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  ABSTRACT

The NWT computer system available at the NAL since February 1993 comprises two system
administrators,n processing elements (where n was 140 at the beginning, and is 166 at present)
and a crossbar network, and operates as a distributed-memory message-passing MIMD computer.
Each processing element itself is a vector computer. This paper reports measurements of two
pairs of the characteristic parameters, (τ∞, n1/2) and (τ∞, s1/2), of the NWT with SIMD computing
on a single processing element and with MIMD computing in the local memory access, respectively.
Furthermore the significance of the obtained results is interpreted, and several hardware parameters
are estimated. The obtained results in this paper apply only to the NWT system software during
the period April to June 1993 after which substantial improvements have been achieved with
the NWT performance.

Key words: Vector processing, Parallel processing, Local memory access, SISD/SIMD/MIMD
computing, Synchronization overhead, Maximum performance, Half-performance
length, Half-performance grain size, NWT.

　 概　　　　要

　1993 年 2 月に運用を開始した航空宇宙技術研究所の数値風洞（NWT）計算機システムは 2 台の制御計算機，

n 台の要素計算機（n は運用開始時において 140 台，現在は 166 台）並びにクロスバーネットワークから構成さ
れていて，分散メモリ型メッセージパッシング方式の MIMD 計算機として動作する。各要素計算機自体はベ

クトル計算機である。本稿ではこの NWT の運用開始初期の 1993 年 4 月から 6 月の間に測定した，NWT の

基本的処理性能を表す特性パラメータ（τ∞， n1/2）であり，他はローカル・メモリ・アクセスにおける NWT の
並列処理性能を表す特性パラメータ（τ∞， s1/2）である。ここで，τ∞ は最大処理性能を，n1/2 は τ∞/2 を達成する

に必要なベクトル長を，s1/2 は τ∞/2 を達成するに必要なグレイン・サイズを表す。更に，得られた結果の意味

について考察するとともに，いくつかのハードウエア・パラメータについて推定する。なお，本稿で示した値

はその後の NWT システム・ソフトウエアの改善努力によって，大幅に改善されたが，その成果は稿をあらた

めて報告する。

* 平成10年 4月 8日受付 (received 8 April 1998)
*1 Computational Science Division

1.  INTRODUCTION

A parametric description of computer performance
has been used to characterize the dependence of vector
(SIMD) computer performance on vector length, using
the parameters (τ∞, n1/2) [1, 2, 4, 9, 10, 11]. Similarly

the degradation of performance due to the synchroniza-
tion overhead that is incurred when programming with
MIMD computing has been described by the prameters
(τ∞, s1/2), and measured on several parallel computers
[5, 6, 7, 8, 9, 12].

In this paper we apply the same techniques to the
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performance study of the Numerical Wind Tunnel
(NWT) computer system available at the National
Aerospace Laboratory since February 1993. This
computer system comprises two system administrators,
n processing elements (where n was 140 at the
beginning, and is 166 at present) and a crossbar
network, and operates as a distributed-memory
message-passing MIMD computer. The language to
bescribe parallel processing is the NWT Fortran, which
is based on the Fortran 77 enhanced with the compiler
directives. Almost all of the compiler directives are
comments in the Fortran 77 specification. Main
memories of the NWT are physically distributed across
the processing elements, but to ease programming,
the logical model of the NWT assumed a hierarchical
memory parallel computer system for programming
offers the virtual global space (or global memory)
shared by the selected processing elememts to users
[13]. On the other hand, each local space (or local
memory) is the memory specific to each processing
element. A barrier synchronization is performed for
the selected processing elements that are running
in parallel. After all the selected processing elements
running in parallel reach the barrier point, the selected
processing elements proceed over the barrier point
together.

One of the purposes of this paper is to measure
the parameters (τ∞, n1/2) of each processing element
which itself is a vector computer. The definiton of
the (τ∞, n1/2) benchmark and measurements of the
parameters are given in Section 2. The other purpose
is to measure the parameters (τ∞, s1/2) of the NWT
with MIMD computing in the local memory access.
The definition of the (τ∞, s1/2) benchmark and measure-
ments of the parameters are givn in Section 3. The
significance of the obtained results is discussed in
Section 4, and several hardware parameters are
estimated. The obtained results in this paper apply
only to the NWT system software during the period
April to June 1993. The results on an improvements
to the NWT system software will be reported in
another paper. By the way the benchmark program
was run with other users on the system, but we will
not  very  fa i l  to  ensure the most  cons is tent
measurements for the study in case of the local
memory access. The terminology in this paper follows
one in [9].

