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ABSTRACT

O The objective of this study was to investigate the power of the Kolmogorov-Smirnov, Cramer-von Mises, and

Anderson-Darling statistics for goodness-of-fit tests for the Type-l extreme-value and two-parameter Weibull

distributions, when the population parameters were estimated by the combination of three kinds of graphical

plotting techniques and the least-squares method and the maximum likelihood estimators. Monte Carlo simu-

lation provided the power results using 10,000 repetitions for each sample size of 5, 10, 25, and 40. Four repre-

sentative statistical distribution models were selected for alternative distributions in order to conduct the power

comparison. The power comparisons indicated that the Anderson-Darling statistic coupled with the symmetri-

cal ranks and the least-squares method is the most powerful statistic for goodness-of-fit tests, and is recom-

mended for practical use.

O

Keywords: goodness-of-fit tests, power study, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling,
Type-1 extreme-value distribution, Weibull distribution, graphical plotting techniques, maximum
likelihood estimators, Monte Carlo simulation
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1.0 INTRODUCTION

0 The first part of this work® presented the critical values of the Cramer-von Mises (C-M) and Anderson-Darling (A-D)
statistics for goodness-of-fit tests for the Type-1 extreme-value and two-parameter Weibull distributions, when the population
parameters were estimated by the combination of three kinds of graphical plotting techniques (GPTs) and the least-squares
method (LSM). As the second part of this work, the main objective of this paper is to calculate and compare the power of the
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Kolmogorov-Smirnov (K-S), C-M, and A-D statistics for goodness-of-fit tests by using the three graphical plotting techniques
in order to find the best combination of a statistic and one of the graphical plotting techniques. No reports on this subject have
been published to date.

0 Maximum likelihood estimators (MLES) are widely used to estimate the population parameters in goodness-of-fit tests for
the Type-l extreme-value and two-parameter Weibull distributions?®. In some handbooks such as MIL-HDBK-5G® and MIL-
HDBK-17-1E”, MLEs are used as parameter estimators in the goodness-of-fit tests for the Weibull distribution. Therefore, an
additional objective of this paper is to compare the power of the K-S, C-M, and A-D statistics for goodness-of-fit tests with that
of MLEs.

O From an engineering viewpoint, one of the purposes of a goodness-of-fit test is to distinguish the fitness of a set of data to an
assumed distribution model from alternative distribution models. Hence, this study compares the Type-l extreme-value or
two-parameter Weibull distribution with the following four distribution models, which are frequently used in reliability analysis:
(1) Normal distribution

(2) Log-normal distribution

(3) Two-parameter Weibull distribution

(4) Type-I extreme-value distribution

0 Meanwhile, in some practical fields of reliability engineering, only a limited range of data scatter is often applied. For
example, the coefficient of variationl] O 3% to 10% covers almost all values of the strength data of metallic and composite
materials. For typical fatigue life data®, the shape parameter 3 0 4® when a two-parameter Weibull distribution is used to fit
the test data. The correspondingn of the life data is approximately equal to 28%. Therefore, in this power study, the distribu-
tion models in a specified] range also are compared.

O Monte Carlo simulation is used to calculate the power of goodness-of-fit tests at seven significance levels, i.e.,y 0 0.01,
0.025, 0.05, 0.10, 0.15,0.20 and 0.25, in which 10,000 repetitions are generated for sample sizes n 5, 10, 25, and 40.

2.0 POWER CONCEPT OF A GOODNESS-OF-FIT TEST

O Let x;<x,<...<x, be order statistics from a continuous distribution F(x). A goodness-of-fit test for a distribution with un-

known parameters is to test the null hypothesis,

OO0H,: F(x)DF,(x8), ®

where F;(x,0 ) is a specified family of distribution models and contains a set of parameterso .

O In this paper, the power of a goodness-of-fit test is defined as the probability that the test statistic will reject the null
hypothesis, H,, when it is false, i.e., when a sample is not from the hypothesised population. Let the complement of the null
hypothesis be the alternative hypothesis H,. In the theory of statistical hypothesis tests?, there are two types of errors that
may be produced when making a decision about the null hypothesis as follows:

(1) A type I error is produced, if H, is rejected when H, is true. The probability of a type | error is denoted byy .

(2) A type Il error is produced, if H, is accepted when H, is false. The probability of a type Il error is denoted byA .

