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Weibull Distributions with Unknown Parameters Estimated by Graphical

Plotting Techniques ------ Part 2：P ower Study*

　

Min Liao＊ 1   and Toshiyuki Shimokawa＊2

　

ABSTRACT

　The objective of this study was to investigate the power of the Kolmogorov-Smirnov, Cramer-von Mises, and

Anderson-Darling statistics for goodness-of-fit tests for the Type-I extreme-value and two-parameter Weibull

distributions, when the population parameters were estimated by the combination of three kinds of graphical

plotting techniques and the least-squares method and the maximum likelihood estimators. Monte Carlo simu-

lation provided the power results using 10,000 repetitions for each sample size of 5, 10, 25, and 40. Four repre-

sentative statistical distribution models were selected for alternative distributions in order to conduct the power

comparison. The power comparisons indicated that the Anderson-Darling statistic coupled with the symmetri-

cal ranks and the least-squares method is the most powerful statistic for goodness-of-fit tests, and is recom-

mended for practical use.

　

Keywords:  goodness-of-fit tests, power study, Kolmogorov-Smirnov, Cramer-von Mises, Anderson-Darling,

Type-I extreme-value distribution, Weibull distribution, graphical plotting techniques, maximum

likelihood estimators, Monte Carlo simulation

　　

概　　要

　本研究の目的は、確率紙上で３種類のプロット法と最小２乗法の組合せおよび最尤法を用いて母数を推

定する場合を対象とし、タイプ I極値分布と２母数ワイプル分布に対するコルモゴロフ・スミルノフ、ク

レーマ・フォンミーゼス、およびアンダーソン・ダーリングの適合度検定統計量の検出力を調べることで

ある。モンテカルロ・シミュレーションにより、標本の大きさ5, 10, 25, 40の各々に対して10,000組ずつを

発生させ、検出力の結果を与えた。検出力を比較するためには、４種類の代表的統計分布モデルを選択し

た。計算した検出力を比較することにより、対称ランクと最小２乗法の組合せによるアンダーソン・ダー

リングの適合度検定統計量を、適合度検定として最も検出力が高いと判定し実用に推奨した。

＊ Received 22 May 1998

＊1 Dr., STA (Science and Technology Agency) Fellow at National Aerospace Laboratory (NAL)(on leave from North-
       western Polytechnical University, Xi’an, P.R. China).
＊ 2 Dr.,Head of Fatigue Strength Laboratory, Structures Division, NAL. Email：shimoka@nal.go.jp.

1.　INTRODUCTION

　The first part of this work1) presented the critical values of the Cramer-von Mises (C-M) and Anderson-Darling (A-D)

statistics for goodness-of-fit tests for the Type-I extreme-value and two-parameter Weibull distributions, when the population

parameters were estimated by the combination of three kinds of graphical plotting techniques (GPTs) and the least-squares

method (LSM). As the second part of this work, the main objective of this paper is to calculate and compare the power of the
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Kolmogorov-Smirnov (K-S), C-M, and A-D statistics for goodness-of-fit tests by using the three graphical plotting techniques

in order to find the best combination of a statistic and one of the graphical plotting techniques. No reports on this subject have

been published to date.

　Maximum likelihood estimators (MLEs) are widely used to estimate the population parameters in goodness-of-fit tests for

the Type-I extreme-value and two-parameter Weibull distributions2)-5). In some handbooks such as MIL-HDBK-5G6) and MIL-

HDBK-17-1E7),  MLEs are used as parameter estimators in the goodness-of-fit tests for the Weibull distribution. Therefore, an

additional objective of this paper is to compare the power of the K-S, C-M, and A-D statistics for goodness-of-fit tests with that

of MLEs.