2.  THE (τ∞, n
1/2

) BENCHMARK

The test problem which we call the (τ∞, n1/2) bench-
mark is dyadic and triadic operations executed on a
single processing element as follows:

dyads : A(I ) = B(I ) * C(I ),
triads : A(I ) = B(I ) * C(I ) + D(I ).

These Fortran codes are replaced by vector instruc-
tions by the vectorising compiler. The dyadic case
uses only a single vector pipeline with all vectors
stored in main memory. The triadic operations involve
the chaining of two vector instructions and the simul-
taneous use of both the floating-point multiply and
add pipelines with all vectors stored in main memory.

The time, t, to perform an operation on a vector
of length, n, is measured and fitted by least-squares
to the straight line described as follows:

     t = a0 + a1n. (1)

From this equation we can obtain the characteristic
parameters with SISD and SIMD computings on a
single processing element as follows:

t0 = a0 = set-up time with SISD computing
(msec)

= time for null job when n = 0,
t0 = a0 = set-up plus pipeline start-up time

with SIMD computing (µsec),
p0 = t -1 = specific performance (Mflop/sec),
τ∞ = a-1 = maximum or asymptotic perform-

ance (Mflop/sec),
n1/2 = a0/a1 = half-performance length (flop) =

lost amount of arithmetic opera-
tions that could have been done
at the maximum rate of τ∞,

where the set-up time is the time that is required
to compute the first and last addresses for memory
access based on the ratio of vector-register length
to each vector on dyadic or triadic operations plus
other overheads.

The actual or average performance, t, can be
computed from

t = τ∞ pipe (n/n1/2), (2)

where

0

1
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pipe (x) =1/(1+x-1) = pipeline function. (3)

The vector breakeven length, nb, which is the vector
length above which the vector processing takes less
time to perform the operation on a vector than the
scalar processing, can be obtained from

nb = n1/2/(R∞ − 1), (4)

where

     R∞ = . (5)

Table 1 shows measurements of the characteristic
parameters of the NWT with SISD and SIMD com-
putings on a single processing element. Figure 1 shows
the timing relations and actual processing rates as
a function of vector length with SIMD computation
on a single processing element.

3.  THE (τ∞ , s
1/2

) BENCHMARK

The test problem which we call the (τ∞, s1/2) bench-
mark is dyadic and triadic operations defined in
Section 2. The work of a dyadic and triadic operation
is divided as evenly as possible between the selected
number of processing elements, pe, for which two
pairs of the compiler direct ives, PARALLEL
REGION/END PARALLEL and SPREAD DO/END
SPREAD, are inserted in Fortran codes. The SPREAD
DO and END SPREAD are also barrier synchroniza-
tion points in a parallel program. In order that the
required data is available in the local memory of
each processing element, furthermore, an EQUI-
VALENCE which is the statement to be coincided
the location of the storage of the corresponding data
assigned in the global and local memory, respectively,
is declared. By this function, we can avoid to suffer
from communication overheads due to the data
transfer between the global and local memory spaces
[3].

We measure the elapsed time, t, for a single parallel
section as a function of the amount of computational
work, s, in the parallel section measured in floating-
point operations and fit the results by least-squares
to the expression

t = a0 + a1s. (6)

From this equation we can obtain the characteristic
parameters with MIMD computation in the local
memory access as follows:

t0 = a0 = set-up plus pipeline start-up plus
synchronization time (µsec)

= time for nul l  job when s = 0,
which is dependent on both the
hardware and sof tware ( i .e . ,
operating system and compiler),

π0 = t -1 = specific performance (Mflop/sec),
τ∞ = a-1 = maximum or asymptotic perform-

ance (Mflop/sec),
s1/2 = a0/a1 = synchronization parameter or half-

performance grain size (flop)
= amount of maximum possible

arithmetic operations lost during
synchronization,

where the time that is required to specify the starting
and ending values of I, of which each processing
element takes charge of the vector processing, is
included in synchronization overheads.

