期的発光が見られた。重力が作用すると、図2.3.2-2のようにファラデー暗部が狭くなるなど発光領域が暗部にまで拡散することが分かった。この傾向は陽光柱の内部についてもあてはまる。特に、陽極発光は重力下では全ての実験について強くなり、ダイヤモンドの堆積が陽極で生じることを考えると無視できない傾向である。

(2)発光縞の構造

プラズマドームのサイズと圧力、メタン濃度の関係を図2.3.2-3に示した。本実験では、ドームは一重ないし二重の構造が観察によって確認されたため最外殻ドームとその内側のドームについて位置を算出した。詳細な分析をすると実際は多重ドーム構造をしていることが分かったが、これについては後に述べる。100W、開放系において最も明瞭に最外殻ドームの位置(陽極から先端までの距離、陽極一陰極の距離を1として算出した)が、ガス圧力に比例して増加した。メタン濃度の増加もドームのサイズを大きくすることが分かった。同じ実験条件について地上重力下の結果を示したのが図2.3.2-4である。この場合は圧力に対する比例関係は顕著でなく、メタン濃度の増大に関してもドームサイズとの相関は明瞭ではなかった。これらの結果は、微小重力下ではドームの形状に強い規則性が現われることを示している。

100Wで閉鎖系の場合についても同様の比数を図2.3.2-5および図2.3.2-6に示した。 開放系の場合と比べてガス圧力の増大に対してサイズは大きくなるものの比例関係は 見いだされなかった。地上実験ではやはり相関関係があいまいになる傾向が見られた が開放系の場合ほど顕著ではなかった。閉鎖系は開放系に比べてメタンの反応による 消費が進行し、微小重力下においても対流がある場合と同じような状況になっている と考えられる。

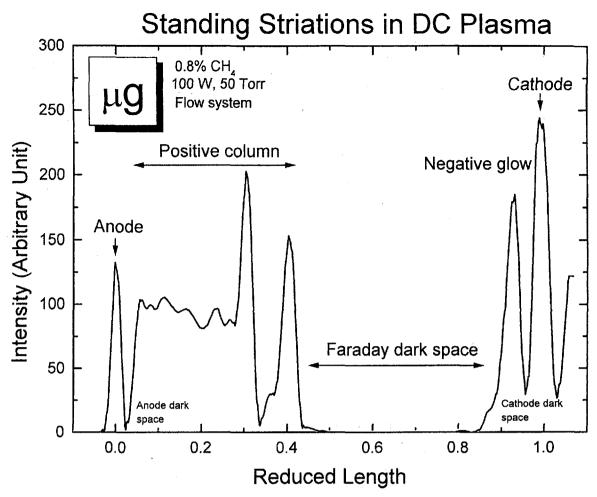


図2.3.2-1 陽極-陰極間の放電発光構造(微小重力)

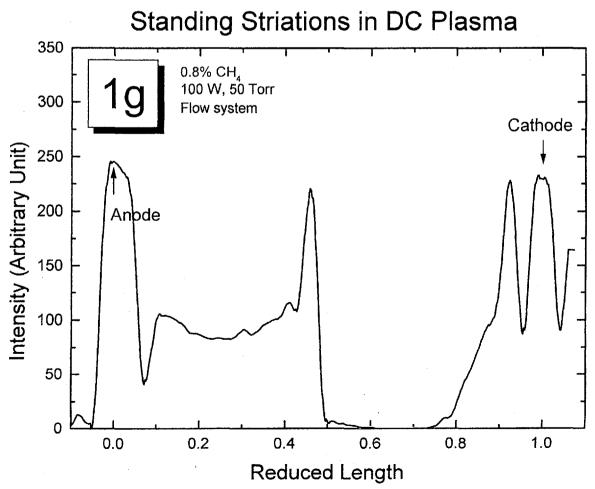


図2.3.2-2 陽極-陰極間の放電発光構造(地上重力) -104-

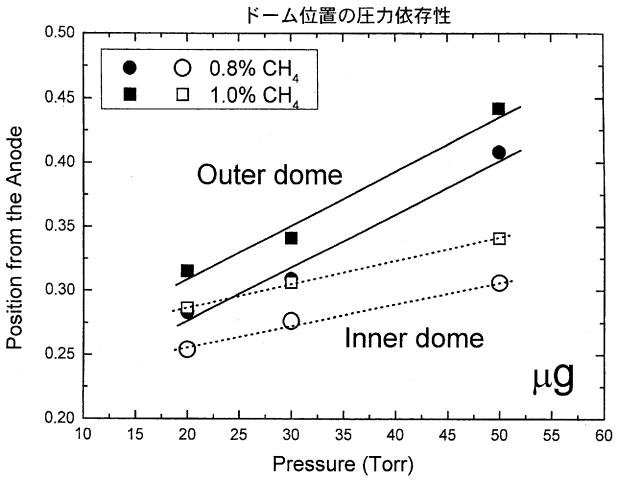


図2.3.2-3 プラズマドーム位置の圧力依存性(微小重力,100W,開放系)

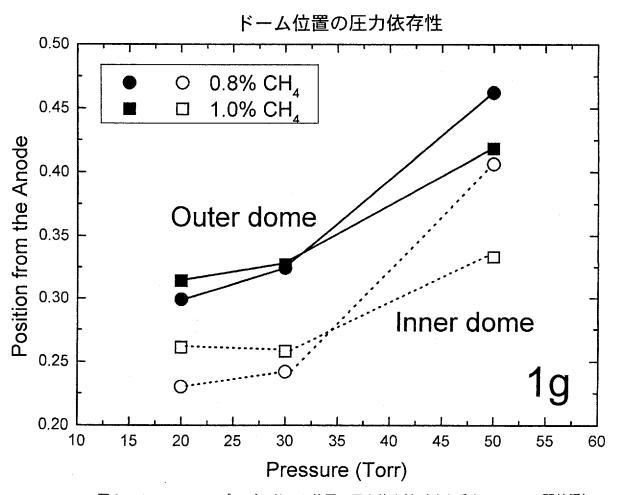


図2.3.2-4 プラズマドーム位置の圧力依存性(地上重力,100W,開放系)

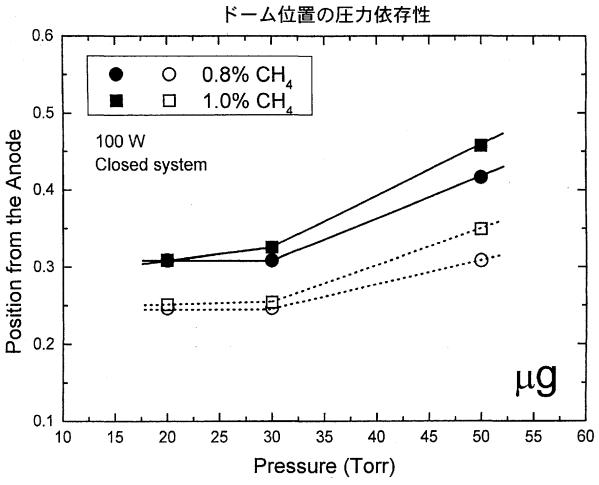


図2.3.2-5 プラズマドーム位置の圧力依存性(微小重力,100W,閉鎖系)

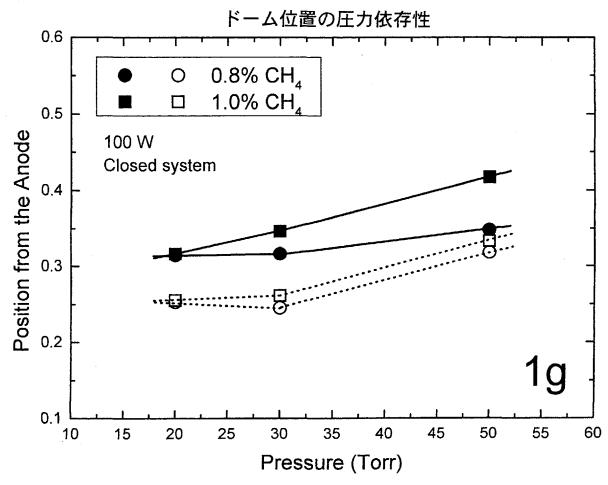


図2.3.2-6 プラズマドーム位置の圧力依存性(地上重力,100W,閉鎖系)

(3) 微小重力の効果

プラズマ電子温度が微小重力効果を強く示すことから、最外殻ドームサイズと電子温度との相関について検討した。開放系および閉鎖系についての結果を図2.3.2-7および図2.3.2-8にそれぞれ示した。メタン濃度の増大は電子温度の増加に対応するため一貫した相関関係を見ることができる。いずれの図においても、微小重力下では、より低い温度でプラズマドームを維持することができることが分かった。地上で実験パラメータ決定のため行ったいくつかの実験の中には、ドームはいったん形成しても昇圧の途中で消失することがあり、安定に維持するためには放電電力を高める必要があった。ここで得られた結果は、これらの経験と合致しており、微小重力下ではドームが低電力でも安定に形成できることを示唆している。

2.2.2項に示した結果とあわせ、微小重力下ではプラズマが安定化することがわかった。

Size of Dome as a Function of Temperature

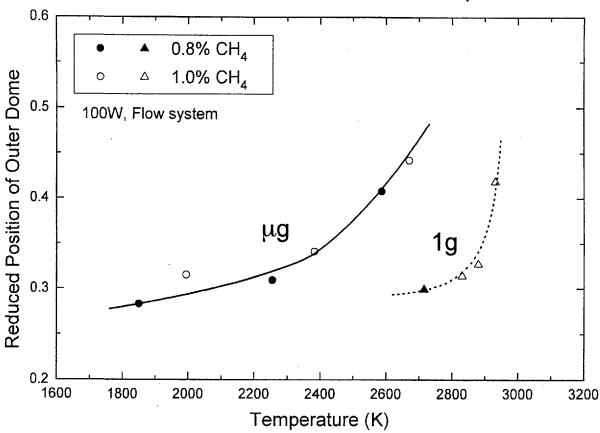


図2.3.2-7 ドームサイズのプラズマ温度依存性(開放系)

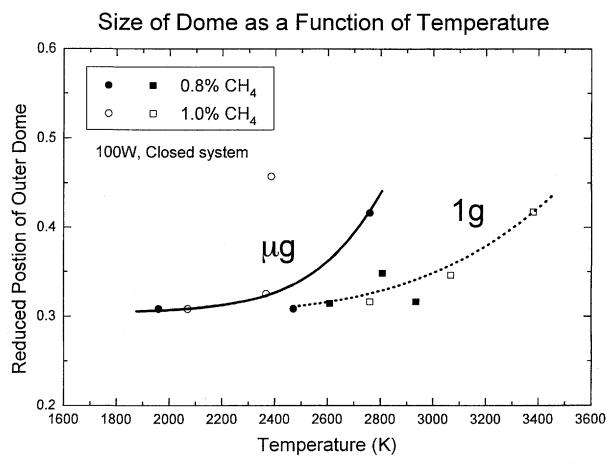


図2. 3. 2-8 ドームサイズのプラズマ温度依存性 (閉鎖系)

2.3.3 プラズマドーム形成のメカニズムと微小重力の効果

(1) 発光パターン形成のメカニズム

直流放電では陽光柱に周期的な放電構造が現われることが知られており、縞状発光(striations)と呼ばれている。このような現象は、プラズマの不安定化(instazilities)作用の現われであり、弱電離した非平衡プラズマに顕著となる。非平衡プラズマでは、ガス温度は電子温度に比べて小さいため、イオン化頻度は電子温度によって支配されている。このため、陽光柱に現われる縞状発光には、電子温度のゆらぎが本質的に作用していると考えられる。

稿状発光は、本実験では多重ドーム状に見られるため、ここでは発光パターンをドームと呼ぶことにする。図2.3.3-1にはドーム状発光のメカニズムをまとめた。陽光柱が形成される領域は電場が比較的一様であることが知られているが、陽極および陰極にそれぞれ電子とイオンが引き寄せられるために分布に非対称性がある。また、イオンと電子の移動度が異なることに起因するプラズマ振動と呼ばれるゆらぎが絶えず生じている。このような状況で生み出される空間電荷は、次のような理由で増幅されて、空間的に広がったゆらぎ(すなわちドーム状発光)が形成される。

- 1)空間電荷のゆらぎが生じると、電子と陽イオンで電場が遮蔽されて、局所的な電場低下を生じる。
 - 2) 電場の低下によって電子の加速が弱まり、電子温度が下がる。
- 3)電子温度が下がったことによりイオン生成速度が減少し、空間に暗部が生じる。このようなメカニズムによってローカルなゆらぎが拡大し、一定の条件下で定常的な不安定化構造が出現すると考えられる。このような不安定化は、自然対流でよく知られているベナール対流のセル構造と同一のメカニズムによるものであり散逸構造の一種であると言える。

(2) 微小重力下における電子温度の低下

本実験においてプラズマの電子温度が顕著に微小重力下で700~1000kも低下する現象が見いだされた。このような現象は、陽光柱の中での電子密度のゆらぎによって次のように説明できる。

電子の運動速度は、自由な電子の場合~100m/sにも及び、対流流速と比べて圧倒的に速く流れの影響はほとんどない。しかし、プラズマ中では電子はイオンとの両極性拡散によって行動をともにし、次の関係で拡散係数は著しく低下する。

$$D_a = \frac{\mu_e D_f + \mu_f D_e}{\mu_e + \mu_f}$$

ここで、 D_a は両極性拡散係数、 μ_e および μ_ι 、Dfおよび D_e はそれぞれ電子とイオン

の移動度および拡散係数である。ここで $\mu_z >> \mu_t$ により、

$$D_a = D_f + \frac{\mu_f}{\mu_e} D_e$$

となる。すなわちイオンは加速され、電子は減速されることになる。水素の場合 D_a は、50Torrで数 cm^2 /sのオーダーとなり、代表長1cmの電極間陽においては対流流速と同等のオーダーとなる。

この時、図2.3.3-2に示すように対流によって電子ゆらぎは均一化され、ゆらぎは小さくなる。また、電子密度のゆらぎ(Δn_e)と電子温度とのゆらぎ(ΔT_e)については、次の関係が知られている。

$$\frac{\Delta T_e}{T_e} \propto -\frac{\Delta n_e}{n_e}$$

これにより、 $\Delta n_e^{\mu g} > \Delta n_e^{1g}$ の場合には、

$$\left|\Delta T_{e}^{\mu g}\right| > \left|\Delta T_{e}^{1 g}\right|$$

の関係が成り立ち、微小重力下では平均の電子温度 T_e より温度が低くなる現象が生じる。対流によってプラズマの電子温度が下がる現象は、本微小重力実験によって初めて明らかにされた成果である。

(3) 発光構造に見られる規則性

ドーム状発光に興味深い内部構造が観察された。図2.3.3-3に示すように、陽極を原点として、最外殻にあるドーム座標にある定数を掛けると次のドームの位置になるという構造である。自己相似比は0.73~0.79の範囲にあり、メタン濃度が高く、電力が大きい程、大きくなる傾向にあった(表2.3.3-1)。

地上重力下では、自己相似比はばらつきが大きく、明確な定数を求めることができなかった。ドームの形成にも電荷密度の空間分布が重要な働きをしていることは既に説明したとおりであり、対流による流れがゆらぎを消失させ、ドームの微細構造をあいまいにしていると考えられる。微小重力環境を用いれば、非平衡プラズマの自己組織化に関するメカニズムがさらに詳細に解明できるものと期待される。

表 2 . 3 . 3 - 1 ドーム状構造の自己相似比(ガス圧50Torr)

条 件	自己相似比		
(1) 開放系			
· 0.8% CH ₄ , 100W	0.73 ± 0.04		
· 1.0% CH ₄ , 128W	0.76 ± 0.04		
(2)閉鎖系			
· 0.8% CH ₄ , 100W	0.73 ± 0.02		
· 1.0% CH ₄ , 128W	0.79 ± 0.03		