　From an engineering viewpoint, one of the purposes of a goodness-of-fit test is to distinguish the fitness of a set of data to an

assumed distribution model from alternative distribution models. Hence, this study compares the Type-I extreme-value or

two-parameter Weibull distribution with the following four distribution models, which are frequently used in reliability analysis:
(1) Normal distribution
(2) Log-normal distribution
(3) Two-parameter Weibull distribution
(4) Type-I extreme-value distribution

　Meanwhile, in some practical fields of reliability engineering, only a limited range of data scatter is often applied. For

example, the coefficient of variationη＝3% to 10% covers almost allηvalues of the strength data of metallic and composite
materials. For typical fatigue life data8), the shape parameterβ＝ 48) when a two-parameter Weibull distribution is used to fit
the test data. The correspondingηof the life data is approximately equal to 28%. Therefore, in this power study, the distribu-
tion models in a specifiedηrange also are compared.
　Monte Carlo simulation is used to calculate the power of goodness-of-fit tests at seven significance levels, i.e.,γ＝0.01,
0.025, 0.05, 0.10, 0.15,0.20 and 0.25, in which 10,000 repetitions are generated for sample sizes n＝5, 10, 25, and 40.

2.　POWER CONCEPT OF A GOODNESS-OF-FIT TEST

　Let x1<x2<...<xn be order statistics from a continuous distribution F(x). A goodness-of-fit test for a distribution with un-

known parameters is to test the null hypothesis,

　　H0 :  F(x)＝F0(x;θ), (1)

where F0(x;θ) is a specified family of distribution models and contains a set of parametersθ.

　In this paper, the power of a goodness-of-fit test is defined as the probability that the test statistic will reject the null

hypothesis, H0, when it is false, i.e., when a sample is not from the hypothesised population. Let the complement of the null

hypothesis be the alternative hypothesis Ha. In the theory of statistical hypothesis tests9), there are two types of errors that

may be produced when making a decision about the null hypothesis as follows:
(1) A type I error is produced, if H0 is rejected when H0 is true. The probability of a type I error is denoted byγ.
(2) A type II error is produced, if H0 is accepted when H0 is false. The probability of a type II error is denoted byλ .
　The combination ofγandλprovides a measure for the efficiency of a goodness-of-fit test for the null hypothesis. Here,γ
is also called the significance level of the tests, which has been considered during calculation of the critical values of a test

statistic for the goodness-of-fit test. Thus, the power of the goodness-of-fit test at a given significance levelγ is denoted by (1-

λ), when H0 is false or Ha is true. An excellent goodness-of-fit test10) should reject a sample from the alternative distribution

Ha at the highest“power probability”(1-λ), and to accept a sample from the true distribution H0 at the lowest“error

probability”γ.

3.　GOODNESS-OF-FIT TESTS TO BE INVESTIGATED

3. 1　Goodness-of-Fit Test Statistics

　The power of goodness-of-fit tests is investigated for the combination of the statistic and parameter estimators listed in

Table 1. The critical values of W^2
n(1), W^2

n(2), W^2
n(3), A^2

n(1), A^2
n(2), and A^2

n(3) in the first part of this work1) are used in the
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following power calculation.

3. 2　Critical Values of the K-S Statistic Given by the Graphical Plotting Techniques

　For the graphical plotting techniques, the critical values of the K-S statistic for goodness-of-fit tests for the Type-I extreme-

value and two-parameter Weibull distributions are recalculated in this paper using the same procedures as described in the

first part of this study1), though these critical values were already reported by one of the authors11) using 100,000 sets of

samples for each sample size. This Monte Carlo simulation used 1,000,000 sets of samples for each of sample sizes n＝3(1)

20, 25(5)50, and 60(10)100. The critical values of  D^n(1), D^n(2), and D^n(3), at significance levelγ＝0.05 are plotted in Figure 1.

3. 3　Critical Values of the K-S, C-M, and A-D Statistics Given by the MLEs

　For the MLEs, the critical values of the K-S, C-M, and A-D statistics, i.e., D^n(4), W^2
n(4), and A^2

n(4), for the Type-I extreme-

value and two-parameter Weibull distributions are newly calculated by Monte Carlo simulation for 1,000,000 sets of samples

for each of sample sizes n＝3(1)20, 25(5)50, and 60(10)100. The calculation procedures are similar to those used in the first

part of this study1). This study used the MLEs subroutine program presented in MIL-HDBK-17-1E4).