The actual or average performance, τ, is given
by the pipeline function as follows:

τ = τ∞ pipe (s/s1/2). (7)

The scheduling parameter or efficiency of schedul-
ing, Epe, is defined by

Epe = , (8)

where
t1 = time to perform all the work on one process-

ing element,
tpe = time to perform the work when it is shared

amongst the pe processing elements.
Perfect scheduling occurs when Epe = 1.

The breakeven grain size, sb, above which it is
faster to suffer the synchronization overhead and
split the job between the pe processing elements
than to avoid synchronization altogether by using a
single processing element, can be computed from

sb = s1/2/(pe − E-1 ). (9)

Table 2 shows measurements of the characteristic
parameters of the NWT with MIMD computings in

maximum vector processing rate
maximum  scalar processing rate

0

1

t1

tpepe

pe
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the local memory access. Figure 2 shows the timing
relations and actual processing rates as a function
of the amount of arithmetic operations when pe =
1 ~ 128.

4.  DISCUSSIONS

In this section we interpret the significance of
the results obtained in the previous sections, and
estimate several hardware parameters.

4.1  Consideration with SIMD computation
(1) The peak hardware performance of the process-

ing element
For some reason that is not understood, the slower

rates for the long-vector than ones for the short-
vector have been measured, obviously shown in Figure
1. Figure 3.1 shows the timing relations as a function
of the short-vector length. These are fitted by least-
squares to

dyads:t = 7.401766*10-1 +2.372605*10-3n, (10)

triads:t = 8.066134*10-1+1.756215*10-3n, (11)

from which we obtain the best measurements of the
maximum performance of the NWT with SIMD
computing as follows:

dyads: τ∞ = 4.214777*102 (Mflop/sec), (12)

triads : τ∞ = 5.694064*102 (Mflop/sec). (13)

Figure 3.2 shows the time chart of the vector
pipelines, where tg = 0 under the ideal situation.
Since the arithmetic has been repeated 103 times
to evade the problem on accuracy of the wall clock
used measurements, we can think that the results
are the values obtained in a situation after the second
operation of Figure 3.2. Hence we can express the
relations between the peak hardware performance,
τ∞, and τ∞ as follows:

dyads: τ∞ = τ∞, (14)

triads : τ∞ = τ∞, (15)

where

tVR = time to execute the elements on the vector
register, from which we obtain

dyads: τ∞ = 8.429554*102 (Mflop/sec), (16)

triads : τ∞ = 1.708219*103 (Mflop/sec). (17)

Therefore we can estimate the average peak hardware
performance per one arithmetic pipeline of the
processing element as follows:

τ∞ = 8.485325*102 (Mflop/sec per one arithmetic
pipeline). (18)

If Tp = thickness of the pipelines, the machine
clock period, τ, can be computed from

τ = Tp /τ∞, (19)

from which if Tp = 8, we can estimate the average
machine clock period as follows:

τ = 9.428041*10-3 (µsec). (20)

(2) The set-up plus pipeline start-up time
From (10), (11) and Figure 3.2, we can obtain the

following relations:

dyads: 7.401766*10-1= (sd+l L+lM−1+nVR/Tp)τ,
(21)

triads : 8.066134*10-1= (st+l L+l M−1+nVR/Tp)τ,
(22)

where
td = sdτ = time that is required to compute

the first and last addresses for
each vector on dyadic operations
plus other overheads (µsec),

sd = amount of machine clock periods
lost during a dyadic set-up

tt = stτ = time that is required to compute
the first and last addresses for
each vector on triadic operations
plus other overheads (µsec),

st = amount of machine clock periods
lost during a triadic set-up over-

~

tVR

2tVR

tVR

3tVR

~

~

~

~

~

~
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head,
tL = l Lτ = start-up time of the load pipeline

(µsec),
l L = number of stages in the load pipe-

line,
tM = l Mτ = start-up time of the multiply pipe-

line (µsec),
lM = number of stages in the multiply

pipeline,
tVR = nVRτ/Tp = elapsed time on the vector register

(µsec),
nVR = number of the elements on the

vector register.
If  nVR = 128, Tp = 8 and (20) is used, the following
relations are estimated:

dyads : sd + l L + lM = 64, (23)

triads : st + l L + l M = 71. (24)