0 The combination ofy andA provides a measure for the efficiency of a goodness-of-fit test for the null hypothesis. Here,y
is also called the significance level of the tests, which has been considered during calculation of the critical values of a test
statistic for the goodness-of-fit test. Thus, the power of the goodness-of-fit test at a given significance levely is denoted by (I-
A ), when H, is false or H, is true. An excellent goodness-of-fit test'® should reject a sample from the alternative distribution
H, at the highest* power probability” (I-A ), and to accept a sample from the true distribution H, at the lowest* error
probability” y .

3.00 GOODNESS-OF-FIT TESTS TO BE INVESTIGATED

3. 10 Goodness-of-Fit Test Statistics
O The power of goodness-of-fit tests is investigated for the combination of the statistic and parameter estimators listed in
Table 1. The critical values of W2(1), W2(2), W2(3), A2(1), A2(2), and [42(3) in the first part of this work® are used in the
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Table 10 Combination of a goodness-of-fit test statstic and parameter estimators.

Estimators | Graphical Plotting Techniques

Median Mean Sym. MLEs
Ranks Ranks Ranks

Statistic

K-S Statistc | 2. | D,@ | D3 | D@
C-M Statistic Wf(l) Wf(z) an 3y | w2

A-D Statistic | A(1) A2 (2) AZ(3) | Al

following power calculation.

3. 20 Critical Values of the K-S Statistic Given by the Graphical Plotting Techniques

O For the graphical plotting techniques, the critical values of the K-S statistic for goodness-of-fit tests for the Type-l extreme-
value and two-parameter Weibull distributions are recalculated in this paper using the same procedures as described in the
first part of this study?, though these critical values were already reported by one of the authors» using 100,000 sets of
samples for each sample size. This Monte Carlo simulation used 1,000,000 sets of samples for each of sample sizes n 00 3(1)
20, 25(5)50, and 60(10)100. The critical values of D,(1), D,(2), and D,(3), at significance levely O 0.05 are plotted in Figure 1.

3. 30 Critical Values of the K-S, C-M, and A-D Statistics Given by the MLEs

O For the MLEs, the critical values of the K-S, C-M, and A-D statistics, i.e., D,(4), W2(4), and [42(4), for the Type-I extreme-

value and two-parameter Weibull distributions are newly calculated by Monte Carlo simulation for 1,000,000 sets of samples

for each of sample sizes n 3(1)20, 25(5)50, and 60(10)100. The calculation procedures are similar to those used in the first

part of this study?®. This study used the MLEs subroutine program presented in MIL-HDBK-17-1E?.

0 Figures 1 to 3 indicate the critical values of D,, W2, and 2, calculated in this study at significance levely 0 0.05. The

critical values for the MLEs provided by Littell et al., Stephens?®, and MIL-HDBK-17-1E” aty [ 0.05 are also presented in

these figures. Figures 1 to 3 all clarified the following characteristics:

(1) The critical values of D,(4) calculated are approximately equal to those given by Littell et al.

(2) The critical values of W?(4) calculated are approximately equal to those given by Littell et al. and very close to those
given by Stephens.

0.45 1
0.18 4
.0.40 A 0.16 A
‘2 0.35 - '
5 (’“ =0.14 A
@ 0-30 1 — 0.12
1 o
5025 ; @ 0.10 1
£ 0.20 { -©-MLEs (in this paper) S 0.08
'g 0.15  —=Littell's results g-
= 0.10 ——Median ranks § 0.06 1 -5-MLEs (in this paper) —a— Median ranks
o —+—Mean ranks E 0.04 1 _o Littell's results —Mean ranks
0.05 4 - O .02 - . .
- Symmetrical ranks -5 Stephen's results ~ —— Symmetrical ranks
0.00 L ' T | 1 L T ———— 0.00 ) N iy 1 L e ———
1 3 5 7 10 30 50 70 100 4 3 5 7 10 0 50 70100
Sample Size n Sample Size n
Figure 10 Critical values of the Kolmongorov-Smirnov Figure 20 Critical values of the Cramer-von Misese
statistic, D,/ O 0.05). statistic, W2,y O 0.05).
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Figure 30 Critical values of the Anderson-Darling
statistic, 42,y O 0.05).

(3) The critical values of [42(4) calculated are approximately equal to those given by Littell et al. and very close to those
given by Stephens and MIL-HDBK-17-1E.

(4) The critical values of the K-S statistic calculated by the graphical plotting techniques are very close to those calculated by
the MLEs when sample size n>5. However, the critical values of the C-M and A-D statistics calculated by the graphical

plotting techniques are significantly different from those calculated by the MLEs.