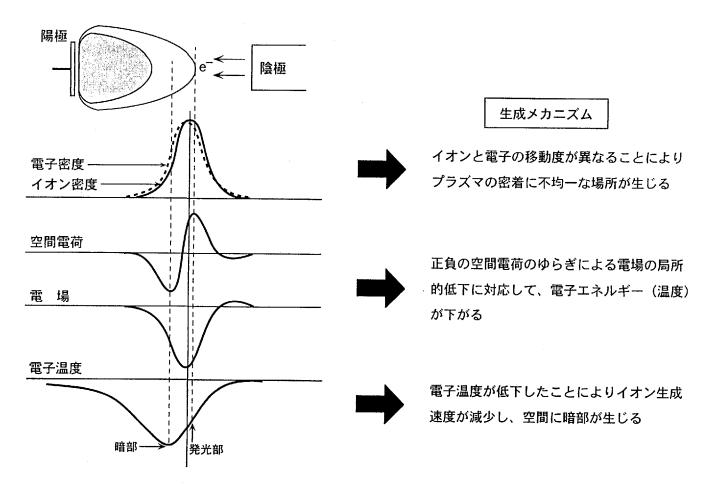


図2.3.3-1 DCプラズマのドーム状発光のメカニズム

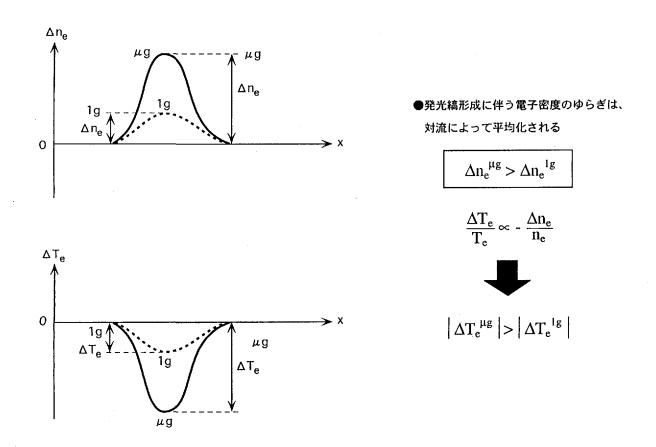


図2.3.3-2 微小重力下におけるプラズマ電子温度の低下のメカニズム

ドーム状発光に見られる自己相似構造 (0.8%メタン, 100W, 50Torr, 開放系) က ന က <u>区</u>

2. 4 結論

2. 4. 1 結果のまとめ

(1) プラズマドームの形成

- ①プラズマは地上と比較して微小重力下で安定する
- ②ドームの形状は重力によって強く影響される。
- ③ドームの先端は圧力が高く、メタン濃度が濃い程高く、陰極側に近づく。
- ④ドームの高さは電子温度と強い相関を持つ。
- ⑤閉鎖系は開放系と比べて、ドーム発光の変化に乏しい。
- ⑥プラズマ出力の大きい方がドームは大きい。
- ⑦ドームは多重構造をなし、微小重力下で顕著となる。
- ⑧多重ドームの形状には自己相似関係が成り立つ。
- ⑨内部ドームの位置は、圧力の増加あるいは電子温度の増大とともに外部ドームとの間隔が広がるように変化する。
- ⑩重力下ではプラズマ暗部の領域に発光部が拡散する。

(2) 活性種スペクトル強度

- ①1gでは陽極発光が強い。
- ②対流によって電子温度は上昇する。
- ③CH₄濃度の上昇は、電子温度を上昇させる。
- ④CH/H。比は微小重力下と地上重力下で顕著に値が異なった。
 - · CH/H_{α} (μ g) < CH/H_{α} (1g)
 - $\cdot H_{a}(\mu g) > H_{a}(1g)$
 - · CH (μ g) < CH (1g)
- ⑤CH/H よはメタン濃度とともに増大する。

2.4.2 今後の課題

プラズマ観察実験における最大の成果は、プラズマ電子温度が、微小重力下で低くなり、しかも圧力が低い領域(20Torr)において対流の効果が生じ易いことを示した点にある。この実験結果は、対流は圧力が高い程生じ易く重力効果が現われ易いという一般的な通念に反するものである。本報告書では、プラズマ温度が微小重力下で下がって良いことに対する定性的な説明を与えたが、今後さらに検証が必要であることは言うまでもない。また、非平衡プラズマの空間放電構造は微小重力下でより規則的になることを示したのも本実験の成果である。プラズマ放電は非平衡条件における自己組織化現象の一つの例であり、これに及ぼす微小重力の効果を明らかにする基礎研究としても有望な実験系であると考える。

3. ダイヤモンド成長実験結果

3.1 実験の目的

微小重力環境では基板上での核成長密度等が変化し、ダイヤモンドの結晶状態が変化する可能性もある。ここでは、Taおよびダイヤモンドを基板として、宇宙空間でダイヤモンドを成長させ、地上の成長状態との違いを比較した。なお、成長実験については、圧力は30Torr、プラズマ投入電力は100Wに設定して、基板およびメタン濃度を変えて行なった。

3. 2 実験方法

3. 2. 1 基板調整

試料基材としては、Taおよび高圧合成ダイヤモンド単結晶基材を用いた。成長面となるTa基材の表面は、洗浄後に傷つけ処理を行った。また、ダイヤモンド基材は、Taの上に(100)面を上面として蝋付けして固定した。

3.2.2 実験条件

ダイヤモンドの成長実験の実験条件を表3.2.2-1に示した。

3. 2. 3 試料評価

軌道上実験で作成した6個の実験試料について、走査電子顕微鏡(SEM)計測およびラマン分光分析を実施し評価した。また、EDXによる元素分布の評価も併せて実施した。

3.3 実験結果

3. 3. 1 実体顕微鏡およびSEM観察

(1) 実体観察

図3.3.1-1~6に各サンプルの実体顕微鏡写真を示す。この写真からは明瞭に色が判別できないが、全体的に青色を呈している。

電極1は全体が黒ずんでおり、中心部を半円形に加工用に亀裂が観察される。この 亀裂は横から見ると基材との間に隙間があり、中心部は膜がまくれ上がっていると考 えられる。周辺部にはあちらこちらに膜が剥離した状態が観察される。 電極2は一カ所を除いて比較的均一な膜が成長していると見られる。中心を少し外れた部分に1mm程度の穴が観察されるが、これはこの部分が放電などでダイヤの成長が阻害されたか、あとで削り取られたことが考えられる。周辺部のほとんどは黒ずんでおり、前述の穴の周辺も同様である。

電極3はほぼ円状に亀裂が見られる。亀裂に沿って青い部分があり、干渉色(虹色)が観察される。中心部を少しはずれたところに1mmΦの円状に見える領域があり、この部分では色が薄くなっている。

電極4は単結晶の周りに色が薄い領域があり、外周部は黒くなっていた。単結晶の 表面は外周に沿って青色部分がが観察された。単結晶のほぼ中央には粒子状の付着物 があり、その付近は色が濃い。

電極5は単結晶に周りのTa基板上はむしろ黒くなっている。単結晶の外周に沿った青い部分は電極4よりも広い。単結晶表面には付着物があちらこちらに観察され、その大きさは全体の2/3に達すると見られる。

電極6は電極1に見られた放電痕のような箇所が少なくとも3カ所はあり、全裸位に付着物が多い。放電痕のまわりは干渉色や青色ぽく見える部分が取り囲んでいる。

(2) SEM観察

図3.3.1-7~12は各々のサンプルの各部分のSEM像を示す。

電極 2 は全面に膜の形成が見られる。結晶粒径は全体的には 1μ m程度であるが、 Dの像からは 100nm以下の非常に小さな粒径が観察された。

電極 3 も概ね膜で覆われていたが、部分的に膜が剥離したと見られる下地の露出が見られる。BHIではひも状の結晶の列が見られる。粒子状の結晶が連なった構造で、基板から浮いているかの様な形態である。結晶粒径は電極2に比較してやや大きく、2 μ m程度と見られる。従って電極 2 に比べて膜の成長速度が大きいか、基板温度が高かったといった条件の違いが考えられる。

電極4は全面的に多結晶化している。完全なホモエピ成長が見られる領域はないと考えられるが、GとHからは(100)面からの双晶が形成されていると見られる。ここでも電極3に見られたひも状の結晶の列が観察された。このひも状の結晶が観察されなかったのはEFIの領域くらいであり、電極3に比してこのような成長が進んでいると考えられる。結晶粒径は $3\sim4~\mu$ mに達しており電極3よりも成長が進んでいると見られる。Ta 基板の上(I)でもダイヤらしい粒子が観察された。

電極5は中央部に平滑な領域がある他は電極4と特徴がきわめてよく似ている。ひも状の結晶も観察されると共に結晶粒子径は 5μ m以上にも達している。Ta 基板上にも成長している。C の部分にはいわゆる「ミラーボール状」と呼ばれる 14 面体の結晶形状が観察された。

電極6はかなりの面積で剥離が観察された。結晶の大きさや形態は電極 2 とかなり似ている。結晶粒径は代表的には 1μ mであったが、盛り上がったような形成の仕方が見られた。GHの領域では特に結晶面が明瞭な粒子が見られた。

実際の反応が出来上がった膜に対してどのように影響しているかは3.4.2において詳しく論ずる。

図3.3.1-13は電極3の破断面 SEM像である。この像から膜厚方向には柱状晶が成長していることが観察され、膜全体に隙間無く成長していると判定できる。膜厚は概ね $1.6\,\mu$ mと考えられる。この厚さから成長速度は $0.3\,\mu$ m/時間と計算される。

3.3.2 ラマン分光

図3.3.2-1~6は各々のサンプルのラマン分光スペクトラムである。

電極1ではすべての測定点でブロードなダイヤモンドのピークが観察された。そのほか1600cm⁻¹付近に非常にブロードなピークが見られ、グラファイト状の成分が含まれていることを示唆している。

電極 2 は A E F の点でしかダイヤのピークは観察されなかった。 D や H のようにほとんど蛍光が観察されない部分以外では 1600cm^{-1} 付近のブロードなピークが観察された。

電極3はA E I 以外の箇所でダイヤのブロードなピークが観察された。特にFではピークの高さが高く、明瞭にダイヤモンドであることがわかる。いずれの箇所からも $1600 cm^{-1}$ 付近のブロードなピークは観察された。

電極4ではGHに非常に強いダイヤのピークが見られた。半値幅やピークの形状からダイヤ単結晶基板からのピークと考えられる。Gはブロードな成分も含んでおり、薄い膜が存在していることを示している。ABCDEではブロードなダイヤのピークが観察された。J(Ta基板部分)からはダイヤのピークは見られなかった。

電極5はAHに基板からの信号を示す鋭いピークが観察された。しかしいずれにも ダイヤのブロードなピークが重畳している。BCEIからはダイヤのブロードなピー クが観察された。J(Ta基板部分)からはダイヤのブロードなピークが観察された。

電極6ではCFが剥離していると見られるほどほとんどスペクトルが見られないが、 それら以外からはダイヤのブロードなピークが観察された。Gの部分からは明瞭なダ イヤのピークが観察され、SEM観察で結晶面が明瞭であったことに対応している。

3. 3. 3 EDX分析

3.3.1で述べたように青色がかった表面の色をしていることから、その理由が ダイヤモンド以外の物質であるかを確認するためにEDX分析を行った。

図3.3.3-1~3.3.3-5は電極1、2、3、4、6のSEM像ならびにC、Mo、Taの3元素についてのサンプル表面の検出状況を示す。Mo は電極材料であるところからほとんどの電極で観察された。

電極1はTaがほとんど見られず、外周部で見られる部分は膜が剥離していると考え

られる。剥離していると見られる部分にMoの強い分布が観察され、放電が集中して MoもしくはMoCが多く堆積した部分が有ることが考えられる。

電極2はいずれの元素も分布が少ないが、放電痕に対応する部分はMoが多く観察された。また、電極3は3カ所ほど見られるMoが多く観察された。外周部の剥離した部分はTaが明瞭に見え、あきらかにダイヤモンド膜がはがれていると考えられる。

電極4ではSEM像で平滑に見える外周部に沿ってMoの存在が明瞭である。また、外周部にTaが堆積している状況もあり、電極材料のなんらかの蒸発もあったと考えられる。

電極6は比較的均一な元素分布をしており、放電痕にMoが集中しているような状況は見られなかった。

以上の観察から放電痕が必ずしもMoの何らかの飛来をもたらしているわけではないが、膜の成長に影響を及ぼす程度に基板を覆っていることは明らかになった。剥離したところにはTaが明瞭に見られることから、MoはTa上に単独で存在するのではなく膜の成分として存在していると見られる。

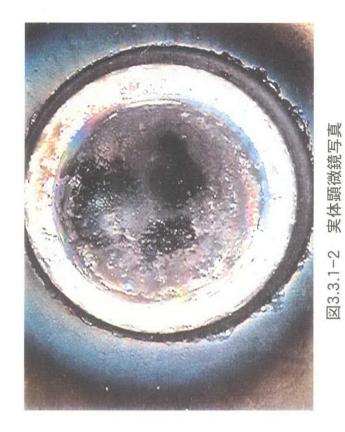
3. 3. 4 ESCA分析

表面の青色の原因を特定するために、電極1についてESCA分析を実施した。 図3.3.4-1~4は表面とアルゴンイオンエッチングを3分、60分、120分行った表面の 分析結果を示す。

表面には236,232,228.5eVの3カ所を頂点とするピークが見られる。イオンエッチングを3分程度行うと、このうち236eVのピークが消滅し、242eVを頂点とするピークが現れる。242eVを頂点とするピークはエッチングガスであるアルゴンの吸着にともなうものと考えられる。236eVのピークは表面の吸着酸素に由来していると見られる。

残りの2つのピークはそれぞれMoOとMoCと見られる。このように極表面からこのピークが見られるところから、青色に見られる層にはMoの炭化物もしくは酸化物が影響していると見られる。

3. 3. 5 薄膜 X 線回折


電極6のX線回折結果は図3.3.5-1に示す。

 $TaCおよびTaに由来するピークが観察される。2\theta=43.5$ °付近の鋭いピークはダイヤモンドの(111)面の回折と一致する。このピークはTaCやTaからはあり得ないと見られ、ダイヤモンドが形成されていることを示している。

通常は(220)や(311)面の回折ピークは(111)に対して26%や15%程度であり、この様に薄い膜では検出されないことは十分考えられる。また、膜の結晶配向が(111)面であるとすれば、他の面からの回折に比べて(111)が大きくなるので、この様な傾向があったとも考えられる。

表 3. 2. 2-1 ダイヤモンドの成長実験条件

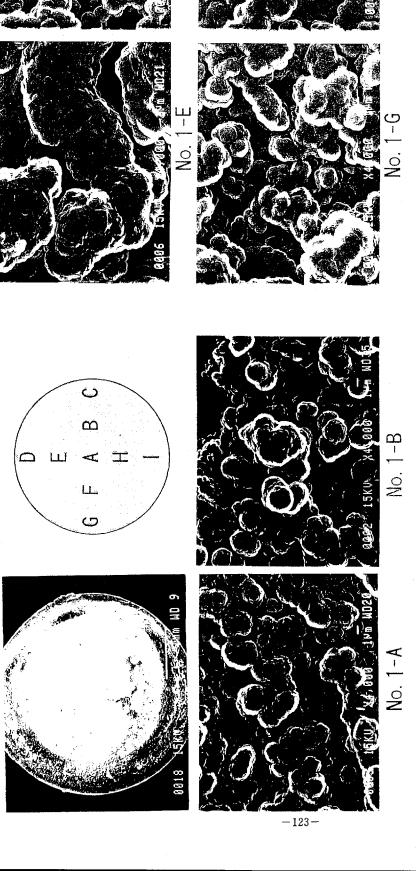
実験番号	FΟ	電極	基材	メタン濃度	電力	流量	圧力
2-1	5 6	2	Та	0.8%	1 0 0 W	Flow	30Torr
2-2	7 2	3	Та	1.0%	1 0 0 W	Flow	30Тогт
2-3	8 4	4	ダイヤ	0.8%	1 0 0 W	Flow	30Torr
2 – 4	8 5	5	ダイヤ	1.0%	1 0 0 W	Flow	30Топ
3 – 1	5 9	6	Та	0.8%	100W	Close	30Тогг

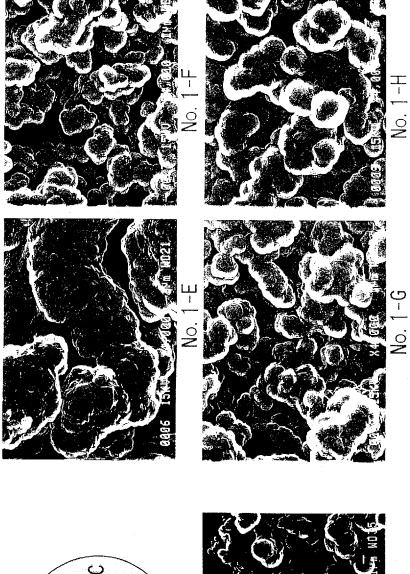
(NO.2電極)

図3.3.1-1 実体顕微鏡写真 (NO.1電極)

図3.3.1-3 実体顕微鏡写真

図3.3.1-5 実体顕微鏡写真 (NO.5電極)