(3) Remark 1
We now consider the reason why the slow rates

for the long-vector are observed. A plausible one
seems that there is nonzero gap, tg, shown in Figure
3.2. The value of tg can be estimated from the equations

dyads: τ∞ = τ∞, (25)

triads : τ∞ = τ∞, (26)

where
tg = sgτ = elapsed time due to a gap (µsec),
sg = amount of machine clock periods lost

due to a gap.
Using (18), (20) and the values of τ∞ in Table 1 (b),
if nVR = 2048, we obtain

dyads : sg = 46, (27)

triads : sg = 20. (28)

(4) Remark 2
Supposing two load pipelines could be available

at the same time, the time chart of the vector pipelines
turns into Figure 3.3, and hence we are to obtain the
following values of about twice as large as maximum
performance of (12) and (13):

dyads =   842 (Mflop/sec),
triads = 1138 (Mflop/sec).

Under this supposed condition, therefore, the maximum
performance for the dyadic operations is equal very
nearly to the estimated peak hardware performance
of (16), and one of the triadic operations two third
of (17).

4.2 Consideration with MIMD computation in the
local memory access

(1) The complete formulas for the timing relations
as a function of pe

Figure 3.4 shows the variation of maximum perform-
ance τ∞ in Table 2 as a function of the number of
processing elements pe. Solid lines show the linear
fits

dyads : τ∞ = 3.858962*102 pe (Mflop/sec), (29)

triads : τ∞ = 5.468374*102 pe (Mflop/sec). (30)

Similarly Figure 3.5 shows the variation of half-
performance grain size s1/2 in Table 2 as a function
of pe. Solid lines show the linear fits

dyads : s1/2 = −2.497182*103 + 1.325439*104 pe
(flop), (31)

triads : s1/2 = −3.451546*103 + 1.878137*104 pe
(flop). (32)

When pe =1, the value of s1/2 is about 35 times as
large as one of n1/2 in Table 1 (b).

Figure 3.6 shows the variation of set-up plus
pipeline start-up plus synchronization time  t0 (= a0

in Table 2 ) as a function of pe. Since t0 = τ∞ s1/2

from (6), these approximate fit functions are obtained
from (29), (30), (31) and (32) as follows:

dyads : t0 = 3.434703*101 − 6.471124*100/pe
(µsec), (33)

triads : t0 = 3.434544*101 − 6.311832*100/pe
(µsec). (34)

The above parameters give rise to the complete
formulas for the timing relations

・

・

tVR

tg + 2tVR

~

tVR

tg + 3tVR

~

・

・

-1
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dyads : t = 3.434703*101  − +

s (µsec), (35)

triads : t = 3.434544*101  − +

s (µsec). (36)

Figure 3.7 shows the variation of the processing time
as a function of pe, for a wide range of the amount
of arithmetic s.

(2) The degree of degradation due to synchroniza-
tion overheads

The degree of degradation of the maximum rate,
dmτ, due to synchronization overheads is given by

dmτ = pipe (s/s1/2). (37)

Furthermore we define the degree of degradation
of the actual rate of the parallel processing in the
local memory access to the actual rate of the vector
processing, dplv, as follows:

dplv = , (38)

where s = n, and the values of s1/2 and n1/2 is ones
in Table 2 and Table 1 (b), respectively. Then we
can approximately express the actual rate of the
parallel processing in the local memory access, τpl,
by

τpl = dplυτυ pe, (39)

where τυ is the actual rate of the vector processing.
It is clear that dplυ = 1 when s, n → ∞. Table 3
shows the values of dplυ for pe = 1, 128 and several
values of s. The values of dplυ  for other pe take
intermediate ones between both values for pe = 1
and 128 shown in Table 3.