4.0 POWER CALCULATION

4. 10 Alternative Distribution Models and Generation of Samples
O This section describes the alternative distribution functions and the detailed procedures of generating pseudo-random
samples from each distribution model. In the following calculation, all pseudo-uniform random numbers, ©;(i01,2,...,n), are

generated with the composite generator proposed by Marsaglia and Bray'?.

4. 1. 10 Normal distribution
0 The cumulative distribution function is,

x_
M Fo=2[—1, (—oo<x<+o0), O @
where @[] is the lower probability of a normal distribution with the population parameters, i.e., the meanJ and varianceO 2.

Sample generation
O A general pseudo-random normal sample of size n, x,(i0 1,2,...,n), is given by

O0«x0d 00 z, ®3)

where z; is a standard normal variable, which is obtained by transforming a uniform random number u;(0<u,<1) using the

polar method*?. In this power study,

(1) Standard normal samples are tested against the Type-l extreme-value distribution without loss of generality. This case is
simply expressed as' Std. Normal vs. Type-I” in the following figures. A standard normal sample of size n, x;(: 0 1,2,...,
n), is generated by using Equation (3) withjd 00 and0 O 1. It should be noted that this test is equivalent to testing a log-
normal sample against the two-parameter Weibull distribution®.

(2) Three sets of samples from the normal distributions with specified] O 3%, 5%, and 10% are tested against the two-param-

eter Weibull distribution. This test is equivalent to testing a set of logarithmic values of a normal sample, i.e.,
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000 Inx, O Ind O In[10 20N 1, GO 1,2,...,n) (@)
against the Type-l extreme-value distribution. From Equation (4), this test is independent of IrJ , but dependent onh as

described in the part one of this study®. Therefore, a set of normal samples with a specifiedn is provided by taking I O 1
as follows:

O00x0 10200, (i01.2,..,n) (5)

O It should be noted that there is no negative value in x; generated from each of the normal distributions with specifiedn O
3%, 5%, and 10% in 10,000 samples.

4. 1. 20 Log-normal distribution

O The cumulative distribution function is represented by

Inx- /4

0o F(x)=<ﬁ[T_L’], (0<x<~+o0), (6)

where @[] is the lower probability of a normal distribution, andy ; is the mean and0 2 the variance of Inzx.

Sample generation
O A general pseudo-random log-normal sample of size n, x,(i0 1,2,...,n), is given by

0 Ox,0 expO oz exp ). O
where z; is a standard normal variable. In this study, four sets of samples from the log-normal distributions with specifiedn

O 3%, 5%, 10%, and 28% are tested against the Type-l extreme-value distribution. Equation (7) indicates that this test is
independent ofl ;, but dependent on0 V. The relation betweenO, andn is given as

00 g,=vVIn(1+7") . (8)
0 Therefore, a set of log-normal samples with a specified] is provided by taking 4 00 0 as follows :
00 x=exp | z/In(1+ 7)) |, (<1,2,...0). ©)

4. 1. 30 Two-parameter Weibull distribution
00 The cumulative distribution function is,

B
00 Fe=1—expl—(3 )1, «>0, 3>0, 0<x<+oo, (10)
whered and[3 are the scale and shape parameters respectively.

Sample generation
O A general pseudo-random Weibull sample of size n, x;(i0 1,2,...,n), is given by

0000 [0 In(10w)]®, (11)

where u; is a uniform random number, 00 ;0 1.
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O In this paper, four sets of samples from the two-parameter Weibull distributions with specified] O 3%, 5%, 10%, and 28%
are tested against the Type-l extreme-value distribution. From Equation (11), these tests are independent ofd , but depen-
dentonf3 V. The relation betweenl andf3 is deduced as

00 = r1+2/p3) 1. 0 (12)

S ra+p)

O Therefore, a set of Weibull samples with a specifiedn is given by takingd O 1 as follows :
O 0x0{0 In(10 z))}*0, (0 1,2,...,n) (13)
wheref3 () is the inverse function of Equation (12).

4. 1. 40 Type-l extreme-value distribution
00 The cumulative distribution function is,

00 F<x>=1—exp[—exp<%)], (—o0< x<+o0), (14)

where a and b are the location and scale parameters respectively.