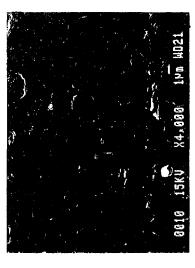
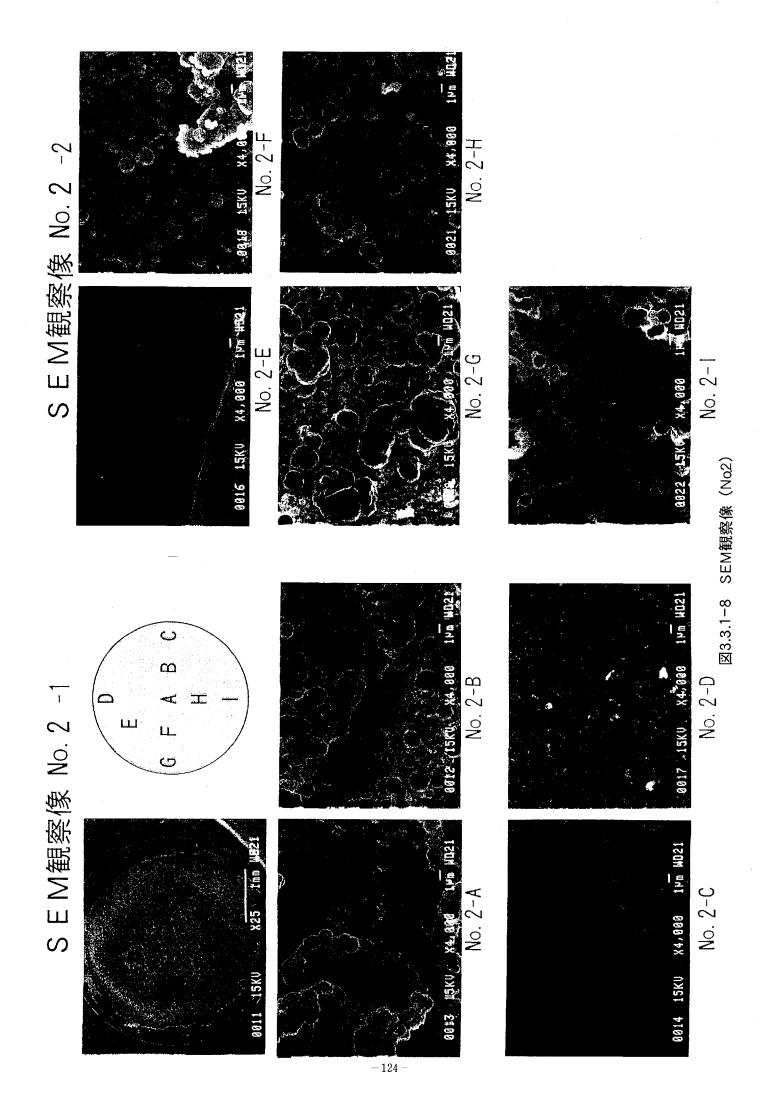
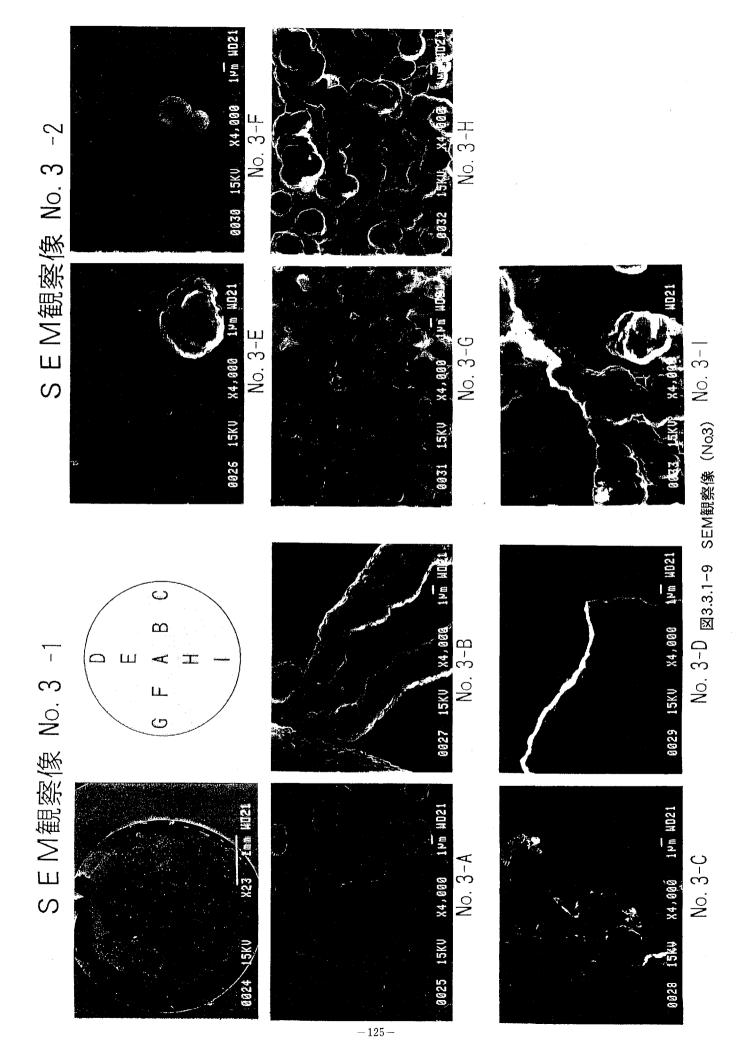

図3.3.1-6 実体顕微鏡写真 (NO.6電極)

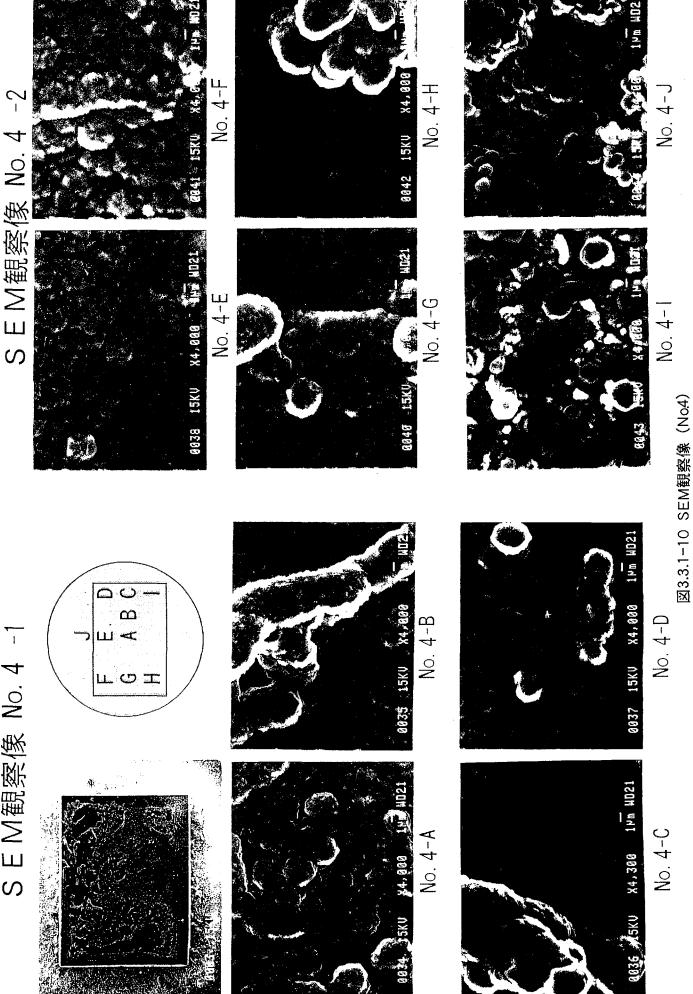

(NO:4電極)

S E M観察像 No. 1-1

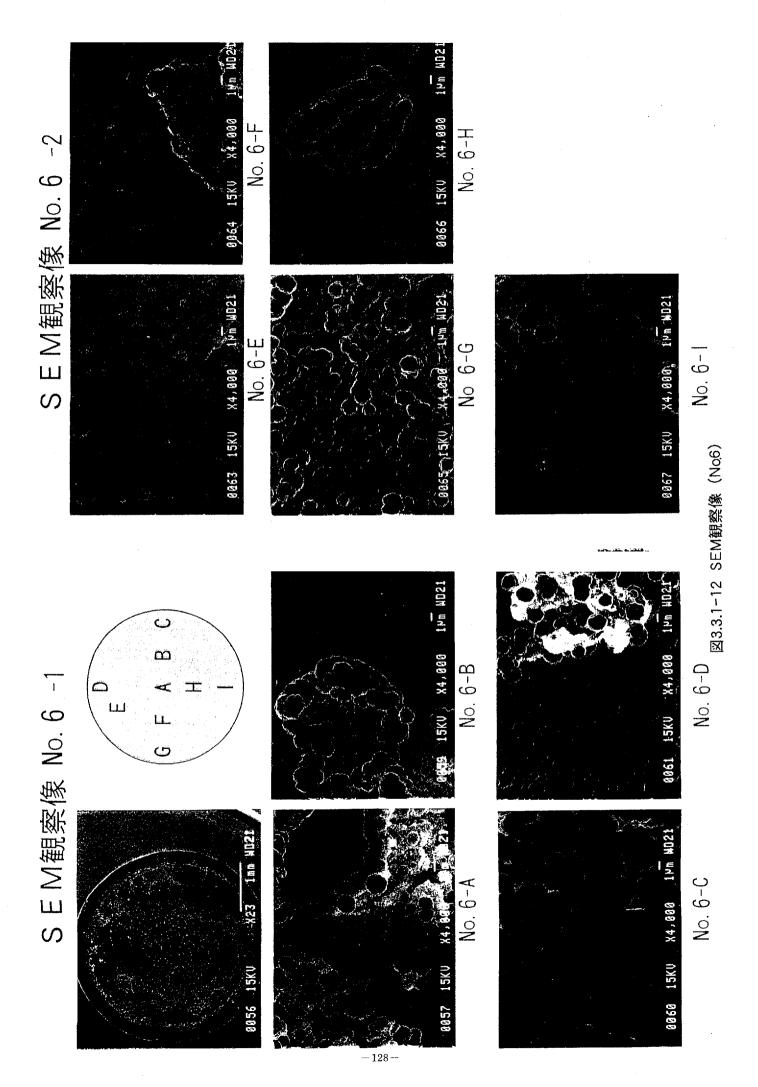
No.

SEM観察像


図3.3.1-7 SEM観察像 (No.1)

No. 1-1



S E M 観察像 No. 4 -1

-126

-127-

電極 N0.3

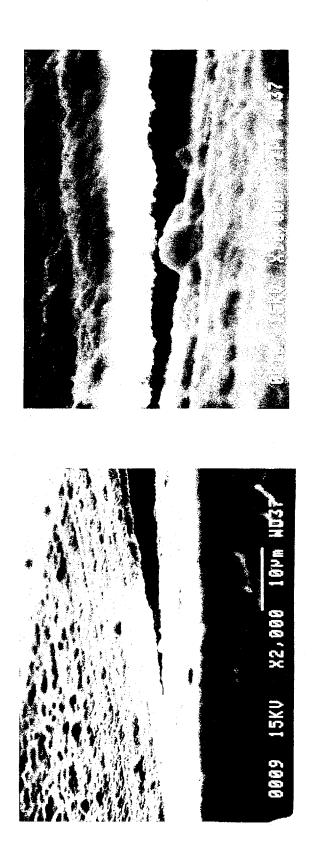
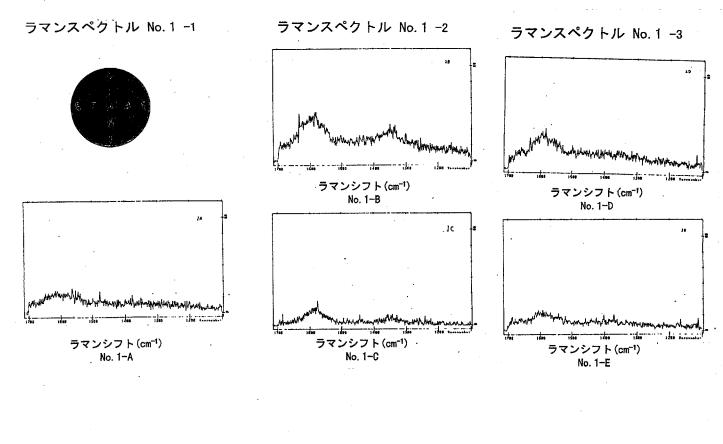



図3.3.1-13 宇宙実験試料 ダイヤモンド膜断面観察像

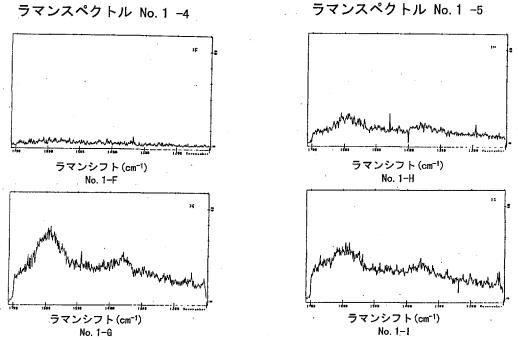


図3.3.2-1 ラマンスペクトル(No.1)

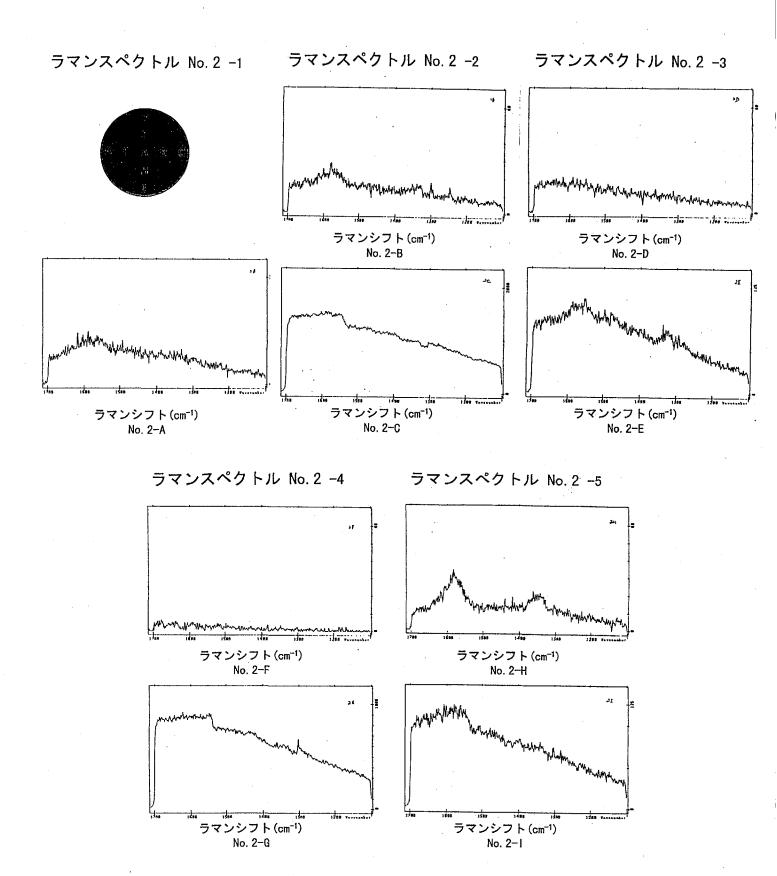


図3.3.2-2 ラマンスペクトル (No2)

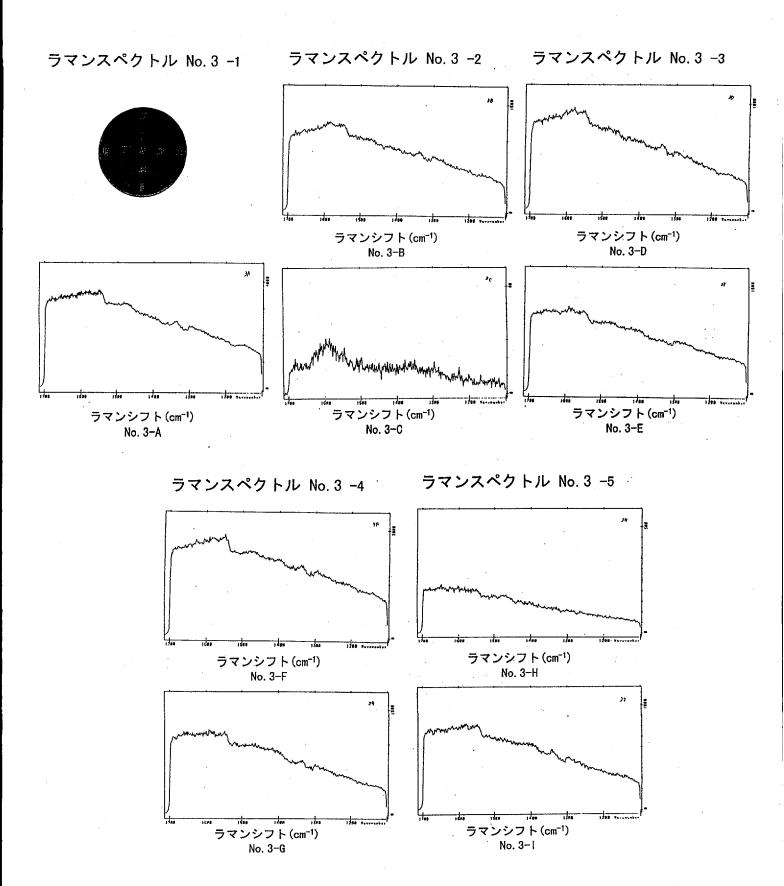


図3.3.2-3 ラマンスペクトル (No.3)