(3) Remark
Under such a condition as mentioned in Sub-

section 4.1 (4), we could expect that the variation
of maximum performance as a function of pe would
become as follows:

dyads : τ∞ =   771 pe (Mflop/sec), (40)

triads : τ∞ = 1093 pe (Mflop/sec). (41)

Hence if we could improve bottlenecks in the local
memory access by means of one addition of the
load pipeline without any arithmetic enhancement,
not only we could enjoy the maximum rate for dyadic
operations close upon the peak arithmetic perform-
ance, but also we could realize for triadic operations
the enormous capability of 140 Gflop/sec when pe
= 128.

4.3  Comparison
We note the followings:
(i) The value of a0 (= t0) for dyads in Table 1

(b) is smaller than 0.75µsec (CRAY X-MP, p.143
of [9]), 0.82 µsec (CRAY-1, p.143 of [9]) and
1.48 µsec (CRAY-2, p.204 of [9]). The ratio of τ∞

for dyads in Table 1 (b) to τ∞ in Table 2.1 or Table
2.7 of [9] is 5.57 (CRAY X-MP), 17.72 (CRAY-1)
and 6.96 (CRAY-2), and hence the value of n1/2 for
dyads in Table 1 (b) becomes about a 5.5-fold value
of CRAY X-MP, a 16.0-fold value of CRAY-1 and
a 3.5-fold value of CRAY-2 of n1/2 in Table 2.1 and
Table 2.7 of [9], because n1/2 is proportional to τ∞.

(ii) The value of a0 (= t0) for pe = 2 and dyads
in Table 2 is smaller than 45µsec (TASKS on 2-
CPU CRAY X-MP, p.146 of [9]), but larger than
28 µsec (LOCKS) and 14µsec (EVENTS). The ratio
of τ∞ for pe = 2 and dyads in Table 2 to τ∞ in Table
2.2 of [9] is 6.02 (TASKS) and 5.59 (LOCKS and
EVENTS), and hence the value of s1/2 for pe = 2
and dyads in Table 2 becomes about a 4.3-fold value
of TASKS, a 6.2-fold value of LOCKS and a 12.5-
fold value of EVENTS of s1/2 in Table 2.2 of [9],
because s1/2 is proportional to τ∞.

(iii) Hence all sorts of the start-up time of the
NWT in the local memory access seem to be not
very large, but we must continue to make efforts
with the decrease of every kind of start-up time
commensurate with an increased maximum perform-
ance.

We had been vigorously continuing subsequent
improvements to the NWT system software, and
accomplished an 1.2 to 1.3-fold decrease of synchro-
nization overheads at April 1994, which we will report

6.471124*100

pe

2.591370*10-3

pe
6.311832*100

pe

1.828697*10-3

pe

pipe (s/s1/2)
pipe (n/n1/2)
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in another paper.

5.  CONCLUSIONS

The principal conclusion of this work is that the
set-up, pipeline start-up and synchronization over-
heads, and maximum performance of the NWT
computer system could be characterized by relatively
simple timing equations for a wide range of problem
conditions.

Generally speaking, a shorter machine clock
period increases τ∞ without changing n1/2, but s1/2

increases with τ∞. A reduction in the set-up, pipeline
start-up and synchronization time causes a reduction
in both n1/2 and s1/2. An enlargement of the pipeline
performance by some means excepting a shorter
clock period involves an increase of n1/2. Clearly
it is hardly worth making a parallel section if the
amount of work is much less than s1/2, and really
we would like to see parallel sections with s > s1/2

if the parallel hardware is to be used efficiently.
Hence, in order to shorten the processing time of
user programs that are consisted of many parallel
sections, each of which has a wide range of a different
amount of computational work, not only hardware
performance must be improved, but also it is very
important that a total number of steps of the machine
instruction inserted a user program by a compiler
and operating system has to be reduced as much
as possible.

In Section 2 we measured the set-up plus pipeline
start-up overheads and maximum performance with
SISD and SIMD computings of the NWT, and in
Subsection 4.1 analysed to estimate several hardware
parameters. The obtained results showed that for
the short-vector length, performance of the memory
access system harmonizes very much with one of
arithmetic pipelines, but that for the long-vector
length, a small amoumt of degradation of maximum
performance is observed. In order to interpret a
plausible cause of the latter phenomenon, we
introduced a gap model, and computed an amount
of gap. The measured value of n1/2 seems to be a
barely satisfactory one.

