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Goodness-of-Fit Tests for the Type-I Extreme-Value and Two-Parameter
Weibull Distributions with Unknown Parameters Estimated by Graphical

Plotting Techniques ------ Part 1：Critical Values*
　

Toshiyuki Shimokawa＊1   and Min Liao＊2

　

ABSTRACT

　The objective of this study is to determine the critical values of the Cramer-von Mises(C-M) and Anderson-

Darling(A-D) statistics for goodness-of-fit tests for the Type-I extreme-value and two-parameter Weibull distri-

butions when the population parameters are estimated from a complete sample by graphical plotting tech-

niques. Three kinds of graphical plotting technique, i.e., the median ranks, mean ranks, and symmetrical sample

cumulative distribution (symmetrical ranks), are combined with the least-squares method on extreme-value

and Weibull probability paper to estimate the parameters. Monte Carlo simulation is used to calculate the

critical values of the C-M and A-D statistics, in which  1,000,000 sets of complete samples are generated ten

times for each sample size of 3(1)20, 25(5)50, and 60(10)100. The critical values are discussed and tabulated for

practical use.

　

Keywords : goodness-of-fit tests, critical values, Cramer-von Mises, Anderson-Darling, Type-I extreme-value

distribution, Weibull distribution, graphical plotting techniques, Monte Carlo simulation

　

概　　要

　本研究の目的は、完全標本に対し確率紙を利用して母数を推定する場合を対象として、タイプI極値分布

と２母数ワイブル分布に対する適合度検定を行うためのクレマー・フォンミーゼスおよびアンダーソン・

ダーリング統計量に対する限界値を与えることである。極値確率紙とワイブル確率紙上で母数を推定する

ために、メジアンランク、平均ランク、および対称ランク（対称試料累積分布）の３種類プロット法を最

小２乗法と組合わせる。標本の大きさとしては3（1）20、25（5）50、60（10）100を選び、クレマー・フォン

ミーゼスおよびアンダーソン・ダーリング統計量に対する限界値を、モンテカルロ・シミュレーションに

よりそれぞれ1,000,000組の標本を10回ずつ発生させることにより計算する。さらに、得られた限界値につ

いて議論し、実用的数表を与える。

1.　INTRODUCTION

　Visual and intuitive evaluation of observed data is very important and can be easily conducted in today’s era of personal

computer. First, several kinds of probability paper are displayed on a CRT screen and the data are plotted using graphical

plotting techniques (GPTs). Then, the least-squares method (LSM) provides  estimates of the population parameters for each

distribution model and the best-fit line to the data is drawn. At the same time, the distribution form and the relative goodness-

of-fit among candidate distribution models can be visually judged. Moreover, the quantitative goodness-of-fit can be tested on

the basis of the estimated parameters. The estimated parameters give a one-sided lower tolerance limit for each distribution
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model. The design allowable should be given as the one-sided lower tolerance limit provided by the best-fit distribution model

to avoid excessive under- or over-estimation. In this context, a goodness-of-fit test is a key procedure in selecting the distribu-

tion model that best fits the data.

　In the past, the Chi-square and modified Kolmogorov-Smirnov (K-S) statistics, applicable for the cases of unknown popula-

tion parameters, were used to test the goodness-of-fit of the observed data to the normality or a two-parameter Weibull

distribution. Since the Chi-square test requires a large sample size, this test is not suitable for many practical cases. The

modified K-S statistic is effective for small sample sizes. Shimokawa and Kececioglu1) concluded that the median ranks, as a

graphical plotting technique combined with the LSM, are recommended among three kinds of graphical plotting techniques,

i.e., the median ranks, the mean ranks, and the symmetrical sample cumulative distribution (symmetrical ranks). Therefore,

on the basis of the median ranks, Shimokawa2) calculated the critical values of the modified K-S goodness-of-fit test for the

Type-I extreme-value and two-parameter Weibull distributions using Monte Carlo simulation with 100,000 sets of complete

samples for sample sizes, 3(1)20＊ , 25(5)50, and 60(10)100.

　Over the next two decades, however, many authors3)-10) reported that the Cramer-von Mises (C-M) and Anderson-Darling

(A-D) statistics are more powerful for goodness-of-fit tests than the K-S statistic in most cases. Furthermore, the K-S and Chi-

square tests for normality have been replaced by the A-D test in MIL-HDBK-5E11). Although for the C-M and A-D goodness-of-

fit tests for the Type-I extreme-value and two-parameter Weibull distributions with unknown parameters, there exist some

critical values3)-5) and formulas12) based on the maximum likelihood estimators (MLEs) for limited sample sizes or signifi-

cance levels, they are still insufficient for practical use. Moreover, because the estimated parameters given by the GPTs are

different from those given by the MLEs3), the critical values of a statistic for goodness-of-fit tests by using the GPTs are

different from those by using the MLEs. However, there are no critical values of the C-M and A-D statistics for goodness-of-fit

tests for the GPTs.