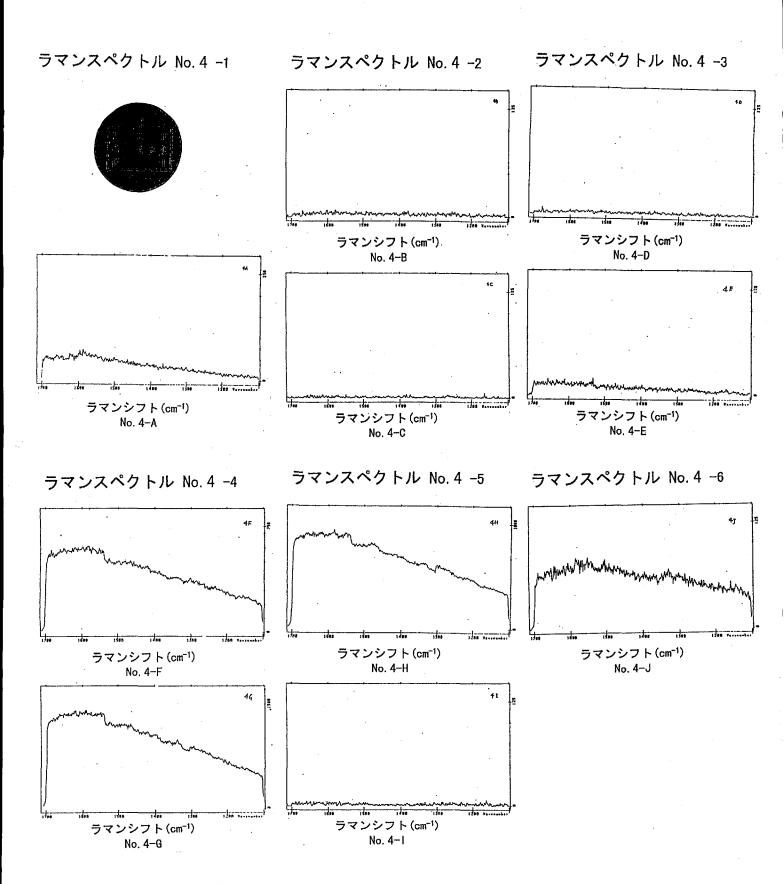


図3.3.2-4 ラマンスペクトル (No4)

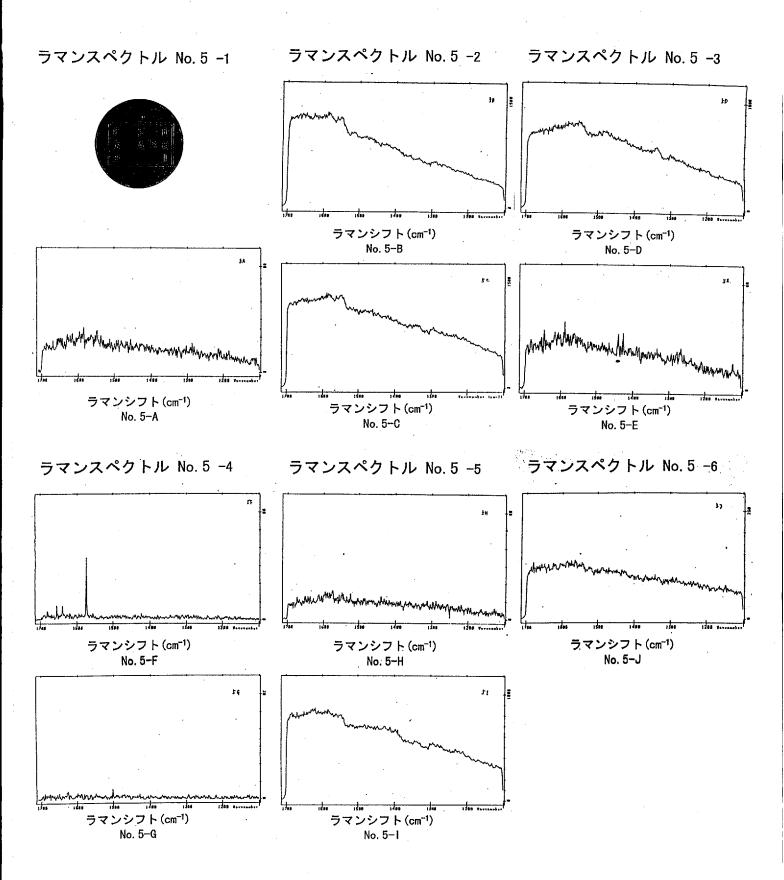


図3.3.2-5 ラマンスペクトル(No.5)

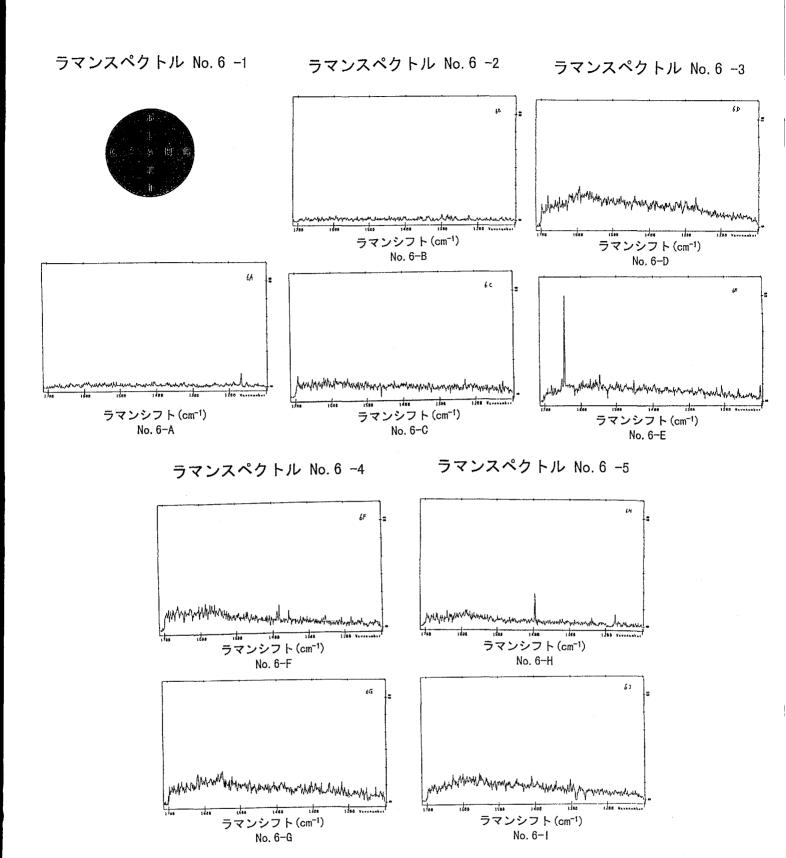
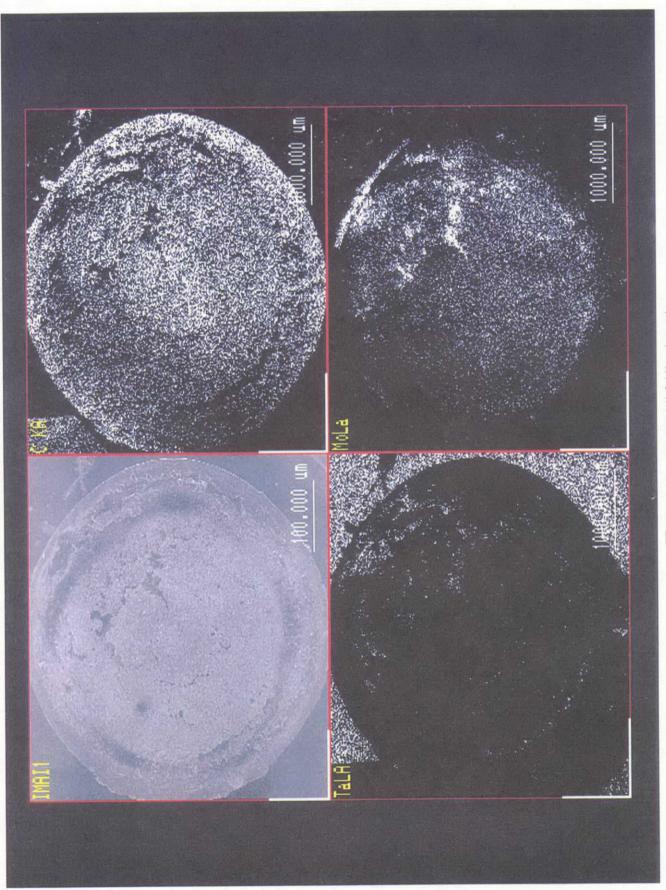



図3.3.2-6 ラマンスペクトル (No.6)

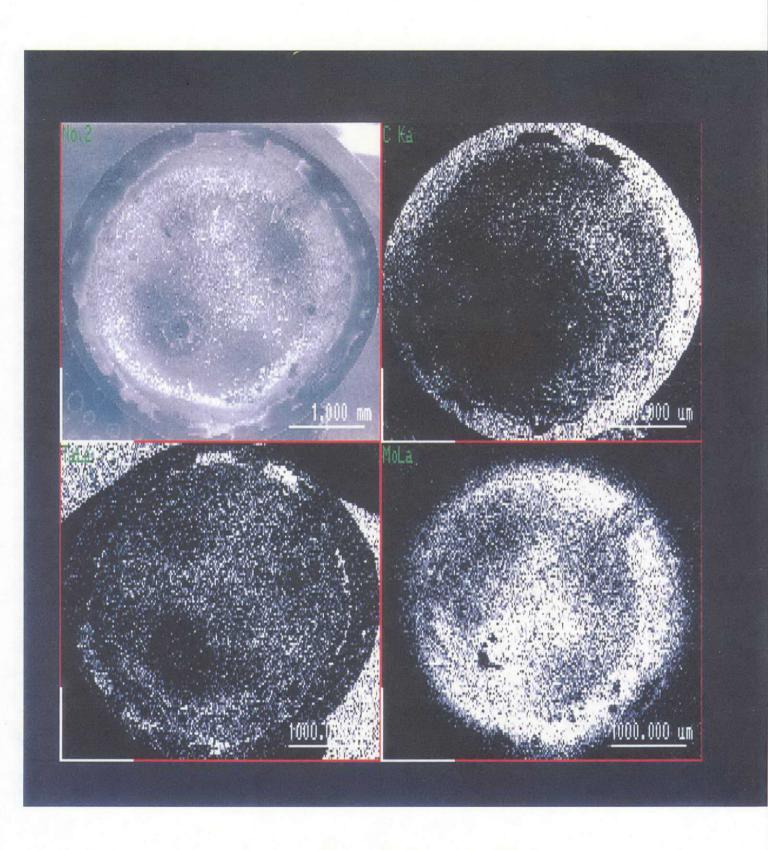


図3.3.3-2 EDXによる元素分析(No.2)

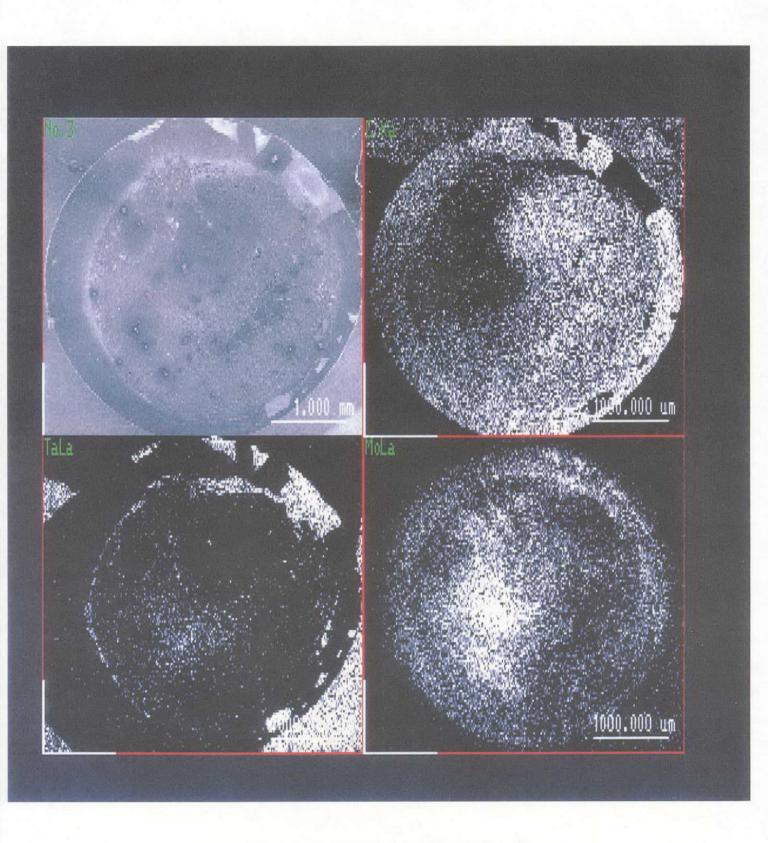
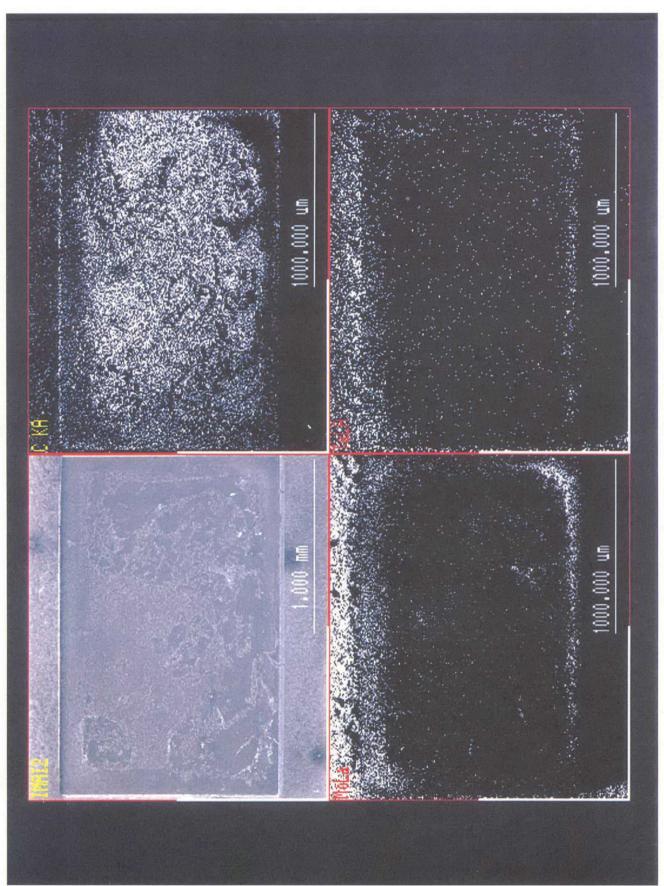



図3.3.3-3 EDXによる元素分析(No.3)

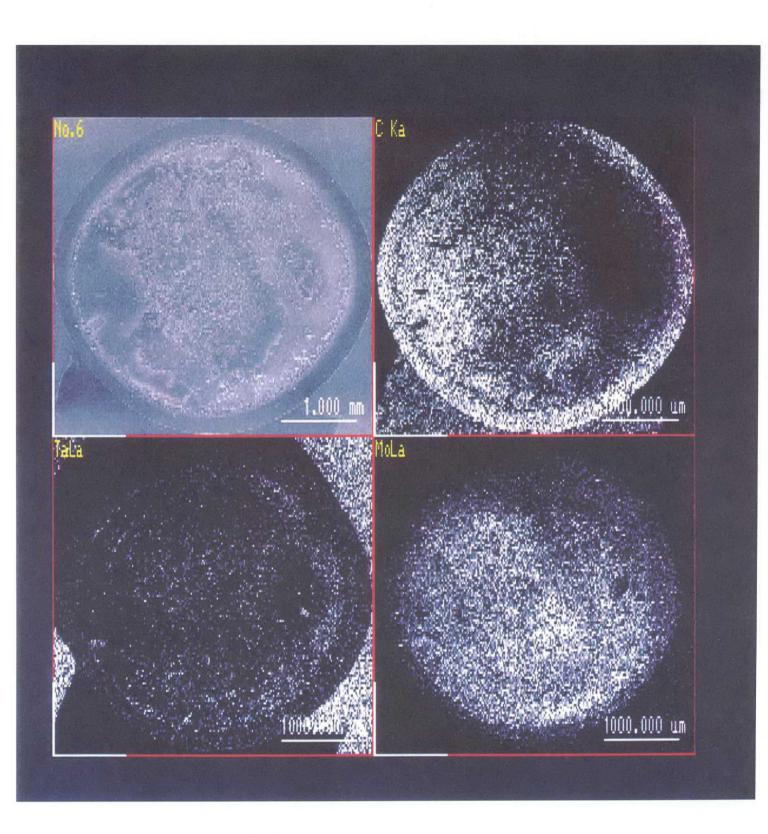


図3.3.3-5 EDXによる元素分析 (No.6)

ESCA MULTIPLEX 1/8/97 EL=Mo1 REG 2 ANGLE= 45 deg ACQ TIME=26.07 min FILE: 970108_2 dia Mr.Imai SCALE FACTOR= 0.135 k c/s, OFFSET= 0.431 k c/s PASS ENERGY= 17.900 eV Mg 400 M