In Section 3 we measured the set-up plus pipeline
start-up plus synchronization overheads and maximum
performance with MIMD computation in the local
memory access of the NWT, and in Subsection 4.2

analysed to derive the complete expression for the
timing relations on dyadic and triadic operations
as a function of pe and s, and to present the degree
of degradation of the maximum rate due to syn-
chronization overheads. The measured values of
s1/2 are rather large at the moment in this experiment
yet.

Taking it as a whole, we think to have realized
the enormous capability for the maximum perform-
ance of the NWT. On the other hand, all sorts of the
start-up time of the NWT in the local memory access
seem to be not very large, but we had to have been
continuing to make every effort with the decrease
of every kind of the start-up time commensurate with
an increased maximum performance, and accom-
plisded an 1.2 to 1.3-fold decrease of synchronization
overheads at April 1994, which we will report in
another paper.

Most of the overheads incurred arise from the
time spent in system software routines supporting
user programs. Hence the obtained results in this
paper apply only to the system software available
at the NAL during the period April to June 1993.
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Table 1 The characteristic parameters of the NWT with SISD and SIMD
computings on a single processing element

(a) The values on the scalar processing

(b) The values on the vector processing

Table 2 The characteristic parameters of the NWT with MIMD computing
in the local memory access

Table 3 The degree of degradation of the actual rate of the parallel processing
in the local memory access to the actual rate of the vector processing
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Fig. 1  The (τ∞, n1/2) benchmark test on a single processing element

(a) The timing relations on the vector processing

(b) The actual processing rates on the vector processing
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Fig. 2.1 The (τ∞, s1/2) benchmark test (pe = 1)

(a) The timing relation as a function of the amount of arithmetic

(b) The actual processing rate as a function of the amount of arithmetic
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Fig. 2.2 The (τ∞, s1/2) benchmark test (pe = 2)

(a) The timing relation as a function of the amount of arithmetic

(b) The actual processing rate as a function of the amount of arithmetic

This document is provided by JAXA.
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Fig. 2.3 The (τ∞, s1/2) benchmark test (pe = 4)

(a) The timing relation as a function of the amount of arithmetic

(b) The actual processing rate as a function of the amount of arithmetic

This document is provided by JAXA.
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Fig. 2.4 The (τ∞, s1/2) benchmark test (pe = 8)

(a) The timing relation as a function of the amount of arithmetic

(b) The actual processing rate as a function of the amount of arithmetic

This document is provided by JAXA.
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Fig. 2.5 The (τ∞, s1/2) benchmark test (pe = 16)

(a) The timing relation as a function of the amount of arithmetic

(b) The actual processing rate as a function of the amount of arithmetic

This document is provided by JAXA.
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Fig. 2.6 The (τ∞, s1/2) benchmark test (pe = 32)

(a) The timing relation as a function of the amount of arithmetic

(b) The actual processing rate as a function of the amount of arithmetic

This document is provided by JAXA.
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Fig. 2.7 The (τ∞, s1/2) benchmark test (pe = 64)

(a) The timing relation as a function of the amount of arithmetic

(b) The actual processing rate as a function of the amount of arithmetic

This document is provided by JAXA.
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Fig. 2.8 The (τ∞, s1/2) benchmark test (pe = 128)

(a) The timing relations as a function of the amount of arithmetic

(b) The actual processing rates as a function of the amount of arithmetic

This document is provided by JAXA.
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Fig. 3.1 The timing relations as a function of the
short-vector length on the (τ∞, n1/2) benchmark

Fig. 3.2 The time chart of the vector pipelines

(a) The dyadic operations

(b) The triadic operations

This document is provided by JAXA.



TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-1361T20

Fig. 3.3 The time chart of the vector pipelines when two load pipelines
could be available at the same time

(a) The dyadic operations

(b) The triadic operations

Fig. 3.4 The maximum rates against the number of processing elements
with MIMD computing in the local memory access

This document is provided by JAXA.
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Fig. 3.5 The half-performance grain size against the number of processing
elements with MIMD computing in the local memory access

Fig. 3.6 The start-up time against the number of processing elements
with MIMD computing in the local memory access
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Fig. 3.7 The timing relations against the number of processing elements
with MIMD computing in the local memory access
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