Sample generation
O A general pseudo-random Type-l extreme-value sample of size n, x;0 (iO 1,2,..,n), is given by

0 0x,0 e0 6In[0 In(10 w)]. (15)

O In this power study, three sets of samples from the Type-I extreme-value distributions with specified] =3%, 5%, and 10%
are tested against the two-parameter Weibull distribution. This test is equivalent to testing a set of logarithmic values of a

Type-1 extreme-value sample, i.e.,
00 y=lnx=Inb+In|In{~In(1—u)}+3], (<12...n). (16)

against the Type-l extreme-value distribution. From Equation (16), this test is independent of b, but dependent on a/5%. The
relation between a /b andh) is deduced as

oppe_~1l_ a7
b B

wherev O 0.5772 and is known as Euler's constant?. Therefore, a set of Type-l extreme-value samples with a specifiedn is

given by taking b=1 as follows:

T 1
00 x=In[—In(Q1—u)]+(—=——v), (=12,...,n). 18
V6 7 (18)
O Here again, there is no negative value in x; generated from each of the Type-I extreme-value distributions with specified
N O 3%, 5%, and 10% in 10,000 samples.

4. 200 Procedures of Power Calculation

O Monte Carlo simulation is used for the power calculation whose procedures are similar to the calculation of the critical
values of a statistic for goodness-of-fit tests described in the first part of this work?®. 10,000 sets of samples for sample sizes
n=5, 10, 25, and 40 are generated from each alternative distribution model mentioned above. Figure 4 presents the flow
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START
+<
Generate n ordered observations, x; (i=1,2,...,n),
for the given distribution function

Use MLEs or GPTs

Use MLEs to estimate Use GPTs combined with the
parameters from LSM to estimate parameters from
x(i=1,2,...,n) x (i=1,2,...,n}

v v

Calculate the K-S, C-M or A-D statistic with
the estimated parameters

v

Compare the calculated value of the K-5,
C-M or A-D statistic with the corresponding
critical values at various significance levels

v

Count the cumutative number of rejections

YES

teration number < 10,00

Calculate the power (rejection rate) of
the K-S, C-M or A-D goodness-of-fit test
at various significance levels

Figure 40 Flow diagram of the power calculation.

diagram of the power calculation.

5. POWER COMPARISONS

O The power results of the K-S, C-M, and A-D statistics at the significance levely =0.05 are presented in Tables 2 to 4. The
averaged power for all sample sizes (n=5, 10, 25, and 40) are calculated and listed in each table. The power order is judged by

the averaged power.

5. 10 K-S Goodness-of-Fit Tests

0 Table 2 presents the power results of D,(1), D,(2), D,(3), and D,(4). The averaged power in decreasing order is: D,(3),
D,(4),D,(1), and D,(2). The comparisons indicate that:

(1) The power given by the symmetrical ranks is more powerful than those given by the median and mean ranks.

(2) The power given by the symmetrical ranks is also more powerful than that given by the MLEs.

5. 20 C-M Goodness-of-Fit Tests

0 Table 3 shows the power results of W2(1), W2(2), W3(3) and W?2(4). The averaged power in decreasing order is: W2(4),
W2(3), W2(1) and W?(2). The comparisons indicate that:

(1) The power given by the symmetrical ranks is more powerful than those given by the median and mean ranks.
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Tablle 20 Power results, i.e., rejection rate, of the Kolmogorov-Smirnov goodness-of-fit tests.

Test Statistics {Significance Level y= 0.05)

Alterinative Sample D M D (2) D (3) D (4 Litteli's Resuits
Distribution Size n  (Median Ranks) (Mean Ranks) (Sym. Ranks) (MLEs) (MLEs )
Std. Normal Samples 5 0.082 0.056 0.070 ## 0.061 /
vs. Type-1 10 0.089 0.072 0.101 0.091 0.091
(Log-normal Samples 25 0.181 0.140 0.206 0.192 0.199
vs. Weibull) # 40 0.273 0.220 0.303 0.291 0.315
5 0.069 0.061 0.077 0.064 /
Log-normal Samples 10 0.107 0.085 0.119 0.107 /
(11=5%) vs. Type-I 25 0.228 0.180 0.255 0.243 /
40 0.354 0.293 0.389 0.378 /
5 0.108 0.095 0.118 0.097 /
Log-normal Samples 10 0.216 0.180 0.237 0.211 /
(n=28%) vs. Type-1 25 0.517 0.447 0.553 0.540 /
40 0.757 0.691 0.787 0.769 /
5 0.047 0.049 0.048 0.046 /
Weibull Samples 10 0.049 0.044 0.050 0.050 /
(n=5%) vs. Type-1 25 0.046 0.041 0.050 0.049 /
40 0.047 0.040 0.052 0.050 /
5 0.056 0.052 0.063 0.052 /
Weibull Samples 10 0.072 0.058 0.083 0.077 /
(11=28%) vs. Type-1 25 0.138 0.101 0.161 0.141 /
40 0.216 0.163 0.246 0.211 /
5 0.058 0.053 0.065 0.057 /
Normal Samples 10 0.077 0.081 0.086 0.079 /
(n=5%) vs. Weibull 25 0.138 0.105 0.160 0.150 /
40 0.203 0.162 0.229 0.218 /
5 0.051 0.055 0.050 0.049 /
Type-I Samples 10 0.055 0.057 0.051 0.054 /
(N=5%) vs. Weibull 25 0.063 0.070 0.057 0.055 /
40 0.083 0.069 0.059 0.054 /
5 0.085 0.060 0.070 0.081 /
Averaged Power for 10 0.095 0.080 0.104 0.096 /
Sample Size n 25 0.187 0.155 0.206 0.196 /
40 0.273 0.234 0.295 0.282 /
Averaged Power for All  n=5,10,
Sample Sizes 25.40 0.155 0.132 0.169 0.158 /
Power Order for All n=5,10
e .3 . . .
Sample Sizes 25,40 No No.4 No.1 No.2 /