　Figures 1 to 3 indicate the critical values of  D^n, W^2
n, and A^2

n, calculated in this study at significance levelγ＝0.05. The
critical values for the MLEs provided by Littell et al.4), Stephens2),5), and MIL-HDBK-17-1E7) atγ＝0.05 are also presented in
these figures. Figures 1 to 3 all clarified the following characteristics:
(1) The critical values of  D^n(4) calculated are approximately equal to those given by Littell et al.
(2) The critical values of W^2

n(4) calculated are approximately equal to those given by Littell et al. and very close to those

given by Stephens.

Table 1　Combination of a goodness-of-fit test statstic and parameter estimators.

Figure 1　Critical values of the Kolmongorov-Smirnov

                   statistic, D^n,(γ＝0.05).
Figure 2　Critical values of the Cramer-von Misese

                   statistic, W^2
n,(γ＝0.05).
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(3) The critical values of A^2
n(4) calculated are approximately equal to those given by Littell et al. and very close to those

given by Stephens and MIL-HDBK-17-1E.
(4) The critical values of the K-S statistic calculated by the graphical plotting techniques are very close to those calculated by

the MLEs when sample size n>5. However, the critical values of the C-M and A-D statistics calculated by the graphical

plotting techniques are significantly different from those calculated by the MLEs.

4.　POWER CALCULATION

4. 1　Alternative Distribution Models and Generation of Samples

　This section describes the alternative distribution functions and the detailed procedures of generating pseudo-random

samples from each distribution model. In the following calculation, all pseudo-uniform random numbers, ui( i＝1,2,...,n), are

generated with the composite generator proposed by Marsaglia and Bray12).

4. 1. 1　Normal distribution

　The cumulative distribution function is,

� 　   � (2)

whereΦ[・] is the lower probability of a normal distribution with the population parameters, i.e., the meanμand varianceσ2.

Sample generation
　A general pseudo-random normal sample of size n, xi(i＝1,2,...,n), is given by

　　xi＝μ＋σzi, (3)

where zi is a standard normal variable, which is obtained by transforming a uniform random number ui(0<ui<1) using the

polar method13). In this power study,
(1) Standard normal samples are tested against the Type-I extreme-value distribution without loss of generality. This case is

simply expressed as“Std. Normal vs. Type-I”in the following figures. A standard normal sample of size n, xi(i＝1,2,...,

n), is generated by using Equation (3) withμ＝0 andσ＝1. It should be noted that this test is equivalent to testing a log-
normal sample against the two-parameter Weibull distribution1).

(2) Three sets of samples from the normal distributions with specifiedη＝3%, 5%, and 10% are tested against the two-param-
eter Weibull distribution. This test is equivalent to testing a set of logarithmic values of a normal sample, i.e.,

Figure 3　Critical values of the Anderson-Darling

                   statistic, A^2
n,(γ＝0.05).
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　　yi＝lnxi＝lnμ＋ ln[l＋ zi・η], (i＝1,2,...,n) (4)

against the Type-I extreme-value distribution. From Equation (4), this test is independent of lnμ, but dependent onηas
described in the part one of this study1). Therefore, a set of normal samples with a specifiedηis provided by taking lnμ＝1
as follows:

　　xi＝ l＋zi・η, (i＝1,2,...,n) (5)

　It should be noted that there is no negative value in xi generated from each of the normal distributions with specifiedη＝
3%, 5%, and 10% in 10,000 samples.

4. 1. 2　Log-normal distribution

　The cumulative distribution function is represented by

　　 (6)

whereΦ[・] is the lower probability of a normal distribution, andμL is the mean andσ2L the variance of lnx.