　In this paper, in the first part of this study, three kinds of graphical plotting techniques, namely the median ranks, mean

ranks, and symmetrical ranks combined with the least-square methods, are used to estimate the population parameters of the

Type-I extreme-value and two-parameter Weibull distributions. Monte Carlo simulation provides estimates of the parameters

and calculates the critical values of the C-M and A-D goodness-of-fit test statistics, based on 1,000,000 sets of complete samples

generated for each sample size of 3(1)20, 25(5)50, and 60(10)100. Furthermore, by performing this Monte Carlo simulation

ten times, ten critical values are presented for each sample size and each significance level and the fluctuation of these critical

values are evaluated. Finally, each critical value in this study is determined by the mean of the ten critical values and tabu-

lated. In the second part of this study, the results of power investigation for the C-M and A-D statistics for goodness-of-fit tests

will be presented in a separate paper13), and compared with those of corresponding goodness-of-fit tests using the MLEs.

2.　CONCEPTS OF THE CRAMER-VON MISES AND ANDERSON-DARLING GOODNESS-OF-FIT TESTS

　Let x1<x2<…<xn be order statistics of a sample size n from a population defined by a continuous distribution function F(x).

A goodness-of-fit test is to test the null hypothesis,

　　 (1)

where F0(x;θ) is a specified family of a model that contains a set of parametersθ. The well-known C-M statistic for goodness-

of-fit tests is based on the following equation3),

　　 (2)

where Fn(x) is an empirical distribution function (EDF) for observations xi( i＝1,2,...,n) and a step function with a jump at

each of the observed values of order statistics x1< x2<…< xn. Anderson and Darling6),7) improved the C-M statistic by introduc-

ing the weight function given by,

＊ 3(1)20 means sample sizes from 3 to 20 with interval 1.
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　　 (3)

　  (4)

where Ψ(x;θ) is the weight function and nΨ(x;θ) is an inverse of the variance of Fn(x). A2
n can detect discrepancies in both

tail regions of Fn(x) better than W2
n by giving greater weights in both regions3),4),8),9). Usually, the following expressions are

introduced for computational convenience3),

　　 (5)

　　 (6)

      Because F0(x ;θ) depends on unknown parameters, for practical applications F0(x ;θ) must be modified as F0(x;θ^) by

using estimates of the parameters. Then, the C-M and A-D statistics, W2
n and A2

n , are changed to the modified C-M and A-D

statistics, W^2
n and A^2

n. Although a few special results are available for determining asymptotic distributions of W^2
n and A^2

n, the

theoretical distributions of W^2
n and A^2

n have not yet been obtained analytically3). Generally, Monte Carlo simulation is used

to obtain the critical values (or percentage points) of W^2
n and A^2

n
  3)-5),8)-10).

3.　GRAPHICAL PLOTTING TECHNIQUES TO ESTIMATE POPULATION PARAMETERS

3. 1　Distribution Functions and Linear Relationships on Probability Paper

3. 1. 1　Type-I extreme-value distribution

　The distribution function of a Type-I extreme-value distribution of the smallests, FE(y;a,b), is represented by

　　 (7)

where a is the location parameter and b the scale parameter. The following linear equation is obtained by taking the logarithm

of Equation (7).

　　 (8)

This relationship is used for plotting the observed data on extreme-value probability paper.

　Let a set of ordered observations be yi(i＝1,2,...,n) and plotting positions be pi(i＝1,2,...,n) given by a plotting method. If

the data reasonably fits a Type-I extreme-value distribution, the plotted points (yi, ln[-ln{1-pi}] : i＝1,2,...,n) should be distrib-

uted roughly on a straight line on this probability paper as indicated by Equation (8).

3. 1. 2　Two-parameter Weibull distribution

　The distribution function of a two-parameter Weibull distribution, FW(x;α,β), is represented by

　　 (9)

whereαis the scale parameter andβthe shape parameter. Taking the logarithm of Equation (8), the following linear equa-
tion is obtained,

　　 (10)

This relationship is used for plotting the observed data on Weibull probability paper.

　Let xi( i＝1,2,...,n) be a set of ordered observations. Let  yi＝lnxi, a＝lnα, and b＝l/β, then Equation (10) agrees with
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Equation (8). By these transformations, a two-parameter Weibull distribution is transformed into a Type-I extreme-value

distribution. This means that the same statistical and probabilistic analysis methods can be used for both distribution models.

Therefore, a Type-I extreme-value distribution is mainly discussed below.