Note # -- This test is equivalent to test the log-normal samples vs. the two-parameter Weibull distribution.
## -- The data with an underline is the maximum value in this row except for Liftell’s results.

(2) The power given by the MLEs is more powerful than those given by the three kinds of graphical plotting techniques.

5. 30 A-D Goodness-of-Fit Tests

O Table 4 presents the power results of [A2(1), [A2(2),42(3), and [A2(4). The averaged power in decreasing order is:[42(3), O
[A2(1),14%(4), and [A2(2). The comparisons indicat that:

(1) The power given by the symmetrical ranks is more powerful than those given by the median and mean ranks.

(2) The power given by the symmetrical and median ranks are more powerful than that given by the MLEs.
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Tablle 30 Power results, i.e., rejection rate, of the Cramer-von Mises goodness-of-fit tests.

Test Statistics (Significance Level y=0.05)

Alterinative Sample pf/: (M Vf’f (2) wnz (3) W”2(4) Littelt's Results
Distribution Size n  (Median Ranks) (Mean Ranks)  (Sym. Ranks) (MLEs) {MLEs)
Std. Normal Samples 5 0.063 0.051 0.073 #4# 0.061 /
vs. Type-I 10 0.083 0.055 0.106 0.107 0.098
(Log-normal Samples 25 0.182 0.120 0.218 0.257 0.259
vs. Weibull) # 40 0.302 0.213 0.349 0.402 0.410
5 0.070 0.058 0.081 0.067 /
Log-normal Samples 10 0.101 0.067 0.124 0.132 /
(11=5%) vs. Type-I 25 0.236 0.165 0.283 0.328 /
40 0.396 0.300 0.448 0.509 /
5 0.108 0.088 0.124 0.103 /
Log-normal Samples 10 0.227 0.175 0.258 0.272 /
(n=28%) vs. Type-1 25 0.581 0.484 0.633 0.669 /
40 0.831 0.756 0.865 0.884 /
5 0.048 0.048 0.049 0.048 /
Weibull Samples 10 0.044 0.039 0.048 0.049 /
(1n=5%) vs. Type-1 25 0.043 0.034 0.050 0.051 /
40 0.042 0.033 0.049 0.050 /
5 0.057 0.046 0.064 0.058 /
Weibull Samples 10 0.065 0.043 0.083 0.087 /
(1=28%) vs. Type-1 25 0.135 0.082 0.179 0.183 /
40 0.230 0.146 0.287 0.281 /
5 0.057 0.048 0.066 0.056 /
Normal Samples 10 0.067 0.046 0.088 0.090 /
(n=5%) vs. Weibull 25 0.135 0.084 0.170 0.198 /
40 0.220 0.146 0.263 0.299 /
5 0.054 0.056 0.051 0.052 /
Type-1 Samples 10 0.058 0.059 0.053 0.051 !
(n=5%) vs. Weibull 25 0.070 0.078 0.061 0.056 /
40 0.073 0.081 0.062 0.057 /
5 0.065 0.056 0.073 0.063 /
Averaged Power for 10 0.092 0.069 0.108 0.113 /
Sample Size n 25 0.197 0.149 0.228 0.249 /
40 0.299 0.239 0.332 0.355 /
Averaged Power for All  n=5,10,
Sample Sizes 25.40 0.164 0.128 0.185 0.195 /
Power Order for All n=5,10,
o . . . . /
Sample Sizes 25.40 No.3 No.4 No.2 No.1

Note # -- This test is equivalent to test the log-normal samples vs. the two-parameter Weibull distribution.