Sample generation
　A general pseudo-random log-normal sample of size n, xi( i＝1,2,...,n), is given by

　　xi＝exp(σL zi)・exp(μL). (7)

where zi is a standard normal variable. In this study, four sets of samples from the log-normal distributions with specifiedη
＝3%, 5%, 10%, and 28% are tested against the Type-I extreme-value distribution. Equation (7) indicates that this test is

independent ofμL, but dependent onσL
1). The relation betweenσL andηis given as

　　 (8)

　Therefore, a set of log-normal samples with a specifiedηis provided by takingμL＝0 as follows :

　　 (9)

4. 1. 3　Two-parameter Weibull distribution

　The cumulative distribution function is,

　　 (10)

whereαandβare the scale and shape parameters respectively.

Sample generation
　A general pseudo-random Weibull sample of size n, xi(i＝1,2,...,n), is given by

　　xi＝α[－ln(1－ui )]
1／β , (11)

where ui  is a uniform random number, 0＜ui＜1.
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　In this paper, four sets of samples from the two-parameter Weibull distributions with specifiedη＝3%, 5%, 10%, and 28%
are tested against the Type-I extreme-value distribution. From Equation (11), these tests are independent ofα, but depen-
dent onβ1). The relation betweenηandβis deduced as

　　   � (12)

　Therefore, a set of Weibull samples with a specifiedηis given by takingα＝1 as follows :

　　xi＝{－ln(l－ui)}1/β(η), (i＝1,2,...,n) (13)

whereβ(η) is the inverse function of Equation (12).

4. 1. 4　Type-I extreme-value distribution

　The cumulative distribution function is,

　　 (14)

where a and b are the location and scale parameters respectively.

Sample generation
　A general pseudo-random Type-I extreme-value sample of size n, xi＝(i＝1,2,...,n), is given by

　　xi＝a＋bln[－ln(l－ui)]. (15)

　In this power study, three sets of samples from the Type-I extreme-value distributions with specifiedη=3%, 5%, and 10%
are tested against the two-parameter Weibull distribution. This test is equivalent to testing a set of logarithmic values of a

Type-I extreme-value sample, i.e.,

　　 (16)

against the Type-I extreme-value distribution. From Equation (16), this test is independent of b, but dependent on a/b1). The

relation between a/b andηis deduced as

　　 (17)

whereν＝0.5772 and is known as Euler's constant2). Therefore, a set of Type-I extreme-value samples with a specifiedηis
given by taking b=1 as follows:

　　 (18)

　Here again, there is no negative value in  xi generated from each of the Type-I extreme-value distributions with specified

η＝3%, 5%, and 10% in 10,000 samples.

4. 2　Procedures of Power Calculation

　Monte Carlo simulation is used for the power calculation whose procedures are similar to the calculation of the critical

values of a statistic for goodness-of-fit tests described in the first part of this work1). 10,000 sets of samples for sample sizes

n=5, 10, 25, and 40 are generated from each alternative distribution model mentioned above. Figure 4 presents the flow
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diagram of the power calculation.

5.  POWER COMPARISONS

　The power results of the K-S, C-M, and A-D statistics at the significance levelγ=0.05 are presented in Tables 2 to 4. The
averaged power for all sample sizes (n=5, 10, 25, and 40) are calculated and listed in each table. The power order is judged by

the averaged power.

5. 1　K-S Goodness-of-Fit Tests

　Table 2 presents the power results of D^n(1), D^n(2), D^n(3), and D^n(4). The averaged power in decreasing order is: D^n(3),

D^n(4), D^n(1), and D^n(2). The comparisons indicate that:
(1) The power given by the symmetrical ranks is more powerful than those given by the median and mean ranks.
(2) The power given by the symmetrical ranks is also more powerful than that given by the MLEs.

5. 2　C-M Goodness-of-Fit Tests

　Table 3 shows the power results of W^2
n(1), W^2

n(2), W^2
n(3) and W^2

n(4). The averaged power in decreasing order is: W^2
n(4),

W^2
n(3), W^2

n(1) and W^2
n(2). The comparisons indicate that:

(1) The power given by the symmetrical ranks is more powerful than those given by the median and mean ranks.