3. 2　Plotting Positions

　This study uses the following three plotting methods as graphical plotting techniques. These methods are representative

among many plotting methods and are generally used in graphical analysis. Let pi be the plotting position for the i-th order of

a sample of size n.

3. 2. 1　Median ranks1),2),14)

　pi＝(Population probability corresponding to the median of the distribution of the i-th order statistic), namely,

　　 (11)

3. 2. 2　Mean ranks1),2),14)

　　 (12)

3. 2. 3　Symmetrical ranks1),2),14)

　Plotting positions by the symmetrical sample cumulative distribution are simply called by the“symmetrical ranks”in this

paper.

　　 (13)

3. 3　Estimators by the Combination of the Least-Squares Method and a Graphical Plotting Method

　Let ci and T be

　　 (14)

　　 (15)

The least-squares method provides estimators of the parameters,  a^ and b^ , by minimizing T,

　　 (16)

�

(17)

4.  SIMULATION PROCEDURES

4. 1　A Sample Following a Type-I Extreme-Value Distribution

　A sample of size n following a Type-I extreme-value distribution is generated by Monte Carlo simulation as follows. First n

pseudo-uniform random numbers are generated by the composite generator proposed by Marsaglia and Bray15), which has

been widely adopted in Monte Carlo simulation15).  Let descending ordered pseudo-random numbers be reliabilities, Rsi(i＝

1,2,...,n). Let si represent

This document is provided by JAXA.



5Goodness-of-Fit  Tests  for  the  Type-I  Extreme-Value  and  Two-Parameter  Weibull  Distributions  with
Unknown  Parameters  Estimated  by  Graphical  Plotting  Techniques ------- Part 1：Critical  Values

　　 (18)

and s denotes the averaged value, i.e.,  Monte Carlo simulation gives ascending ordered observations, yi( i＝

1,2,...,n), following a Type-I extreme-value distribution as

　　 (19)

where aand b are the population parameters to be estimated. Meanwhile, the averaged value y--- of yi is obtained by

　　 (20)

4. 2　Discussion on the Estimators of the Population Parameters

　Consider the estimators of the population parameters from a complete sample given by Monte Carlo simulation. Substitut-

ing Equations (19) and (20) into Equation (16), then

　　 (21)

where B is

　　 (22)

　Substituting Equations (20) and (21) into Equation (17), a^ is given as

　　 (23)

where A is

　　 (24)

　Equations (22) and (24) indicate that A and B are independent of the population parameters, a and b, but dependent on the

plotting method used. This fact was also indicated by Shimokawa in 19902).

4. 3　The Value of the Estimated Distribution Function Corresponding to Each Observed Value Given by Monte Carlo

Simulation

　On the basis of Equations (21) and (23), the distribution function corresponding to each observed value is obtained as

　　

(25)

This equation indicates that FE(yi) is independent of the population parameters a and b. Moreover, FE(yi) corresponds to

F0(x;θ) in Equations (5) and (6). Therefore, W^2
n and A^2

n are not dependent on a and b, but dependent on the plotting method

as shown by Equations (22) and (24).

　Let  xi＝expyi, α^＝exp a^, and β^＝l/b^ , and substitute them into Equation (9). Equation (25) is thus derived and FE(yi)＝

FW(xi) is confirmed. Therefore, the critical values of the C-M and A-D statistics for goodness-of-fit tests can be used for both

Type-I extreme-value and two-parameter Weibull distributions.
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5.　CRITICAL VALUES FOR THE CRAMER-VON MISES AND ANDERSON-DARLING STATISTICS

5. 1　Sample Sizes of Observations and Percentage Points of the C-M and A-D Statistics

　Sample sizes are selected as n＝3(1)20, 25(5)50, and 60(10)100. For each n, Monte Carlo simulation provides the total

sets of M＝1,000,000 samples by resetting to the same seeds in the random number generator, then the values of W^2
n and

A^2
n are calculated and decreasingly ordered, respectively. The ascending order is denoted by j. The cumulative probability

is defined in this study as

　　P＝( j－0.5)/M, (26)

by using the concept of the symmetrical ranks. The critical values corresponding to P×100 percentage points (significance

levels) of W^2
n(P) and A^2

n(P), are the values given by the order,

　　j＝PM＋0.5. (27)

Figure 1　Flow diagram for the calculation of critical values.