## -- The data with an underline is the maximum value in this row except for Littell’s results.

5. 40 Power Comparison Among the K-S, C-M, and A-D Statistics

O According to all the power results for the K-S, C-M, and A-D statistics in Tables 2-4, the power order is given as: A%(3),
[A2(1), B2(4), Wi(4), W2(3),42(2), D,(3), Wi(1), D,(4), D,(1), D,(2), and W2(2), This power order reveals that:
(1) When the MLEs are used to estimate the population parameters, the A-D statistic is more powerful than the C-M statistic,

and the C-M statistic is more powerful than the K-S statistic.

(2) The A-D statistic coupled with the symmetrical ranks is the best goodness-of-fit test in most of cases shown in Tables 2 to

4.
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Tablle 400 Power results, i.e., rejection rate, of the Anderson-Darling goodness-of-fit tests.

Test Statistics (Significance Level y=0.03)

Alternative Sample A%(D) A2(2) A%(3) AX(4) Littell's Resuits
Distribution Size n (Median Ranks) (Mean Ranks)  (Sym. Ranks) (MLEs) (MLEs )
Std. Normal Samples 5 0.085 0.063 0.098 ## 0.048 /
(Log-normal Samples 25 0.315 0.219 0.373 0.277 0.286
vs. Weibull) # 40 0.481 0.353 0.546 0.447 0.462
5 0.094 0.069 0.110 0.051 /
Log-normal Samples 10 0.183 0.123 0.213 0.121 /
(n=5%) vs. Type-1 25 0.409 0.291 0.464 0.355 /
40 0.605 0.477 0.670 0.564 /
5 0.152 0.111 0.177 0.078 /
Log-normal Samples 10 0.359 0.271 0.405 0.261 /
(n=28%) vs. Type-I 25 0.778 0.674 0.825 0.706 /
40 0.948 0.900 0.963 0.917 /
5 0.052 0.048 0.056 0.049 /
Weibull Samples i0 0.050 0.044 0.056 0.046 /
(n=5%) vs. Type-1 25 0.049 0.037 0.058 0.052 /
40 0.048 0.035 0.058 0.051 /
5 0.080 0.056 0.090 0.047 /
Weibull Samples io 0.112 0.076 0.140 0.079 /
(n=28%) vs. Type-I 25 0.244 0.149 0.297 0.195 /
40 0.378 0.250 0.452 0.318 /
5 0.077 0.058 0.088 0.045 /
Normal Samples 10 0.123 0.078 0.145 0.080 /
(1=5%) vs. Weibull 25 0.239 0.154 0.287 0.211 /
40 0.359 0.249 0.420 0.338 /
5 0.049 0.056 0.048 0.057 /
Type-I Samples 10 0.051 0.056 0.044 0.054 /
(N=5%) vs. Weibull 25 0.062 0.076 0.050 0.060 /
40 0.068 0.084 0.056 0.060 /
5 0.084 0.066 0.095 0.054 /
Averaged Power for 10 0.147 0.107 0.169 C.108 /
Sample Size n 25 0.299 0.229 0.336 0.265 /
40 0.413 0.335 0.452 0.385 /
Averaged Power for All  n=5,10,
0.236 0.184 0.263 0.202 /
Sample Sizes 25,40 -
Power Order for All n=5,10,
Py : No.4 No.1 No.3 /
Sample Sizes 25,40 No2 ° © ©

Note # -- This test is equivalent to testing the log-normal samples vs. the two-parameter Weibull distribution.

## -- The data with an underline is the maximum value in this row except for Littell’s results.

0 The power comparisons described above indicate that the A-D statistic coupled with the symmetrical ranks is more power-
ful than the A-D statistic coupled with the MLEs, which is carried in MIL-HDBK-5G® and MIL-HDBK-17-1E". However, the
power comparisons in Tables 2 to 4 were conducted aty O 0.05 only. More detailed power comparisons for the A-D statistic

coupled with the symmetrical ranks and the MLEs should be investigated at different significance levels and for specified

coefficients of variation of the population. Sample sizes nJ 10 and 40 representing small and fairly large sample sizes are

considered.