Figure 4　Flow diagram of the power calculation.
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(2) The power given by the MLEs is more powerful than those given by the three kinds of graphical plotting techniques.

5. 3　A-D Goodness-of-Fit Tests

　Table 4 presents the power results of  A^2n(1), A^2n(2), A^2n(3), and A^2n(4). The averaged power in decreasing order is: A^2n(3), �

A^2n(1), A^2n(4), and A^2n(2). The comparisons indicat that:
(1) The power given by the symmetrical ranks is more powerful than those given by the median and mean ranks.
(2) The power given by the symmetrical and median ranks are more powerful than that given by the MLEs.

Tablle 2　Power results, i.e., rejection rate, of the Kolmogorov-Smirnov goodness-of-fit tests.
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Tablle 3　Power results, i.e., rejection rate, of the Cramer-von Mises goodness-of-fit tests.

5. 4　Power Comparison Among the K-S, C-M, and A-D Statistics

　According to all the power results for the K-S, C-M, and A-D statistics in Tables 2-4, the power order is given as: A^2n(3),

A^2n(1), A^2n(4), W^2
n(4), W^2

n(3), A^2n(2), D^n(3), W^2
n(1), D^n(4), D^n(1), D^n(2), and W^2

n(2),This power order reveals that:
(1) When the MLEs are used to estimate the population parameters, the A-D statistic is more powerful than the C-M statistic,

and the C-M statistic is more powerful than the K-S statistic.
(2) The A-D statistic coupled with the symmetrical ranks is the best goodness-of-fit test in most of cases shown in Tables 2 to

4.
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　The power comparisons described above indicate that the A-D statistic coupled with the symmetrical ranks is more power-

ful than the A-D statistic coupled with the MLEs, which is carried in MIL-HDBK-5G6) and MIL-HDBK-17-1E7). However, the

power comparisons in Tables 2 to 4 were conducted atγ＝0.05 only. More detailed power comparisons for the A-D statistic
coupled with the symmetrical ranks and the MLEs should be investigated at different significance levels and for specified

coefficients of variation of the population. Sample sizes n＝10 and 40 representing small and fairly large sample sizes are

considered.

5. 5　Power Comparison for the A-D Statistic at Different Significance Levels

　Figures 5 and 6 present the power results of the A-D statistic coupled with the symmetrical ranks and the MLEs at seven

Tablle 4　Power results, i.e., rejection rate, of the Anderson-Darling goodness-of-fit tests.
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Figure 5　Power results of the Anderson-Darling goodness-

                  of-fit test at different significance levels, (sample

                  size n＝10).

Figure 6　Power results of the Anderson-Darling goodness-

                  of-fit test at different significance levels, (sample

                  size n＝40).

significance levels for sample sizes n＝10 and 40. These figures show that:
(1) The symmetrical ranks are more powerful than the MLEs in most cases.
(2) The calculated power increases monotonically asγbecomes higher.
(3) High power is obtained between the Normal group (normal and log-normal distributions) and the Weibull group (the two-

parameter Weibull and Type-I extreme-value distributions), especially for the large sample size 40 and higher significance

levels. Meanwhile, very low power was obtained between the Type-I extreme-value distribution and the two-parameter

Weibull distribution forη＝5%.
5. 6　Power Comparison for the A-D Statistic at Different Coefficients of Variation

　Figures 7 and 8 present the power results of the A-D statistic coupled with the symmetrical ranks and the MLEs at three or

four values ofη(η＝3%, 5%, 10%, and 28%) for sample sizes n=10 and 40. The following conclusions were obtained:
(1) The symmetrical ranks give a higher power than the MLEs in most cases.
(2) Although the power to test the normal samples against the two-parameter Weibull distribution decreases asηbecomes
larger, the power for other test cases increases asηbecomes larger.