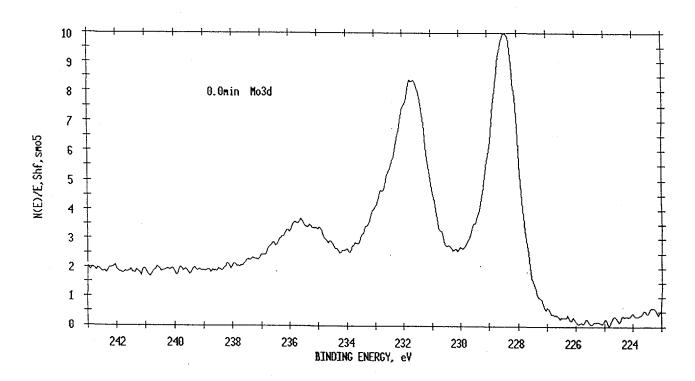


図3.3.4-1 ESCA(0分後)

ESCA MULTIPLEX 1/9/97 EL=Mo1 REG 2 ANGLE= 45 deg ACQ TIME=19.05 min FILE: 970108_4 dia Mr.Imai SCALE FACTOR= 0.252 k c/s, OFFSET= 0.573 k c/s PASS ENERGY= 17.900 eV Mg 400 M

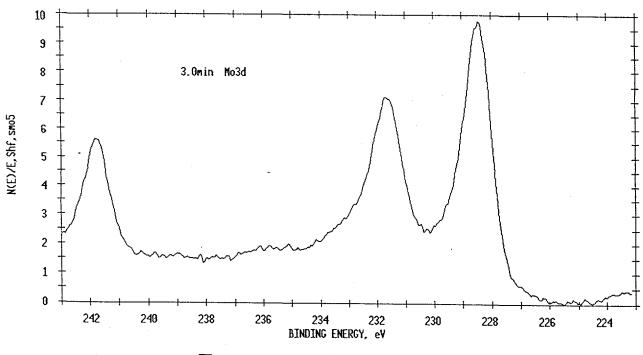


図3.3.4-2 ESCA(3分後)

ESCA MULTIPLEX 1/9/97 EL=Mo1 REG 2 ANGLE= 45 deg ACQ TIME=16.04 min FILE: 970108_9 dia Mr.Imai

SCALE FACTOR= 0.489 k c/s, OFFSET= 1.062 k c/s PASS ENERGY= 17.900 eV Mg 400 M

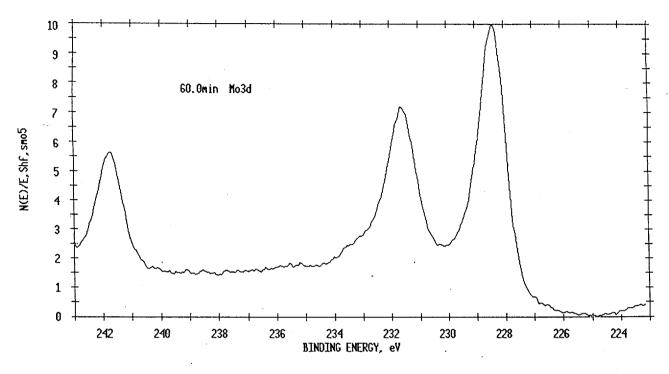


図3.3.4-3 ESCA(60分後)

ESCA MULTIPLEX 1/9/97 EL=Mo1 REG 2 ANGLE= 45 deg ACQ TIME=16.04 min

FILE: 970108_11 dia Mr. Imai

SCALE FACTOR= 0.398 k c/s, OFFSET= 1.105 k c/s PASS ENERGY= 17.900 eV Mg 400 M

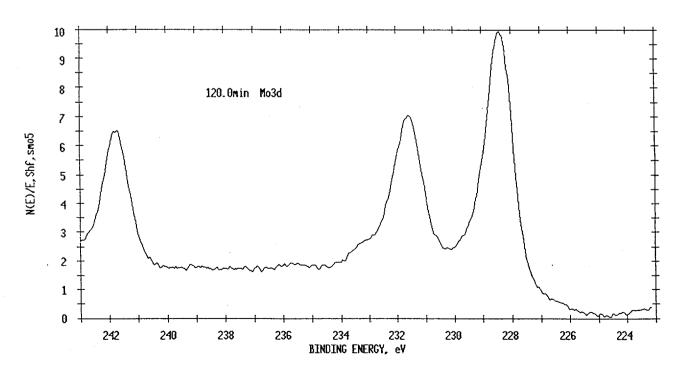


図3.3.4-4 ESCA(120分後)

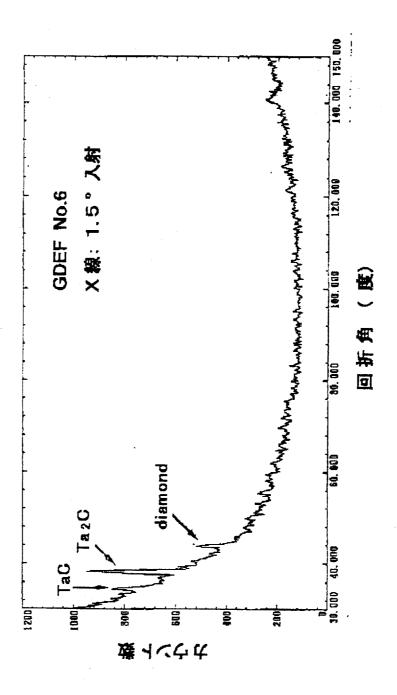


図3.3.5-1 X線回折

3. 3. 6 RHEED

エピタキシャル成長の確認には電子線回折が最適であり、この測定を行った。方法はRHEED(Refrection High Energy Electron Diffraction)である。電極4を超高真空漕に入れ、20kVに加速した電子を当てた。ビーム径は約0.3mmで、入射角が浅いため試料上では0.3 x 2mm程度の長円形となっている。

電極4を全く洗浄せずに取り付け、回折電子を観察したが全く回折線やスポットは 見つからなかった。通常この観察は極表面の状態で回折線が見えないことが多いので、 各種の表面洗浄を行って観察した。

- ①有機溶剤による洗浄
- ②希塩酸による洗浄
- ③ 王水による洗浄

これらの洗浄方法によっても回折線やスポットの観察は出来なかった。このことから電極4の表面にはかなり多量のダイヤ以外の物質が堆積していると考えられる。先にも述べたように表面にMo等が存在していることが明確になっているが、これが比較的安定な炭化物や酸化物を形成し、洗浄によっても全部を除去するに至っていないと考えられる

3.4 考察

3. 4. 1 ダイヤモンド生成の確認

(1) 同定結果

本実験では以下の3種類の方法でダイヤモンドの生成の確認を試みた。

- ①SEMによる表面観察
- ②ラマン分光法
- ③薄膜 X 線回折

SEMによる表面観察では、特に明瞭に結晶形の見えた電極3等で3角形と4角形の組み合わせになるミラーボール状の結晶が観察された。これは通常気相合成で生成する良質なダイヤモンドの形状と一致している。

ほとんどの測定点でラマン分光スペクトルの頂点は1332cm⁻¹存在しており、このことは出来た物質がグラファイトや無定型炭素ではなくダイヤモンドであることを示している。

X線回折からはダイヤモンドの(111)面の回折ピークが観察された。 これらを総合して考えると電極6では上記3つの条件にいずれも合致しており、確 実にダイヤモンドが形成されていたと判断できる。ラマン分光法の評価はダイヤモンド薄膜の形成の判断を的確に出来ると考えられ、いずれの電極からもはっきりとしたピークが観察されたところから、全ての電極でダイヤモンドが形成されたと判断される。

(2) 結晶の状態

結晶状態を議論するにはラマン分光法によるピーク形状と、SEM観察による結晶 形状を議論する必要がある。それぞれの電極は状況が大きく異なっており、一つの電 極の中でも場所による差異が大きいことを考慮する必要がある。

電極2および3は全体的に良質なダイヤモンドが生成したと考えられる。ここでは部分的には結晶面が明瞭に出ておらず、ダイヤモンドとしての質は劣っている。電極2よりも電極3の方が結晶状態は優れていると考えられる。一般的には他の条件が同じならばメタン濃度が低い方が良質なダイヤモンドが生成すると考えられる。本実験では基板温度や投入電力まで変化していることから、このような傾向を示さなかったと見られる。電極温度が電極3の方が高かったことから見て、電極2の基板上の真温度は800℃を下回っていることが推定される。すなわち、電極3での基板温度が高いことが良質な結晶の成長と結びついたと考えられる。

電極4、5にも多結晶膜が生成した。この膜の状態は電極2、3よりもさらに良質であったと考えられる。ダイヤモンド単結晶上では放電の状況は大きく異なっていたと見られるが、基板温度の上昇という形で良質な膜の生成に寄与したと考えられる。

電極6は電極2、3に比して結晶の質は悪いと見られる。

(3) エピタキシャル成長

エピタキシャル成長に関しては、一部に(100)面からの双晶形成が確認されその兆候はみられるものの結晶学的な確認までには至らなかった。すなわち、電極4の一部に粒子がほとんど観察されない部分があり、ここには双晶と見られる結晶の成長がみられ、これはほぼエピタキシャル成長が行われたということを示唆しているが、この結果をRHEEDによって確認することは出来なかった。これは表面に他の物質が堆積し、表面状態に敏感な同法ではダイヤの回折ピークを観察できなかったためである。

一般に(100)面のホモエピタキシャル成長は高いメタン濃度領域で良質なエピタキシャル成長膜が成長することが知られている。マイクロ波プラズマCVDではメタン濃度4%や10%でさえも良質な膜が成長した例がある。また、基板温度も良質な成長には欠かせない条件で、本条件の0.8%や1%をはるかに上回るような高いメタン濃度では1000℃を越えるような高い基板温度を維持することが良いとされている。

本実験条件は、各種の制約条件からTa基板へのダイヤモンド成長について条件を 最適化したために、このような極端な条件には当てはまらないため、平滑な成長が起 こることが難しかったと見られる。このエキタキシャル成長条件を逸脱した場合に双 晶が発生することはよく見られることである。

(4) 成長速度

0.3 μm/時間という成長速度は熱フィラメントCVDやマイクロ波プラズマCVD の発表例に比べて小さい値と言える。成長面積当たりの投入電力は通常のマイクロ波プラズマCVDとほぼ一致もしくは本実験の方が大きいのにも関わらず、この様に小さい成長速度が観察された。これには以下の理由が考えられる。

- ①基板表面温度が低い
- ②プラズマが拡散している。

①に関しては実験の準備段階から苦労してきた点であるが、基板表面の温度はせいぜい800℃程度と考えられる。上記の他の手法の場合は1000℃近くで形成しているところから、本実験の成長速度が小さいことが十分考えられる。一方、目視する限りはプラズマは電極付近に局在しているが、赤外線を発する領域(目視できる領域よりも活性度は低い)の観察までは行っていないので、総合的に見て本実験のプラズマの広がりは判断できない。もし、赤外光の領域が広いとすると、投入パワーは広い領域に分散していることになる。

図3.4.1-1は地上実験の電極3の破断面のSE M像である。この視野全体では膜厚は4から 6μ mである。この像は成長後半において異常な成長があったことを示している。表面から見て球状に見えるものは下層の $2\sim3\mu$ m成長後に成長を始めている。結晶の状況やラマン分光のピークの状況からこの膜のほとんどが不定形炭素で形成されていると見られる。この様な膜では炭素原子の密度としてもダイヤモンドよりははるかに小さいと推定できる。また、球状の成長粒子の間には空間や隙間も残っているように見られ、さらに炭素原子の密度は小さいと考えられる。

これに対し宇宙実験のサンプルは図3.3.1-13から明らかなように、膜厚全体にきちんと結晶が成長しており、通常見られる良質なダイヤモンド膜と考えられる。膜厚の成長速度は見かけ上地上実験サンプルの方が大きいが、ダイヤモンドの成長速度としては宇宙実験の方が大きいと考えてもよい。これは無重力状態の方がプラズマが安定であったことと、プラズマの活性種の状態がよりダイヤモンドの生成に適していたと判定できる。

3. 4. 2 プラズマ分光結果との対応

(1) プラズマ温度との相関

水素のバルマー系列からプラズマ温度を算出することができる。これは、プラズマ の活性度の指標と見ることができる。これと、ダイヤモンドのラマンスペクトル強度 (1333cm-1) との比較を行った。

プラズマ温度とラマンスペクトル強度との関係を図3.4.2-1に示した。前述のとおり、プラズマ温度は、1 Gと微小重力環境下とで領域が異なる。興味深いことに、微小重力環境下では、プラズマ温度とラマン強度は正の相関があるが、1 Gでは逆に負の相関になってる。温度で見ると、2500Kでラマン強度が最大強度になると見ることができる。

一方、プラズマ温度とS/Nは負相関である(図3.4.2-2)。また、プラズマ温度 と 半値幅は大きな相関はないことがわかる(図3.4.2-3)。

(2) メタン/水素比とその影響

ダイヤモンドのプラズマCVD実験では、 $CH/H\alpha$ がよいパラメータとなることが知られている。実際、 $CH/H\alpha$ をパラメータとしてラマンスペクトル強度 (1333cm-1)をプロットすると、1G20G2とで傾向が逆であり、 $CH/H\alpha$ が0.03付近でラマン散乱強度は最大になることが分かる(図3.4.2-4)。

3.4.3 不純物分布とその影響

(1) 多結晶膜成長

全体にMoが膜に含有されていたことを先に述べたとおりである。地上での実験でMo電極の温度は高々800℃程度であることが観察されており、この温度からはMoが多量に膜中に含有されることは考えられない。仮に短時間の異常な放電が有り、非常に電流密度が大きい箇所が合ったとすればこの様な現象を説明することが出来る。

電極の温度上昇と成膜の開始は同時進行であり、Mo(あるいはMoC)とダイヤモンドのどちらが最初に形成され出すかによって、最終的な状態は大きく左右されたと見られる。

また、途中からMoもしくはMoCが出来ることによって、ダイヤモンドの成長が停止するような事態も考えられる。電極3にはそのような場所が見られるが、これがなぜ部分的に起こったのかは不明である。

全体に青色がかっていたことから、成長の最終段階にダイヤモンド以外の物質の成長があったと考えられる。これはESCA分析の結果からMoの酸化物か炭化物、あるいはそれらの化合物が最表面に存在していたことを示している。本実験装置は空気のリークについては無視できる程度に小さいことを確認しており、酸素が入る事はないと考えられる。チャンバー内では酸化物の材料を3種類ほど使用している。特にMo電極の形状を維持するためにセラミックスの部品を使用しているが、これらはいずれも大きく変色していた。Mo電極は高温に加熱されていることから、この熱の影響でセラミックスが分解すれば酸素が放出される可能性もある。チャンバー内のガスを精密に計測しないと結論は出ない。

(2) ホモエピタキシャル成長

成長初期にMo電極の一部が何らかの化合物となって基材表面を汚染したことは本実験装置とその操作条件では十分に考えられる。ダイヤ単結晶基板上にひも状の結晶列が観察されているのは、ほとんど多結晶膜と同じ成長形態であったことを示している。従って電極4、5共にほとんど部分がこのような状態であったことから、成長初期からもしくは成長途中で多結晶膜が成長する条件となっていたと考えられる。先にも述べたように一部ではあるが双晶の成長が見られたところから、初期にはホモエピタキシャル成長が始まったと考える方が妥当である。従って、途中から多結晶化するようなMoの飛来もしくはMoCの生成が見られたのであろう。いずれにしても本実験は必ずしもエピタキシャル成長実験には十分考慮された実験条件とは言い難かった。不純物の飛来はこのような成長を阻害し、成長機構を複雑にすることから、成長結果からだけで成長過程を議論することは難しい。