4. 4　Calculation Procedures of Critical Values

　A flow diagram for the calculation of critical values by Monte Carlo simulation is presented in Figure 1.
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　For example, P＝0.01 gives  j＝10000.5, hence, the critical values of W^2
n are given by

　　W^2
n(0.01)＝{W^2

n( j＝10000)＋W2
n( j＝10001)}/2. (28)

　In this study, the entire calculation procedure by Monte Carlo simulation is repeated ten times, so ten critical values

corresponding to P×100 percentage points for each n are calculated.  At last, each critical value of W^2
n or A^2

n at each signifi-

cance level for each n is obtained by computing the mean of the ten critical values. Therefore, 1,000,000×10 samples in total

are generated for each sample size.

5. 2　Calculated Results and Discussion

　The critical values of W^2
n and A^2

n for the three kinds of graphical plotting techniques are listed in Tables 1 to 6. Figures 2

to 7 represent the relationships between the critical values, W^2
n and A^2

n, and sample size n at different significance levels γ.
These tables and figures present the following characteristics.
(1)The critical values of W^2

n and A^2
n increase monotonically as n becomes larger and γ  lower, except for that of  A^2

n for the

symmetrical ranks and γ＝0.01.
(2)All the critical values of W^2

n and A^2
n increase quickly for n less than 10. There is only a small change of the critical values

of W^2
n and A^2

n for n larger than 40.

　To select a proper goodness-of-fit test statistic, the power to distinguish the difference between the applied distribution

models is very important. The detailed power comparisons of the C-M and A-D statistics using three graphical plotting meth-

ods will be presented in the second part of this study13).

Table 1　Critical values of the Cramer-von Misese, W^2
n,

　             for the median ranks.
Table 2　Critical values of the Cramer-von Misese, W^2

n,

　             for the mean ranks, Pi＝ i/(n＋1).
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Table 3　Critical values of the Cramer-von Misese, W^2
n,

　             for the symmetrical ranks, Pi＝(i－0.5)/n.

Table 4　Critical values of the Andeson-Darling, A^2
n,

　             for the median ranks.

Table 5　Critical values of the Andeson-Darling, A^2
n,

　             for the mean ranks, Pi＝ i/(n＋1).

Table 6　Critical values of the Andeson-Darling, A^2
n,

　             for the symmetrical ranks, Pi＝(i－0.5)/n.
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Figure 2　Critical values of the Cramer-von Mises, W^2
n,

                   for the median ranks.

Figure 3　Critical values of the Cramer-von Mises, W^2
n,

                   for the mean ranks. Pi＝i/(n＋1).

Figure 4　Critical values of the Cramer-von Mises, W^2
n,

                   for the symmetrical ranks. Pi＝( i－0.5)/n.

Figure 5　Critical values of the Anderson-Darling, A^2
n,

                   for the median ranks.

Figure 6　Critical values of the Anderson-Darling, A^2
n,

                   for the mean ranks. Pi＝i/(n＋1).

Figure 7　Critical values of the Anderson-Darling, A^2
n,

                   for the symmetrical ranks. Pi＝( i－0.5)/n.
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5. 3　Fluctuation of Critical Values by Monte Carlo Simulation

　The fluctuation of critical values of the A-D statistic for the symmetrical ranks is investigated in this section, because the A-

D statistic coupled with the symmetrical ranks is found to have the highest power among all test statistics in this study. This

will be presented in the second part of this study13). For sample size n＝10, Table 7 presents ten critical values for each of

seven significance levels that are calculated by performing the Monte Carlo simulation ten times. Then, the mean and stan-

dard deviation of critical values at each significance level are calculated from the ten critical values at the significance level.

Table 7 shows that the standard deviations of critical values are very small, for instance, the standard deviation of critical value

atγ＝0.05 is 9.0×10-4. The following characteristics are summarized.
(1)The standard deviations indicated that the fluctuation of critical values by Monte Carlo simulation is very small.
(2)Each critical value in this study determined by the mean of ten critical values is more precise than any one of the ten critical

values, because the error of critical value by Monte Carlo simulation is proportional to the factor; 1/√MR
16), where MR is

the repeated times of the Monte Carlo simulation.

6.　CONCLUDING REMARKS

　This study presented the practical tables of critical values of the Cramer-von Mises and Anderson-Darling statistics for

goodness-of-fit tests for the Type-I extreme-value and two-parameter Weibull distributions using Monte Carlo simulation. It is

shown that the obtained tables could be used for both distribution models. The underlying conditions in calculating the

critical values were as follows: (1) a complete sample is chosen; (2) the parameter estimates are provided by the combination

of a graphical plotting technique and the least-squares method on probability paper; (3) three graphical plotting techniques

are used, i.e., the median ranks, mean ranks, and symmetrical ranks; (4) 1,000,000×10 samples in total are generated for

each sample size; (5) sample sizes are n＝3(1)20,  25(5)50, and 60(10)100 ; and (6) significance levels areγ＝0.01, 0.025,
0.05, 0.10, 0.15, 0.20, and 0.25.
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