5. 50 Power Comparison for the A-D Statistic at Different Significance Levels

O Figures 5 and 6 present the power results of the A-D statistic coupled with the symmetrical ranks and the MLEs at seven
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significance levels for sample sizes nJ 10 and 40. These figures show that:

(1) The symmetrical ranks are more powerful than the MLEs in most cases.

(2) The calculated power increases monotonically asy becomes higher.

(3) High power is obtained between the Normal group (normal and log-normal distributions) and the Weibull group (the two-
parameter Weibull and Type-1 extreme-value distributions), especially for the large sample size 40 and higher significance
levels. Meanwhile, very low power was obtained between the Type-l extreme-value distribution and the two-parameter
Weibull distribution forn O 5%.

5. 60 Power Comparison for the A-D Statistic at Different Coefficients of Variation

O Figures 7 and 8 present the power results of the A-D statistic coupled with the symmetrical ranks and the MLEs at three or

four values of| ) O 3%, 5%, 10%, and 28%) for sample sizes n=10 and 40. The following conclusions were obtained:

(1) The symmetrical ranks give a higher power than the MLEs in most cases.

(2) Although the power to test the normal samples against the two-parameter Weibull distribution decreases asf becomes
larger, the power for other test cases increases asl] becomes larger.

(3) A very low power is obtained between the Type-I extreme-value distribution and the two-parameter Weibull distribution
for small coefficient of variation/] O 3% 10%. For largel O 28%, however, a fairly high power between the two distribu-

tions is obtained.

—— Std. Normal vs. Type-| (Sym. ranks)
--& - Std. Normal vs. Type-I (MLEs)
—&— Std. Normal vs. Type—l (Syrn. I'aﬂkS) —a— Normal (77=5°/o) vs. Weibull (Sym. ranks)
O --Std. Normal vs. Type-| (MLEs) --3- Normal (UZS‘VD) vs. Weibull (MLES)
~8—Normal (7)=5%) vs. Weibull (Sym. ranks) —e—Log-normal (77=5%} vs. Weibull (Sym. ranks)
--}--Normal (%7=5%) vs. Weibull (MLEs) --©&--Log-normal (77=5%] vs. Type-I (MLEs)
—e— Log-normal (7] =5%) vs. Type-l (Sym. ranks) —a— Weibull (77=5%) vs. Type-| (Sym. ranks)
--@ - Log-normal (%) =5%) vs. Type-l (MLEs) -2 Weibull {77=5%} vs. Type-l (MLEs)
—a— Weibull (77=5%) vs. Type-l (Sym. ranks) 1.0 | —¢Type-l (17=5%) vs. Weibull (Sym. ranks)
0.6 § --a--Weibuli (77=5%) vs. Type-l (MLEs) 1 -+ Type-l {(77=5%) vs. Weibull (MLEs)
1 =>—Type-l (77=5%) vs. Weibull (Sym. ranks)
] --+--Type-| (7=5%) vs. Weibull {MLEs) 1
0.5 0.8 -
0.4 - ]
= ] S 0.6
S 1 7] ,
8 g |
To3- 5
o 7 2 |
Z 1 o 0.4 -
£ &=
0.2 A .
] 0.2 -
0.1 - 8
0.0 - 0.0 - ey
000 005 040 015 020 0.25 0.00 0.05 0.10 0.15 0.20 0.25
Significance Level vy Significance Level y
Figure 500 Power results of the Anderson-Darling goodness- Figure 600 Power results of the Anderson-Darling goodness-
of-fit test at different significance levels, (sample of-fit test at different significance levels, (sample
size nd 10). size n 40).
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6.0 DISCUSSION

6. 10 Validity of the Monte Carlo Simulation and Its Results

0 The power results calculated by Littell et al. for the K-S, C-M, and A-D statistics coupled with the MLEs are presented in
Tables 2, 3, and 4 for sample sizes n=10, 25, and 40. These results are very close to the corresponding results in this study
although they were obtained by a different random number generator and ten sets of 5,000 iterations®. These facts confirm
not only the reproducibility of the power results by the MLEs, but also the validity of the Monte Carlo simulation in this study.

6. 20 Median, Mean, and Symmetrical Ranks in the Graphical Plotting Techniques

O For the K-S, C-M, and A-D statistics, the symmetrical ranks provided more powerful results than the median and mean
ranks. One explanation for this is that the C-M and A-D statistics? include the concept of the symmetrical ranks, (0 0.5)/n,
which implies that the symmetrical ranks should be used for estimating the unknown population parameters for these statis-
tics. A similar concept is used for the K-S statistic®.