電極 N0.3

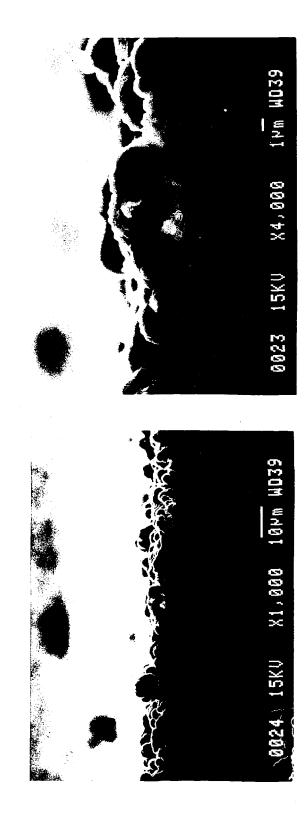
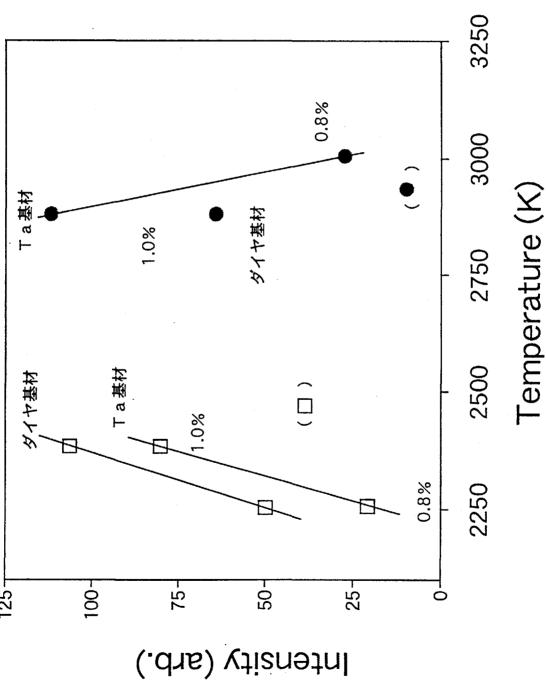
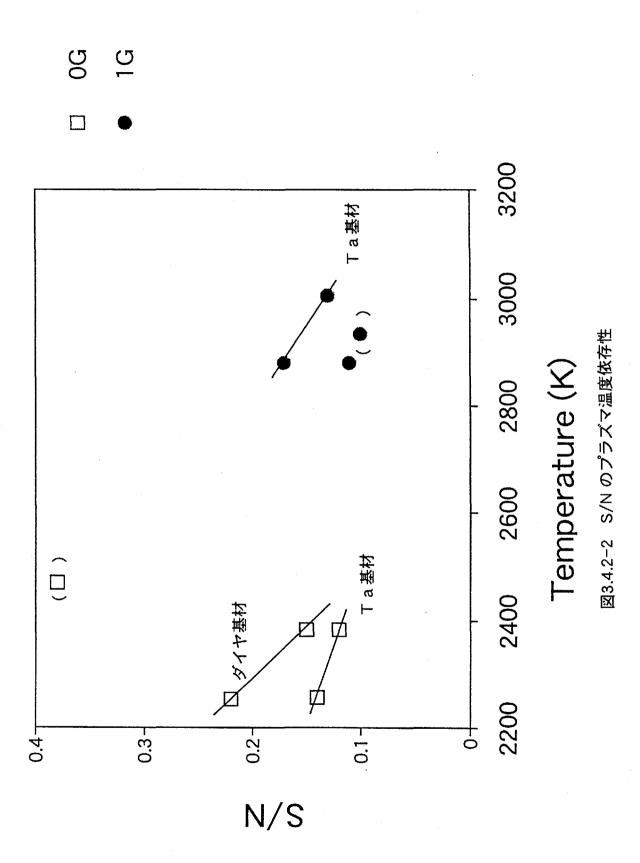
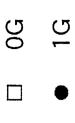
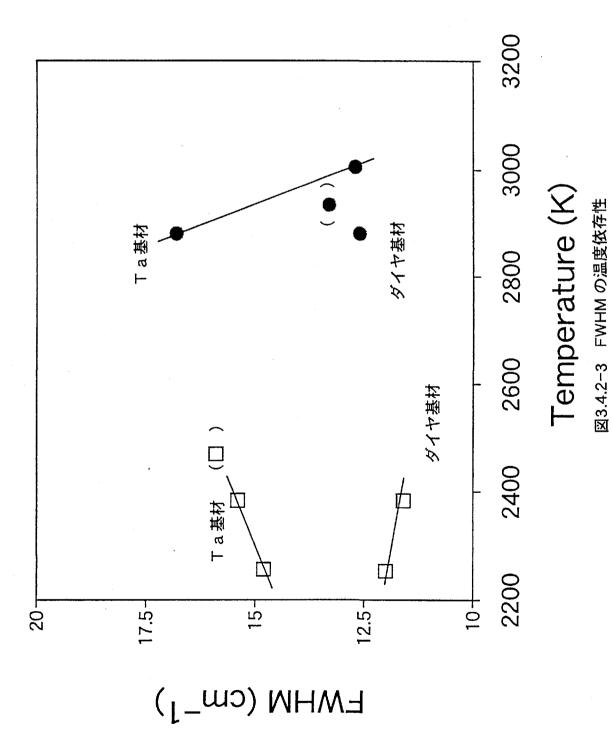
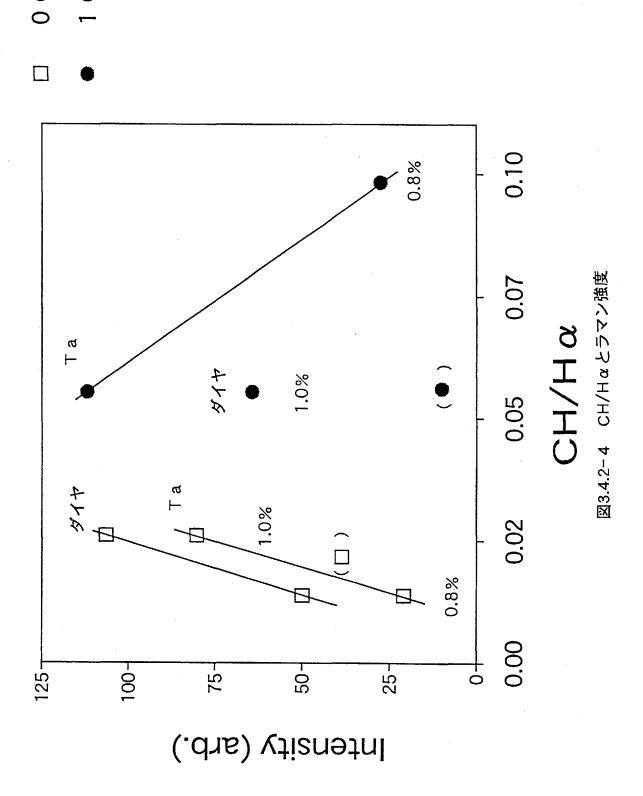


図3.4.1-1 地上実験試料 ダイヤモンド膜断面図観察像

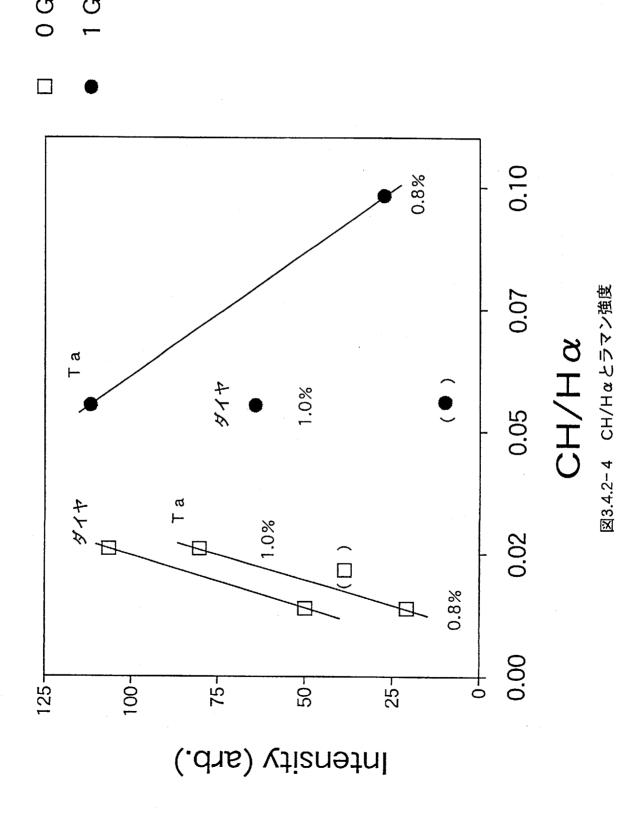

図3.4.2-1 ラマン散乱強度のプラズマ温度依存性

-152-

3.5 結論

3.5.1 実験結果のまとめ

本実験では、世界で初めて、微小重力下において、プラズマCVD実験を行った。 今回の実験では、世界ではじめて微小重力環境下において、ダイヤモンドの気相合成 に成功した。また、実験結果の詳細な解析から、重力環境の変化によりプラズマ中の 活性化学種の存在比率が大きく変化すること、プラズマの空間構造により規則性が増 すこと、地上とは異なった形態を持つダイヤモンドが生成することなどを明らかにし た。


3.5.2 今後の課題

しかしながら、SFU実験は、電力などのリソースの制約から通常の地上製造条件から外れた低パワー、低圧条件で行った実験であり、発光スペクトルも空間的な一点のみでの計測であった。今後、詳細なメカニズムを議論するためには発光スペクトルの空間分布情報や、発光しない化学種の同定を行う必要がある。

3.6 研究者側から見た今後の宇宙実験ミッションへの要望

本プロジェクトが開始されたのは、今から10年ほど前であり、我が国では未だ本格的な軌道上実験を体験していなかった時代である。このため、宇宙の微小重力環境での現象面での理解実験は十分ではなく、実験計画も揺れ動いた。さらに、後の総括の章においても述べるように、実験装置の考え方がリソースの変更などによって大きく変わったにもかかわらず、とにかく実験として成功したことは関係者の努力の賜と評価したい。この実験から明確となった事項は、プラズマの挙動が無重力環境では大きく変化するという事実である。本実験の圧力が20~100Torrという狭い範囲であったことから、更に広い圧力範囲での実験が必要と考えられる。一般にプラズマは非定常プラズマと定常プラズマに分類されている。これらの差は存在するガスの温度(運動量)が電子温度と一致するかしないかである。圧力上昇に伴ってこの2つの温度が一致する方向に動く。地上ではこの変化点が数Torrから数100Torrであることが確かめられている。本実験の結果だけからはこの変化が重力に影響されているか否かを判定することはできない。今後系統的な実験を行うことにより、プラズマの形態をガスの対流による運動を全く無くして議論できると考えられる。

この様なプラズマに関する実験では計測機器の選定は極めて重要である。微小な領域の活性種を計測できるLIF(Laser Induced Fluorescence)等の手法を用いて、反応の分布を観察することは有力な手段と見られる。この手法も最近のレーザーならびに光計測技術の進歩により、小型軽量化が可能となっていることから、宇宙実験においても利用できる可能性が高まっている。しかし、本実験で最後まで搭載機器の候補とし

3.5 結論

3.5.1 実験結果のまとめ

本実験では、世界で初めて、微小重力下において、プラズマCVD実験を行った。 今回の実験では、世界ではじめて微小重力環境下において、ダイヤモンドの気相合成 に成功した。また、実験結果の詳細な解析から、重力環境の変化によりプラズマ中の 活性化学種の存在比率が大きく変化すること、プラズマの空間構造により規則性が増 すこと、地上とは異なった形態を持つダイヤモンドが生成することなどを明らかにし た。

3.5.2 今後の課題

しかしながら、SFU実験は、電力などのリソースの制約から通常の地上製造条件から外れた低パワー、低圧条件で行った実験であり、発光スペクトルも空間的な一点のみでの計測であった。今後、詳細なメカニズムを議論するためには発光スペクトルの空間分布情報や、発光しない化学種の同定を行う必要がある。

3.6 研究者側から見た今後の宇宙実験ミッションへの要望

本プロジェクトが開始されたのは、今から10年ほど前であり、我が国では未だ本格的な軌道上実験を体験していなかった時代である。このため、宇宙の微小重力環境での現象面での理解実験は十分ではなく、実験計画も揺れ動いた。さらに、後の総括の章においても述べるように、実験装置の考え方がリソースの変更などによって大きく変わったにもかかわらず、とにかく実験として成功したことは関係者の努力の賜と評価したい。この実験から明確となった事項は、プラズマの挙動が無重力環境では大きく変化するという事実である。本実験の圧力が20~100Torrという狭い範囲であったことから、更に広い圧力範囲での実験が必要と考えられる。一般にプラズマは非定常プラズマと定常プラズマに分類されている。これらの差は存在するガスの温度(運動量)が電子温度と一致するかしないかである。圧力上昇に伴ってこの2つの温度が一致する方向に動く。地上ではこの変化点が数Torrから数100Torrであることが確かめられている。本実験の結果だけからはこの変化が重力に影響されているか否かを判定することはできない。今後系統的な実験を行うことにより、プラズマの形態をガスの対流による運動を全く無くして議論できると考えられる。

この様なプラズマに関する実験では計測機器の選定は極めて重要である。微小な領域の活性種を計測できるLIF(Laser Induced Fluorescence)等の手法を用いて、反応の分布を観察することは有力な手段と見られる。この手法も最近のレーザーならびに光計測技術の進歩により、小型軽量化が可能となっていることから、宇宙実験においても利用できる可能性が高まっている。しかし、本実験で最後まで搭載機器の候補とし

て残ったビデオカメラは、動的な変化をとらえる手段として非常に重要であることを 再認識させた。今後、この様な実験を行う場合には何をさておいても搭載することを 考えるべきである。

ダイヤモンドを合成するという実験としては、本実験の手法は非常に複雑な系であった。すなわち、リソースの制約上選択した直流放電プラズマCVD法では、2つの電極が必要で、結果的にこれらの物質が混入することが避けられなかったことが大きな問題であった。当初計画したマイクロ波プラズマCVD法はこの意味では最も優れた合成法である。単に良質な膜を形成することが出来るばかりでなく、直流放電プラズマCVD法では成長初期に基板表面を汚染することも大きな問題であり、今回の実験のうちエピタキシャル成長が完全には遂行できなかった原因を除去できる可能性があり、将来的な検討課題である。

気相成長の材料としてはダイヤモンドを成長させることは、成長環境を精密に判定できるという意味から好都合な物質である。すなわち、炭素やグラファイトと成長条件が隣り合わせているからである。一方では非常に成長速度が遅いために、長時間の成長実験を行ったにも関わらず、膜から得られる知見がそれほど多くなかった。また、発熱反応であることも実験の幅を狭めたとも考えられる。今後の気相成長実験では研究目的を明確にした上で、それに適した物質の成長を選択する必要がある。ダイヤモンドについて述べた上記の基準はこの選択のためにほんの一部の基準に過ぎず、単結晶、アモルファスなどの形成される結晶構造の選択を含めて十分な検討が必要である。

4. 総括

気相からのダイヤモンドの結晶成長、ガスプラズマ状態に対する微小重力効果(言いかえれば対流の効果)の検証のいずれも、微小重力下での新しい試みであり、新しい成果であった。また、技術開発としてみたとき、ガスの操作・制御技術にとどまらず、「その場観察」技術も取り入れた、今後の宇宙実験のあるべき姿の一つを経験できたという意味で極めて有意義であったと言えるであろう。

以下には、報告を終えるに当たってアドバイザリー委員長の目からみた、GDEFによる実験の科学的・技術的な成果と意義について述べさせていただきたい。本来は各委員の考えをまとめた形とすべきであるが、これにはまだ時間を要すると思われるので、中途半端な形でまとめるよりは、私見ではあるが得られた結果について重要と思われる点を指摘し、さらに反省点、今後の方向について述べたい。

4.1 実験の成果と意義

今回の実験で得られた重要な知見の一つは、まず30Torrという比較的低圧の気相からのダイヤモンド成長、ガスプラズマに対する微小重力の効果が明瞭に認められたことであろう。これまでは一般にこの圧力領域での物質移動は拡散に支配され、対流の有無は反応や結晶成長にあまり顕著な影響を持たないと理解されている。微小重力効果が認められたことは、地上では対流が結晶成長とガスプラズマに対して容易に検知できる程度の影響をもっていることを示している。もう一つの重要な点は、ガスプラズマが宇宙では安定しており、地上で見られた放電の不安定性や異常放電が殆ど認められなかった点である。これは、今回のプラズマ実験に特有のことではなく、より一般的な現象であると考えてよいのではなかろうか。地上よりも安定で再現性のよいプラズマ状態が得られることは、今後宇宙での材料実験でプラズマを利用する上で朗報であり、技術的に重要な意味をもっている。

以下、実験項目別に、より具体的に述べる(なお実験結果あるいは解析の詳細については実験報告の対応する部分を参照していただきたい)。

4.1.1 ダイヤモンド合成実験について

貴重な試料であることを考慮して、試料の評価は破壊を必要とするものについて は最後にし、慎重に行っているため、これからも新たな知見が得られる可能性があ るが、現時点での結果からの考察を行う。

ア) 薄膜の厚さ(成長速度):結晶成長速度を判定するために必要な膜厚測定はこれまで一つの試料についての測定結果しかないが、地上に比較して膜厚が約五分の一しかないことが判明した。これは十分に有意の差と判断され、微小重力下で成長速度が約5分の1になっていることを示すもので、地上では成長に対して対流の寄与が拡散よりかなり大きな比率を占めることを意味している。もう一つの可能性

て残ったビデオカメラは、動的な変化をとらえる手段として非常に重要であることを 再認識させた。今後、この様な実験を行う場合には何をさておいても搭載することを 考えるべきである。

ダイヤモンドを合成するという実験としては、本実験の手法は非常に複雑な系であった。すなわち、リソースの制約上選択した直流放電プラズマCVD法では、2つの電極が必要で、結果的にこれらの物質が混入することが避けられなかったことが大きな問題であった。当初計画したマイクロ波プラズマCVD法はこの意味では最も優れた合成法である。単に良質な膜を形成することが出来るばかりでなく、直流放電プラズマCVD法では成長初期に基板表面を汚染することも大きな問題であり、今回の実験のうちエピタキシャル成長が完全には遂行できなかった原因を除去できる可能性があり、将来的な検討課題である。

気相成長の材料としてはダイヤモンドを成長させることは、成長環境を精密に判定できるという意味から好都合な物質である。すなわち、炭素やグラファイトと成長条件が隣り合わせているからである。一方では非常に成長速度が遅いために、長時間の成長実験を行ったにも関わらず、膜から得られる知見がそれほど多くなかった。また、発熱反応であることも実験の幅を狭めたとも考えられる。今後の気相成長実験では研究目的を明確にした上で、それに適した物質の成長を選択する必要がある。ダイヤモンドについて述べた上記の基準はこの選択のためにほんの一部の基準に過ぎず、単結晶、アモルファスなどの形成される結晶構造の選択を含めて十分な検討が必要である。

