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　Detail of the Leith Type Third-order of Upwind Scheme and

Application to Viscous Incompressible Unbounded Flows for Re≥ 1000*

   Shigeki  HATAYAMA*1

  ABSTRACT
In this paper we give a detailed description of the Leith type three-order upwind finite difference

schemes indispensable to compute numerical solutions of incompressible unbounded flows for
Re≥ 1,000. To test the effectiveness of this scheme, we define three problems: the backward-facing
step, the blunt based body and the rectangular cylinder obstacle; give a detailed description of finite
difference approximations of initial conditions, boundary conditions and sharp corners for each problem;
and give a detailed description of finite difference approximations for the four investigated open
boundary conditions. The results of numerical experiments showed that this scheme is stable and
accurate as was expected, and also that there are large differences among the four open boundary
conditions in flows in the domain near the open boundary, when the problem becomes more complicated.

Keywords: Leith type 3d upwind scheme, open boundary condition, Sommerfeld radiation
condition, backward-facing step flow, blunt based body flow, rectangular cylinder
obstacle flow

概　　　　要

　安定でかつ精度の良いスキームの開発は、Re ≥ 1,000 に対する非圧縮・非有界流れの数値解を計算する上で

必須なことである。この目的のためには、Leith タイプの３次精度の upwind 有限差分スキームが大変有望で

ある。

　本稿では、このスキームに対する詳細な記述を与えている。また、この開発したスキームを数値実験するた

めに、Backward-facing step problem, Blunt based body problem 及び Rectangular cylinder obstacle

problem の３つの問題を定義し、各々の問題に対する初期条件、境界条件及び鋭い角の有限差分近似表現の詳

細な記述を与え、かつ研究に用いた４つの open boundary conditions に対する有限差分近似表現の詳細を与

える。

　実験結果は、このスキームが予想通りの安定かつ精度の良いものであることを示した。また、実験結果は問

題が複雑化するに従い、open boundary の近傍に於いて、４つの open boundary conditions の間で、流れ

に無視し得ない差異を生じることを示した。従って、この現象は詳しく検討されなければならないが、これは

本稿の目的ではなかった。詳細なる検討は稿を改めて発表する。

* Received 1 July 1998
*1 Computational Science Division

1.  INTRODUCTION

Development of a stable and accurate scheme is
indispensable to compute numerical solutions of
incompressible unbounded flows for Re≥ 1,000. For
this purpose, the Leith type three-order scheme is very

promising. This scheme was firstly proposed by
Leonard (1979) in case of the one-dimensional scheme
[1]. After that, Davis and Moore (1982) extended this
scheme from one-dimensional to two-dimensional [2].
However they do not at all give detail of the two-
dimensional Leith type third-order finite difference
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1
Re

1
Re

approximations.
In this paper we give detailed description for the

Leith type third-order upwind finite difference
schemes in Section 3. Moreover to test effectiveness
of this scheme, we define three problems of the
backward-facing step, the blunt based body and the
rectangular cylinder obstacle, give detailed description
of finite difference approximations of initial condi-
tions, boundary conditions and sharp corners for each
problem in Section 4, and give detailed description
of finite difference approximations for the four
investigated open boundary conditions in Section 5.
Then in Sections 6, 7 and 8 we discuss the results of
numerical experiments for each problem briefly.

2.  BASIC EQUATIONS

The two-dimensional viscous incompressible flow
is governed by the following equations: The vorticity
(ζ) transport equation in conservation form in case
that Re is the Reynolds number is given by

ζt + (uζ)x + (υζ)y =         (ζxx + ζyy), Γ =        , (1)

and the Poisson equation for the stream-function (ψ)
by

ψxx + ψyy = −ζ, (2)

where t is the time, x and y the axtial and normal
coordinates, respectively. The subscripts t, x and y
refer to partial derivatives with respect to t, x and y,
respectively. The x and y components of the velocity
(u, υ) are given by

ψy = u, ψx = −υ. (3)

3.  FINITE DIFFERENCE SCHEMES

We derive the Leith type third-order upwind finite
difference scheme for equation (1) on the assumption
for simplicity as follows:

(a) Γ and u are constants.
(b) The spatial finite-difference approximations to

be used contain fourth derivatives in their
leading truncation errors.

(c) The generally small fourth- and higher-spatial-
derivative terms are omitted.

(d) The fourth- and higher-spatial-derivative terms

being multiplied by the generally small Γ are
omitted.

(e) The generally small spatial-cross-derivatives
are omitted.