(3) A very low power is obtained between the Type-I extreme-value distribution and the two-parameter Weibull distribution

for small coefficient of variation,η＝3%～10%. For largeη＝28%, however, a fairly high power between the two distribu-
tions is obtained.
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6.　DISCUSSION

6. 1　Validity of the Monte Carlo Simulation and Its Results

　The power results calculated by Littell et al. for the K-S, C-M, and A-D statistics coupled with the MLEs are presented in

Tables 2, 3, and 4 for sample sizes n=10, 25, and 40. These results are very close to the corresponding results in this study

although they were obtained by a different random number generator and ten sets of 5,000 iterations4). These facts confirm

not only the reproducibility of the power results by the MLEs, but also the validity of the Monte Carlo simulation in this study.

6. 2　Median, Mean, and Symmetrical Ranks in the Graphical Plotting Techniques

　For the K-S, C-M, and A-D statistics, the symmetrical ranks provided more powerful results than the median and mean

ranks. One explanation for this is that the C-M and A-D statistics1) include the concept of the symmetrical ranks, (i－0.5)/n,

which implies that the symmetrical ranks should be used for estimating the unknown population parameters for these statis-

tics. A similar concept is used for the K-S statistic9).

Figure 7　Power results of the Anderson-Darling goodness-

                  of-fit test as a function of the coefficient of varia-

tion, (sample size n＝10, significance level γ＝
0.05).

Figure 8　Power results of the Anderson-Darling goodness-

                  of-fit test as a function of the coefficient of varia-

tion, (sample size n＝40, significance level γ＝
0.05).
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6. 3　Comparison of Concept of the K-S, C-M, and A-D Statistics

　The basic concept of the K-S, C-M, and A-D statistics is to test the null hypothesis by measuring the“distance”(discrepancy)

between the non-parametric empirical distribution function (EDF) and the assumed cumulative distribution function (CDF)

with the estimated parameters. The K-S statistic, D^n, is used to measure the maximum“distance”between EDF and CDF,

which uses only the one largest discrepancy calculated from the data. The C-M statistic, W^ 2
n, is defined by the sum of the

square of the“distance”between EDF and CDF on the basis of all the discrepancies over the entire range of the data.

Moreover, the A-D statistic, A^2n, improved W^2
n by introducing a weight function with heavier weights in both tail regions2),3),5).

These weights are effective in producing more powerful results for goodness-of-fit tests.

6. 4　Difference Between the Type-I Extreme-Value Distribution and the Two-Parameter Weibull Distribution

　The power comparisons in this paper also revealed the difference between the Type-I extreme-value distribution and the

two-parameter Weibull distribution. That is, for small coefficient of variation,η＝3～10%, the difference between the two
distributions is rather small; for largeη＝28%, however, the difference is much larger. Therefore, the following inferences
are drawn:
(1) For the typical fatigue life data (withη=28%), there should be a significant difference when either the Type-I extreme-
value distribution or the two-parameter Weibull distribution is used for fitting the data.

(2) For the strength data of metallic and composite materials (withη＝3～10%), there should be a small difference when
either of the two distributions is used.

7.　CONCLUSIONS

　The main conclusions of this paper are summarized as follows:
(1) Among the three kinds of graphical plotting techniques, the symmetrical ranks give more powerful results than the

median and mean ranks for the K-S, C-M, and A-D statistics.
(2) Among the three graphical plotting techniques and the MLEs, the symmetrical ranks provide more powerful results than

the MLEs for the K-S and A-D statistics. However, for the C-M statistic, the MLEs provided more powerful results than the

three graphical plotting techniques.
(3) The A-D statistic coupled with the symmetrical ranks and the least-squares method provides the best power results

among the competitors in this study, and is recommended for practical use.
(4) It is difficult to separate the Type-I extreme-value distribution and the two-parameter Weibull distribution for small coeffi-

cient of variationη＝3～10%, but it is not difficult for largeη＝28%.
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