4. 総括

気相からのダイヤモンドの結晶成長、ガスプラズマ状態に対する微小重力効果(言いかえれば対流の効果)の検証のいずれも、微小重力下での新しい試みであり、新しい成果であった。また、技術開発としてみたとき、ガスの操作・制御技術にとどまらず、「その場観察」技術も取り入れた、今後の宇宙実験のあるべき姿の一つを経験できたという意味で極めて有意義であったと言えるであろう。

以下には、報告を終えるに当たってアドバイザリー委員長の目からみた、GDEFによる実験の科学的・技術的な成果と意義について述べさせていただきたい。本来は各委員の考えをまとめた形とすべきであるが、これにはまだ時間を要すると思われるので、中途半端な形でまとめるよりは、私見ではあるが得られた結果について重要と思われる点を指摘し、さらに反省点、今後の方向について述べたい。

4.1 実験の成果と意義

今回の実験で得られた重要な知見の一つは、まず30Torrという比較的低圧の気相からのダイヤモンド成長、ガスプラズマに対する微小重力の効果が明瞭に認められたことであろう。これまでは一般にこの圧力領域での物質移動は拡散に支配され、対流の有無は反応や結晶成長にあまり顕著な影響を持たないと理解されている。微小重力効果が認められたことは、地上では対流が結晶成長とガスプラズマに対して容易に検知できる程度の影響をもっていることを示している。もう一つの重要な点は、ガスプラズマが宇宙では安定しており、地上で見られた放電の不安定性や異常放電が殆ど認められなかった点である。これは、今回のプラズマ実験に特有のことではなく、より一般的な現象であると考えてよいのではなかろうか。地上よりも安定で再現性のよいプラズマ状態が得られることは、今後宇宙での材料実験でプラズマを利用する上で朗報であり、技術的に重要な意味をもっている。

以下、実験項目別に、より具体的に述べる(なお実験結果あるいは解析の詳細については実験報告の対応する部分を参照していただきたい)。

4.1.1 ダイヤモンド合成実験について

貴重な試料であることを考慮して、試料の評価は破壊を必要とするものについて は最後にし、慎重に行っているため、これからも新たな知見が得られる可能性があ るが、現時点での結果からの考察を行う。

ア) 薄膜の厚さ(成長速度):結晶成長速度を判定するために必要な膜厚測定はこれまで一つの試料についての測定結果しかないが、地上に比較して膜厚が約五分の一しかないことが判明した。これは十分に有意の差と判断され、微小重力下で成長速度が約5分の1になっていることを示すもので、地上では成長に対して対流の寄与が拡散よりかなり大きな比率を占めることを意味している。もう一つの可能性

としては、成長速度は変わらず、核形成に要する時間がかなり長くなるという解釈 であるが、この点についても拡散律則という前提からは理解が困難である。

- イ)成長形態:宇宙実験では、成長形態についての違い、すなわち膜状の成長以外に、いわば紐状の成長が見られることが藤森委員によって指摘された。種々の気相法について地上実験ではあまり見られない特徴であり、拡散に支配された成長の特徴であるかも知れない。一方、ダイヤモンド単結晶基板上での成長形態がエピタキシャル膜(単結晶膜)ではなく、多結晶膜であったのは、合成条件がエピタキシャル成長条件の範囲外にあったためで、特に微小重力の効果と考える必然性はないと思う。(成長条件の選択については次項ウ)を参照されたい)
- ウ)結晶性:比較的結晶性のよいダイヤモンドが得られたが、今回の実験のみから、微小重力の結晶性に及ぼす効果(言い換えれば無対流成長の結晶性に及ぼす効果)について明確な判定を下すことは困難である。それは、ダイヤモンドの結晶性はガス組成と基板温度をはじめ種々の因子に依存するためである。今回の実験では(予測通り)地上よりも基板温度が高い可能性があることがわかった。ガス組成についても、ガス充填時および装置回収後に分析を行い大きな変化は生じていないことを確認しているものの、打上げなどによる振動、ガス充填を行なった後実験までに約10ヵ月を経ていることなどを考慮すると、微量のアウトガスやリークによる水蒸気、酸素の影響が全く無いと断定することはできない。結晶性に与える影響を明確にするためには、十分なリソースに基づく、より高い制御性、安定性をもった手法による詳細な実験が必要であると考える(地上実験との比較が困難な理由の一つは、地上実験のプラズマ状態の安定性、成膜の再現性が十分でなかったことも一因としてあり、これはSFUミッションでの電力不足に起因するものである)。

4.1.2 プラズマ観察実験について

計画立案当時ガスプラズマに対する微小重力効果の報告はなかった(現在も同様である)。そこで、プラズマに与える微小重力効果を検証するための基礎データとして、また今後の宇宙実験にプラズマを利用する場合に役立つことを願って、限られたリソースの範囲内で計画されたのがプラズマ観察実験である。ここでは発光スペクトル、プラズマ画像から微小重力による影響を検討することとした。当初は、発光スペクトルの空間分布測定とビデオによる動画像の記録が計画されていたが、その後のリソースの変更(削減)に対応するため、発光スペクトルは陽極発光を一定点で測定すること、画像は一実験に一静止画像を取得することとした。これらの計画縮小にもかかわらず、以下のような微小重力による変化(対流の影響)を捉えることができた。なお、プラズマ発光についての解析は主として石川正道委員、亀井信一氏(三菱総研)によるものであり、発光スペクトルの解析については犬塚直夫委員(青山学院大理工)、藤森直治委員(住友電工)の協力による。

ア) 発光スペクトル:水素原子や炭化水素ラジカルの発光スペクトル線の相対強度の変化は、衛星から送信された時点で明瞭に認められた。相対強度変化に基づく

解析からいくつかの興味ある結果を得たが、いずれも対流がプラズマに対して影響を与えることを示している。また、結晶性と相関のあるスペクトル変化も認められた。

- イ) プラズマ画像:微小重力下では、陽極の発光に周期的構造が現われることが示された。また、プラズマの外形にも高い圧力領域では変化が認められた。
- ウ)プラズマの安定性:数Torr付近の領域でのプラズマは地上では不安定で電力変動、発光強度の変動などが観測されるが、微小重力下では一貫して安定していることが明らかとなった。これは、以下の異常放電などについてと同様、日電グループの平尾氏らの指摘によるものである。
- 工)異常放電への影響:本来の陰極と陽極の間に起こる放電に対し、ときに陰極と反応室内壁の間で放電が起き、過大な電流が観測されることがあり、本実験ではこれを異常放電と呼んでいる。異常放電は電流値の変動に加え、反応室内壁に焼け焦げたような跡を残すことが多いが、宇宙実験後の反応室内壁にはこのような痕跡は認められず、また電力の記録からも異常放電の兆候は認められなかった。

4. 2 反省点

今回の計画ではリソースが途中で変更になり、電力がほぼ半減し、重量が約3分の2に削減されたこと、励起用電源として予定されていたマイクロ波電源が使用できなくなるなどの予期せぬことがあり、設計変更のために時間との厳しい競争を余儀なくされた。一方、私自身としては、リソース削減の際に合成実験を取り止め、プラズマ観察実験にのみしておくべきであったか、との反省がある。そうすれば、プラズマ観察実験の内容を本来の計画に近い形に維持できるとともに、装置製作と地上実験に関する大きな負担を軽減できたからである。実際には陰極加熱型の直流放電プラズマ装置を使用することによって結晶成長にも成功したのであるが、これは藤森委員の提案によるものであり、さらには陽極側の熱伝導を最小限に抑さえた構造を実現した日電グループの努力の成果であった。その他にも壁との間の放電など、いくつかの技術的困難があり、それぞれが工夫を要するもので、また時間とのきわどい駆け引きでもあった。

参考にリソース縮小前の計画の概要を以下に示す。

1) ダイヤモンド成長:マイクロ波による無極放電を利用したプラズマCVD法、2) プラズマ観察:発光スペクトルの位置依存性の測定、3) プラズマ画像(ビデオによる動画像取得)、4) 基板温度測定(放射温度計による直接測定)。

4.3 今後の方向

今回の実験は微小重力下でのプラズマが安定であることを示しており、宇宙でのプラズマを利用した結晶成長、物質合成などの材料実験にとっては朗報である。プラズマを利用した材料実験を有効に行なうためには、プラズマ自身をもっとよく知る必要

がある。そこで以下の実験が考えられる。

1) プラズマに対する微小重力効果(対流効果)の解明

発光スペクトル、レーザー分光、ビデオ観察などを中心にプラズマの空間分布、温度、活性種濃度分布、対流の有無などに対する効果を調べる。また、地上での対照実験が必要であることは言うまでもない。

2) 本実験の当初計画を基本とした結晶成長実験

今回より安定した条件の下(十分なリソースの下)で結晶成長実験を行ない、拡散 律則による結晶成長の特徴を明らかにすることは十分意義のあることのように思われ る(なお観察手法の基本は変わらないが細部については再検討が必要である)。

これらの実験では、反応容器の内壁とガス種の衝突が重要な役割を果たしている可能性があり、今後の研究でも留意すべき点である。

3) 均質核形成と成長初期過程の実験

われわれが当初から検討はしていたが、試みることができなかったことに、均質核 形成と成長初期過程の実験がある。地上では困難な実験であり、対流と沈降のない微 小重力を最も有効に生かした結晶成長実験の代表例である。この場合には実験に応じ た「その場観察」手法との組み合わせが基本となる。例えばダイヤモンド、黒鉛の成 長実験ではラマン分光法を用いて、黒鉛、ダイヤモンドの同定、核形成あるいは前駆 段階での分子種を調べるための有効な手法となるであろう。

4. 4 おわりに

材料分野についていえば、今後の宇宙での材料実験ではできるだけその場観察技術を取り入れ、先入観に支配されることなく、実際に何が起きたのかを正確に把握してそれに対応して実験を行なうこと、あるいはそれを利用して結果を適確に解析できることが必要である。我々が予測できることにはまだ限りがあり、予測困難な重要な現象を見逃したり、あるいは我々の先入観が発見を妨げるようなことがないよう備えることが必要であることを強調したい。

本計画ではいくつかの困難な局面に直面してきたが、これらを何とか克服し、本実験を成功裏に終了できたことは、参加された人達すべての献身と努力の結果であることを記し、結びの言葉としたい。

5. 参考文献

- 1)Y.Sato, T.Ando, T.Inuzuka, N.Fujimori, N.Ota, M.Ishikawa, S.Kamei, T.Hanyu, K.Shibukawa, K.Murakami, T.Machida, Y.Kamimiyata, K.Tanaka, A.HIrao, H.Ogawa, and H.Hattori, Proceedings of the 18th ISTS, B.Kagosima(1992).
- 2)Y.Sato, K.Shibukawa, K.Murakami, Y.Mizusima, Y.Kamimiyata, K.Tanaka, A.Hirao, H.Ogawa proceedings of the 18th ISTS, Kagosima.
- 3)N.Koshikawa, K.Murakami, M.Yamamoto, J.shimizu, T.Inuzuka, N.Fujimori, S.Kamei, M.Ishikawa, K.Matsui, A.Hirao, H.Ogawa, H.Hattori, Y.Sato, Proceedings of the 20th ISTS, Gifu(1996).
- 4)B.J.Curtis and J.P.Dismukes, J.Crystal growth, 17, 128(1973).
- 5)三菱総合研究所他「微小重力下におけるダイヤモンド薄膜製造のフィジビリティスタディ報告書」
- 6)太田進啓,柴田隆行,藤森直治,澁川喜和夫,村上敬司,佐藤洋一郎,犬塚直夫,石川正道, 亀井信一,住友電気,137,206(1990)
- 7)石川正道, 亀井信一, 藤森直治, 太田進啓, 佐藤洋一郎, 犬塚直夫, 「ニューダイヤモンドフォーラム-ダイヤモンドCVDの反応機構とその制御(JNDFTX分科-6-91)」, 12(1991)
- 8)L.J.Giling, J.Electrochem.Soc., 129, 634 (1982).
- 9)G.A.Wang, S.H.Groves, S.C.Palmateer, D.W.Weybrne and R.A.Brown, J.Crystal Growth, 77, 136 (1986).
- 10)R.Monti, D.Langbein, and J.J.Favier, "Fluid Science and Materials Science in Space", 637, Springr-Verlag (1987).
- 11)J.I.D Alexander, Microgravity Sci. Technol., 3, 2 (1990).
- 12)D.Langbein and C.Tiby, Final Report for ESA, Contact No.5 504/83/F/FS(SC), Bttelle Frankfurt (1984).
- 13)H.Hamacher, R.Jilg, U.Merbold, 6th European Symposium, "Materials Science under Microgravity Conditions" Bordeaux (1986).

- 14)S.Kamei and M.Ishikawa, New Diamond, 7, 29-33 (1991).
- 15)S.Kamei and M.Ishikawa, K.Shibukawa, K.Murakami, N.Ota, N.Fujimori, T.Inuzuka, and Y.Sato, J.Japan Soc.Microgravity Application, 9, 57-66 (1992).
- 16)鈴木崇弘,村上敬司,越川尚清,藤森直治,太田進啓,犬塚直夫,石川正道,亀井信一, 松井捷明,平尾昭博,小川秀樹,町田恒雄,佐藤洋一郎,安藤寿浩,宇宙科学研究報告, 36,109(1997)
- 17) Y. P. Raizer. Gas discharge physics. Springer-Verlag (1991).
- 18) 林 泉, プラズマ工学, 朝倉書店(1987).
- 19) 林 泉,石井彰三,堀田栄喜,日高邦彦,プラズマ工学演習,朝倉書店(1988).
- 20) W. Lochte-Holtgreven, Plasma diagnostics, AIP press (1995).
- 21) P.S.Landa, N.A.Miskinova, and Y.V.Ponomarev, Ionezation waves in low-temperature plasmas. Sov. Phys. Usp., <u>23</u>, 813-834 (1980).
- 22) A.V.Nedospasov, Striations. Usp. Fiz, Nauk, 94, 439-462 (1968).
- 23) D.A.Lee and A.Garscadden, Standing striations as solutions of the Pekarek equation. Phys. Fluid, 15, 1826-1830.

付 録

(1) 略語集

略語	英文	日本語訳
GDEF	Gas Dynamics Experiment Facility	気相成長基礎実験装置
SFU	Space Flyer Unit	宇宙実験・観測フリーフライヤ
JEM	Japan Experimental Module	宇宙ステーション
		日本モジュール
CVD	Chemical Vapor Deposition	化学気相成長
EFFU	Exposed Facility Flyer Unit	SFU搭載実験機器部
CNV	<u>CoNV</u> erter	プラズマ加熱器
DC	Direct Current	直流
BBM	Bread Board Model	ブレッドボードモデル
FM	Flight Model	フライトモデル
ICE	Implict Continuousfluid Eulerian	ICE
SC	Still Camera	画像取得装置
SPM	SPectro Meter	分光測定装置
TR-IA	Test Rocket-IA	宇宙実験用小型ロケット
PSDB	Power Supply Distribution Box	電気分配器
SPM-PSU	SPM-Power Supply Unit	分光測定装置・電力分配器
SEM	Scanning Electron Microscope	走査電子顕微鏡
OMA	Order of Magnitude Analysis	オーダー評価手法
EDX	$\underline{\underline{E}}$ nergy $\underline{\underline{D}}$ ispersive $\underline{\underline{X}}$ -ray	波長分散型X線分析
	Spectroscopy	
ESCA	Electron Spectroscopy for	X線光電子分光法
	Chemical Analysis	
RHEED	Refrective High Energy Electron	反射高速電子回折法
	<u>D</u> ifraction	
LIF	<u>Laser Induced Florescence</u>	レーザー誘起けい光法
NSTS	National Space Transportation	国立宇宙輸送システム
	<u>S</u> ystem	

(2) GDEF微小重力実験に ご協力いただいた方々

(敬称略)

【 SFUプロジェクト 】

文部省宇宙科学研究所 (ISAS) 通商産業省 新エネルギー・産業技術総合開発機構 (NEDO) 無人宇宙実験研究開発機構 (USEF)

【 EFFU開発 】

石川島播磨重工業株式会社 宇宙開発事業部

【 GDEF実験計画・評価解析 】

(アドバイザリーグループ/実験協力者)

佐藤洋一郎 科学技術庁無機材質研究所 先端機能性技術センター

藤森 直治 住友電気工業株式会社 伊丹研究所

犬塚 直夫 青山学院大学 理工学部(故人)

石川 正道 株式会社三菱総合研究所 融合科学部

(実験計画検討・評価支援)

株式会社三菱総合研究所 融合科学部 株式会社エイ・イー・エス

【 GDEF装置開発 】

日本電気株式会社 無線事業本部 宇宙開発事業部 日本電気航空宇宙システム株式会社 住友重機械工業株式会社 鉄構機器事業本部 住友精密工業株式会社 株式会社 エステック 株式会社島津製作所 航空機器事業部

(3) 学会発表等一覧

1.1 論文·総説等

(1) 表 題 : 直流プラズマ法によるダイヤモンド薄膜の形成

著者名 :大田進啓、柴田隆行、藤森直治(住友電気工業(株))