—— Normal vs. Type-| {Sym. ranks)
——-Normal vs. Type-l (Sym. ranks) @3-~ Normal vs. Type-| (MLEs)
~-B--Normal vs. Type-l (MLEs) —e—Normal vs. Weibull {Sym. ranks)
—8—Normal vs. Weibuil (Sym. ranks} .-@--Normal vs. Weibull (MLEs)
--@--Normal vs. Weibull (MLEs) —4—Log-normal vs. Type-| (Sym. ranks)
—&—Log-normal vs. Type-| (Sym. ranks) -+ Log-normal vs. Type-l (MLEs)
--@--Log-normal vs. Type-| (MLEs) —a—Weibull vs. Type-| {Sym. ranks})
—— Weibull vs. Type-1 (Sym. ranks) -&--Weibull vs. Type-| (MLEs)
0.50 1 --&--Weibullvs. Type-l (MLEs) —>—Type-| vs. Weibull (Sym. ranks)
i ——Type-l vs. Weibuli {Sym. ranks) 1.0 4 -—-+--Type-| vs. Weibull (MLEs)
0.45 { --+--Type-l vs. Weibull (MLEs) ]
: 0.9 ]
0.40 S 1
] 0.8 ]
0.35 4 ]
] 0.7 4
S 0.30 4 e ]
§ : 7 0.6
~ 0.25 1 2 ]
[ p — 0.5
S 020 S
o v ] Fo ]
] £ 0.4 ]
0.15 ] 0.3 ]
0.10 0.2 1
0.05 1 0.1 ]
000_ 1 1 lIlllA{ 1 1 Ly 0.0‘ L i ! Ly L 1 JI\IIII
% o, % 30%
1% 3% 10% 9% 100% 1% 3 10% 100%
Coefficient of Variation n Coefficient of Variation n
Figure 70 Power results of the Anderson-Darling goodness- Figure 80 Power results of the Anderson-Darling goodness-
of-fit test as a function of the coefficient of varia- of-fit test as a function of the coefficient of varia-
tion, (sample size nO 10, significance levely O tion, (sample size n0 40, significance levely O
0.05). 0.05).
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6. 30 Comparison of Concept of the K-S, C-M, and A-D Statistics

0 The basic concept of the K-S, C-M, and A-D statistics is to test the null hypothesis by measuring thé distance” (discrepancy)
between the non-parametric empirical distribution function (EDF) and the assumed cumulative distribution function (CDF)
with the estimated parameters. The K-S statistic, D,, is used to measure the maximum® distance” between EDF and CDF,
which uses only the one largest discrepancy calculated from the data. The C-M statistic, W?, is defined by the sum of the
square of the" distance” between EDF and CDF on the basis of all the discrepancies over the entire range of the data.
Moreover, the A-D statistic, [42, improved W? by introducing a weight function with heavier weights in both tail regions?9,

These weights are effective in producing more powerful results for goodness-of-fit tests.

6. 40 Difference Between the Type-| Extreme-Value Distribution and the Two-Parameter Weibull Distribution

0 The power comparisons in this paper also revealed the difference between the Type-l extreme-value distribution and the

two-parameter Weibull distribution. That is, for small coefficient of variation, O 30 10%, the difference between the two

distributions is rather small; for largen O 28%, however, the difference is much larger. Therefore, the following inferences

are drawn:

(1) For the typical fatigue life data (withr =28%), there should be a significant difference when either the Type-1 extreme-
value distribution or the two-parameter Weibull distribution is used for fitting the data.

(2) For the strength data of metallic and composite materials (withr O 30 10%), there should be a small difference when
either of the two distributions is used.

7.0 CONCLUSIONS

0 The main conclusions of this paper are summarized as follows:

(1) Among the three kinds of graphical plotting techniques, the symmetrical ranks give more powerful results than the
median and mean ranks for the K-S, C-M, and A-D statistics.

(2) Among the three graphical plotting techniques and the MLEs, the symmetrical ranks provide more powerful results than
the MLEs for the K-S and A-D statistics. However, for the C-M statistic, the MLEs provided more powerful results than the
three graphical plotting techniques.

(3) The A-D statistic coupled with the symmetrical ranks and the least-squares method provides the best power results
among the competitors in this study, and is recommended for practical use.

(4) 1tis difficult to separate the Type-I extreme-value distribution and the two-parameter Weibull distribution for small coeffi-
cient of variationn] O 30 10%, but it is not difficult for largen O 28%.
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