渋川喜和夫、村上敬司(宇宙開発事業団)

佐藤洋一郎 (無機材質研究所)、犬塚直夫 (青山学院大学)

石川正道、亀井信一((株)三菱総合研究所)

雑誌名等:住友電気 第137号

期 日 :1990年9月

(2) 表 題 :無重力とダイヤモンド

著者名 : 亀井信一、石川正道((株)三菱総合研究所)

雜誌名等: NEW DIAMOND Vol 7 No. 4

期 日 :1991年

(3) 表 題 : 気相成長過程における重力変動の効果

著者名 : 亀井信一、石川正道((株)三菱総合研究所)

渋川喜和夫、村上敬司(宇宙開発事業団) 大田進啓、藤森直治(住友電気工業(株))

佐藤洋一郎 (無機材質研究所)、犬塚直夫 (青山学院大学)

雜誌名等: Journal of Japan Society of Microgravity Application 9,57-66

期 日 :1992年

(4) 表 題 : スペースフライヤSFU実験

著者名 : 栗木恭一(宇宙科学研究所)

雜誌名等:電気学会誌 期 日 :1995年12月

(5) 表 題 :宇宙でダイヤモンドを作る

著者名 : 石川正道 ((株)三菱総合研究所)

雑誌名等:マンスリーみつびし

期 日 :1997年2月

(6) 表 題 :無人衛星を利用したダイヤモンド合成実験に参加して

著者名 : 佐藤洋一郎 (無機材質研究所) 雑誌名等: NEW DIAMOND Vol 13 No. 1

期 日 :1997年1月

(7)表題:SFU実験報告(搭載実験編) GDEF(EFFUその2-気相成長基礎実験)

著者名 :鈴木崇弘、村上敬司、越川尚清(宇宙開発事業団)

佐藤洋一郎、安藤寿浩(無機材質研究所)、犬塚直夫(青山学院大学)

大田進啓、藤森直治(住友電気工業(株))石川正道、亀井信一((株)三菱総合研究所)

松井捷明(日本電気(株))、平尾昭博、小川秀樹(NEC航空宇宙システム(株))

町田恒雄(リモートセンシング技術センター)

雑誌名等:宇宙科学研究所報告 第36号

期 日 :1997年3月

1.2 学会発表等

(1) 表 題 : 気相成長基礎実験装置の開発

発表者 : 村上敬司、渋川喜和夫(宇宙開発事業団)

町田恒雄(日本電気(株))、服部秀雄(島津製作所)

佐藤洋一郎 (無機材質研究所)、石川正道((株)三菱総合研究所)

発表先 : 第34回宇宙科学技術連合講演会

期 日 :1990年10月

(2) 表 題 : 気相成長基礎実験装置の開発-要素試作試験結果について-

発表者 : 上宮田四男、町田恒雄、岩波良知、田中清志、(日本電気(株))

渋川喜和夫、村上敬司(宇宙開発事業団)

佐藤洋一郎 (無機材質研究所)

発表先 : 第34回宇宙科学技術連合講演会

期 日 :1990年10月

(3) 表 題 : 気相成長基礎実験装置の開発-実験装置仕様について-

発表者 :田中清志、上宮田四男(日本電気(株))、平尾昭博(NEC航空宇宙システム(株))

渋川喜和夫、村上敬司 (宇宙開発事業団)

佐藤洋一郎(無機材質研究所)

発表先 : 第35回宇宙科学技術連合講演会

期 日 :1991年

(4) 表 題 : 気相成長過程における微小重力の効果

発表者 : 亀井信一、石川正道((株)三菱総合研究所)

渋川喜和夫、村上敬司(宇宙開発事業団) 大田進啓、藤森直治(住友電気工業(株))

佐藤洋一郎 (無機材質研究所)、犬塚直夫 (青山学院大学)

発表先 :第8回宇宙利用シンポジウム

期 日 :1991年7月9日

(5) 表 題 : 航空機を利用した気相対流実験

発表者 : 亀井信一、石川正道((株)三菱総合研究所)

渋川喜和夫、村上敬司(宇宙開発事業団) 大田進啓、藤森直治(住友電気工業(株))

佐藤洋一郎 (無機材質研究所)、犬塚直夫 (青山学院大学)

発表先 :日本マイクログラビティ応用学会 第7回学術講演会

期 日 :1991年11月22日

(6) 表 題 : 低圧直流電流プラズマCVD法によるダイヤモンド膜の作製

発表者 :大田進啓、柴田隆行、藤森直治(住友電気工業(株))

渋川喜和夫、村上敬司(宇宙開発事業団) 亀井信一、石川正道((株)三菱総合研究所)

佐藤洋一郎 (無機材質研究所)、犬塚直夫 (青山学院大学)

発表先 :日本応用物理学会

期 日 :1990年

(3) 学会発表等一覧

1.1 論文·総説等

(1) 表 題 : 直流プラズマ法によるダイヤモンド薄膜の形成

著者名 : 大田進啓、柴田隆行、藤森直治(住友電気工業(株))

渋川喜和夫、村上敬司(宇宙開発事業団)

佐藤洋一郎 (無機材質研究所)、犬塚直夫 (青山学院大学)

石川正道、亀井信一((株)三菱総合研究所)

雑誌名等:住友電気 第137号

期 日 :1990年9月

(2) 表 題 :無重力とダイヤモンド

著者名 : 亀井信一、石川正道((株)三菱総合研究所)

雜誌名等: NEW DIAMOND Vol 7 No. 4

期 日 :1991年

(3) 表 題 : 気相成長過程における重力変動の効果

著者名 : 亀井信一、石川正道((株)三菱総合研究所)

渋川喜和夫、村上敬司(宇宙開発事業団) 大田進啓、藤森直治(住友電気工業(株))

佐藤洋一郎(無機材質研究所)、犬塚直夫(青山学院大学)

雜誌名等: Journal of Japan Society of Microgravity Application 9,57-66

期 日 :1992年

(4) 表 題 : スペースフライヤSFU実験

著者名 : 栗木恭一 (宇宙科学研究所)

雑誌名等:電気学会誌 期 日 :1995年12月

(5) 表 題 : 宇宙でダイヤモンドを作る

著者名 : 石川正道((株)三菱総合研究所)

雑誌名等:マンスリーみつびし

期 日 :1997年2月

(6) 表 題 :無人衛星を利用したダイヤモンド合成実験に参加して

著者名 : 佐藤洋一郎 (無機材質研究所) 雑誌名等: NEW DIAMOND Vol 13 No. 1

期 日 :1997年1月

(7) 表 題 :SFU実験報告(搭載実験編) GDEF(EFFUその2-気相成長基礎実験)

著者名 :鈴木崇弘、村上敬司、越川尚清(宇宙開発事業団)

佐藤洋一郎、安藤寿浩 (無機材質研究所)、犬塚直夫 (青山学院大学)

大田進啓、藤森直治(住友電気工業(株))石川正道、亀井信一((株)三菱総合研究所)

松井捷明(日本電気(株))、平尾昭博、小川秀樹(NEC航空宇宙システム(株))

町田恒雄(リモートセンシング技術センター)

雑誌名等:宇宙科学研究所報告 第36号

期 日 :1997年3月

1.2 学会発表等

(1) 表 題 : 気相成長基礎実験装置の開発

発表者 : 村上敬司、渋川喜和夫(宇宙開発事業団)

町田恒雄(日本電気(株))、服部秀雄(島津製作所)

佐藤洋一郎(無機材質研究所)、石川正道((株)三菱総合研究所)

発表先 : 第34回宇宙科学技術連合講演会

期 日 :1990年10月

(2) 表 題 : 気相成長基礎実験装置の開発-要素試作試験結果について-

発表者 : 上宮田四男、町田恒雄、岩波良知、田中清志、(日本電気(株))

渋川喜和夫、村上敬司(宇宙開発事業団)

佐藤洋一郎 (無機材質研究所)

発表先 : 第34回宇宙科学技術連合講演会

期 日 :1990年10月

(3) 表 題 : 気相成長基礎実験装置の開発-実験装置仕様について-

発表者:田中清志、上宮田四男(日本電気(株))、平尾昭博(NEC航空宇宙システム(株))

渋川喜和夫、村上敬司(宇宙開発事業団)

佐藤洋一郎 (無機材質研究所)

発表先 : 第35回宇宙科学技術連合講演会

期 日 :1991年

(4) 表 題 :気相成長過程における微小重力の効果

発表者 : 亀井信一、石川正道((株)三菱総合研究所)

渋川喜和夫、村上敬司(宇宙開発事業団) 大田進啓、藤森直治(住友電気工業(株))

佐藤洋一郎 (無機材質研究所)、犬塚直夫 (青山学院大学)

発表先 :第8回宇宙利用シンポジウム

期 日:1991年7月9日

(5) 表 題 : 航空機を利用した気相対流実験

発表者 : 亀井信一、石川正道((株)三菱総合研究所)

渋川喜和夫、村上敬司(宇宙開発事業団) 大田進啓、藤森直治(住友電気工業(株))

佐藤洋一郎 (無機材質研究所)、犬塚直夫 (青山学院大学)

発表先 :日本マイクログラビティ応用学会 第7回学術講演会

期 日 :1991年11月22日

(6) 表 題 :低圧直流電流プラズマCVD法によるダイヤモンド膜の作製

発表者 :大田進啓、柴田隆行、藤森直治(住友電気工業(株))

渋川喜和夫、村上敬司(宇宙開発事業団) 亀井信一、石川正道((株)三菱総合研究所)

佐藤洋一郎 (無機材質研究所)、犬塚直夫 (青山学院大学)

発表先 : 日本応用物理学会

期 日 :1990年

(7) 表 題 : OBSERVATION OF PLASMA UNDER MICROGRAVITY UTILIZING MU-300 AIRPLANE

AS THE PRELIMINARY EXPERIMENT OF SFU/EFFU/GDEF

発表者 : 亀井信一、石川正道、羽生哲也((株)三菱総合研究所)

渋川喜和夫、村上敬司(宇宙開発事業団)

佐藤洋一郎 (無機材質研究所)、藤森直治(住友電気工業(株))

犬塚直夫 (青山学院大学)

発表先 : International Symposium on Microgravity Science and Application (北京)

期 日 :1992年5月10日

(8) 表 題 : PRELIMINARY EXPERIMENTS ON GAS PLASMA AND DIAMOND DEPOSITION BY

"GAS DYNAMICS EXPERIMENT FACILITY"

発表者 : 佐藤洋一郎 (無機材質研究所)

大田進啓、藤森直治(住友電気工業(株))

犬塚直夫 (青山学院大学)

渋川喜和夫、村上敬司 (宇宙開発事業団)

亀井信一、石川正道、羽生哲也((株)三菱総合研究所)

発表先 : 18th International Symposium on Space Technology and Science (鹿児島)

期 日 :1992年5月22日

(9) 表 題 :プラズマCVDに与える電力変動の効果

発表者 : 亀井信一、羽生哲也、石川正道((株)三菱総合研究所)

渋川喜和夫、村上敬司(宇宙開発事業団)

佐藤洋一郎 (無機材質研究所)、藤森直治 (住友電気工業(株))

犬塚直夫 (青山学院大学)

発表先 :日本マイクログラビティ応用学会 第8回学術講演会

期 日 :1992年11月

(10) 表 題 :SFU/GDEF搭載GDEF用スチルビデオカメラの開発

発表者 : 上宮田四男、佐藤康志 樫川了一 増田嗣士(日本電気(株))

渋川喜和夫、村上敬司(宇宙開発事業団)

高松光正(富士写真フィルム(株))

発表先 : 第36回宇宙科学技術連合講演会

期 日 :1992年12月

(11) 表 題 :SFU/GDEF搭載GDEF用流量制御器の開発

発表者 : 上宮田四男、田中清志(日本電気(株))

渋川喜和夫、村上敬司(宇宙開発事業団)

清水哲夫 山口正男、西川正巳((株)STEC)

楢崎勝弘、釣見啓介(住友重機械工業(株))

発表先 : 第36回宇宙科学技術連合講演会

期 日 :1992年12月

(12) 表 題 : Development of Generic Experiment Technology

著名 : 亀井信一、石川正道((株)三菱総合研究所)

依田真一、楠瀬智宏 (宇宙開発事業団)

発表先 : AIAA 31st Aerospace Sciences Meeting and Exhibit

期 日:1993年1月

(13) 表 題 : SFUによる気相成長基礎実験

発表者 : 亀井信一、石川正道((株)三菱総合研究所)

越川尚清、村上敬司、山本雅文、清水順一郎(宇宙開発事業団) 佐藤洋一郎(無機材質研究所)、藤森直治(住友電気工業(株))

犬塚直夫 (青山学院大学)

発表先 : 日本マイクログラビティ応用学会 第11回学術講演会

期 日 :1995年11月

(14) 表 題 : Preliminary Result of On-orbit GDEF Plasma CVD Experiments

発表者 :越川尚清、村上敬司、山本雅文、清水順一郎(宇宙開発事業団)

亀井信一、石川正道 ((株)三菱総合研究所)、服部秀雄 ((株)島津製作所) 松井捷明(日本電気(株))、平尾昭博、小川秀樹(NEC航空宇宙システム(株))

佐藤洋一郎 (無機材質研究所)、藤森直治 (住友電気工業(株))

犬塚直夫 (青山学院大学)

発表先 : 20th International Symposium on Space Technology and Science(岐阜)

期 日 :1996年5月

(15) 表 題 : RESULTS OF SFU/GDEF PLASMA CVD EXPERIMENTS IN SPACE

発表者 :越川尚清、村上敬司、鈴木崇弘(宇宙開発事業団)

亀井信一、石川正道 ((株)三菱総合研究所)、服部秀雄 ((株)島津製作所) 松井捷明(日本電気(株))、平尾昭博、小川秀樹(NEC航空宇宙システム(株))

町田恒雄(リモートセンシング技術センター)

大田進啓、藤森直治(住友電気工業(株))、犬塚直夫(青山学院大学)

佐藤洋一郎(無機材質研究所)、

発表先 : Joint Xth European Symposium and VIth Russian Symposium on

PHYSICAL SCIENCES IN MICROGRAVITY(ロシア:サンクトペテルブルク)

期 日:1997年6月

(16) 表 題 :宇宙実験用気相成長基礎実験装置

発表者 : 小川秀樹、平尾昭博(NEC航空宇宙システム(株))

浜 一守、藤井源四郎、松井捷明(日本電気(株)) 町田恒雄(リモートセンシング技術センター)

町田恒雄(りてートピンンン)技術でファーナ

鈴木崇弘、村上敬司、越川尚清(宇宙開発事業団)

鲁井信一、石川正道((株)三菱総合研究所)

発表先 : 日本機械学会

期 日 :1997年4月

(17) 表 題 : RESULTS OF DIAMOND FILM GROWTH EXPERIMENTS USING

PLASMA CVD METHOD IN SPACE

発表者 :越川尚清、村上敬司、鈴木崇弘(宇宙開発事業団)

亀井信一、石川正道((株)三菱総合研究所)、服部秀雄((株)島津製作所) 松井捷明(日本電気(株))、平尾昭博、小川秀樹(NEC航空宇宙システム(株))

町田恒雄(リモートセンシング技術センター)

大田進啓、藤森直治(住友電気工業(株))、犬塚直夫(青山学院大学)

佐藤洋一郎(無機材質研究所)、

発表先 : 7th International Space Conference of Pacific-basin Societies (長崎)

期 日 :1997年7月

(18) 表 題 : DIAMOND SYNTHESIS IN SPACE

発表者 : 石川正道、亀井信一((株)三菱総合研究所)

鈴木崇弘、村上敬司、越川尚清(宇宙開発事業団)

藤森直治(住友電気工業(株))、佐藤洋一郎(無機材質研究所)

発表先 : 48th International Astronautical Congress (イタリア・トレノ)

期 日 :1997年10月

(4) 執筆者一覧

宇宙開発事業団 無機材質研究所 住友電気工業株式会社 青山学院大学 株式会社三菱総合研究所 日本電気株式会社 日本電気航空宇宙システム株式会社 財団法人リモートセンシング技術センター 鈴木崇弘、村上敬司、越川尚清 佐藤洋一郎、安藤寿浩 藤森直治、大田進啓 犬塚直夫(故人) 石川正道、亀井信一 松井捷明 平尾昭博、小川秀樹 町田恒雄

宇宙開発事業団技術報告 NASDA-TMR-970004

気相成長基礎実験装置 (GDEF) 実験成果報告 ー宇宙でのダイヤモンド薄膜気相成長実験ー

1998年1月30日 発行

編集 · 発行 宇宙開発事業団

₹ 105-60

東京都港区浜松町2丁目4番1号 世界貿易センタービル28階

TEL 03-3438-6000(代表)

問い合わせ先 宇宙開発事業団

調査国際部技術情報課

TEL 03-3438-6582/FAX 03-5402-6516 宇宙環境利用システム本部宇宙実験グループ TEL 0298-52-2769/FAX 0298-50-2233

©1998 NASDA

本書の一部あるいは全部について (図及び写真を含む) 複写、複製、 引用をする場合には、必ず発行者の許可を受けて行って下さい。