Then we can derive the following equations:

Here spatial discretization about grid poit (i, j) is
accomplished as follows: Firstly we fit the following
quadratic to ζ across grid points (i + 1,j), (i , j), (i−
1,j), (i , j+1) and (i , j−1),

ζ = c1 + c2ζ + c3ζ2 + c4η + c5η2 + c6ζη (8)

Then we obtain

We expand ζi,j  about time level n to obtain

where t = n∆t. Here we insert (1), (4) and (5) into (6)
to obtain

 =  =       −u −υ  + Γ  + Γ

= −u              −υ             + Γ              + Γ

   u2  + υ2 − 2uΓ − 2υΓ     , (4)
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  =            u2  +υ2  − 2uΓ  − 2υΓ

= u2                + υ2

= − u3   − υ3        . (5)
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i,j

n
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c1 = ζ i,j , c2 =
2∆x 

(ζ i+1,j − ζ i−1,j),

c3 =
2∆x2

 (ζ i+1,j − 2ζ i,j + ζ i−1,j), (9)
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where

cj−1/2 = , γ
x = , γ

y = , (25)∆tυ i,j −1/2

∆y
Γ∆t
∆x2

Γ∆t
∆y2

ci+1/2 = , ci−1/2 = ,

cj+1/2 = , (24)

∆tui+1/2,j
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∆tυ i,j+1/2

∆y

ui+1/2,j = (ui+1,j + ui,j),

ui−1/2,j = (ui ,j + ui−1,j), (26)

υ i,j+1/2 = (υ i,j +1 + υ i,j),

υ i,j −1/2 = (υ i ,j + υ i,j −1), (27)
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if ui+1/2,j ≥ 0,

WR = − ci+1/2 (ζ i+1,j + ζ i,j)

+ ci+1/2 − γ
x − c *

(ζ i+1,j − 2ζ i,j + ζ i−1,j), (28)
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WR = − ci+1/2 (ζ i+1,j + ζ i,j)
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Next the finite diference scheme for (2) are given
by

Finally the finite diference scheme for (3) are given
by

1
6

if υ i ,j+1/2 ≥ 0,
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ψi,0 = 0, 0 ≤ i ≤ IN, (55)
ψi,JH = ψ0,JH, 0 ≤ i ≤ 2JH, (56)
ψi,2JH = ψ0,JH, 0 ≤ i ≤ 2JH, (57)
ψ2JH,j = ψ0,JH, JH ≤ j ≤ 2JH, (58)
ψi,3JH = ψ0,3JH, 0 ≤ i ≤ IN. (59)

Initial conditions for the rectangular cylinder
obstacle problem are from (3) and (38) as follows:

ψ0,0 = 0, (60)
ψ0,1 = 0.945h, (61)
ψ0,j = h + ψ0,j−1, 0 ≤ j ≤ 5JH − 1, (62)
ψ0,5JH = 0.945h + ψ0,5JH−1, (63)
ψi,0 = 0, 0 ≤ i ≤ IN, (64)
ψ8JH,j = ψ0,2.5JH, 2JH ≤ j ≤ 3JH, (65)
ψ9JH,j = ψ0,2.5JH, 2JH ≤ j ≤ 3JH, (66)
ψi,2JH = ψ0,2.5JH, 8JH ≤ i ≤ 9JH, (67)
ψi,3JH = ψ0,2.5JH, 8JH ≤ i ≤ 9JH, (68)
ψi,5JH = ψ0,5JH, 0 ≤ i ≤ IH. (69)

Boundary conditions
Since all the wall boundaries (WB) are no-slip, the

following equations are obtained:

Also one phoney grid point becomes necessarily
outside the boundaries (B). We extrapolate the values
of these points by the method similar to equation (8)
to obtain

ζi, B−1 = 3ζi,B − 3ζi,B+1 + ζi,B+2, (74)

ζi, B+1 = 3ζi,B − 3ζi,B−1 + ζi,B−2, (75)
and

ζ
i,WB

= −
h2

 (ψ
i,WB+1

− ψ
i,WB

), (70)

or

2n+1 n n

ζ
i,WB

= −
h2

 (ψ
i,WB−1

− ψ
i,WB

), (71)

and

2n+1 n n

ζ
WB,j

= −
h2

 (ψ
WB+1,j

− ψ
WB,j

), (72)

or

2n+1 n n

ζ
WB,j

= −
h2

 (ψ
WB−1,j

− ψ
WB,j

), (73)2n+1 n n

n+1 n n n

n+1 n n n

4. INITIAL CONDITIONS, BOUNDARY
CONDITIONS AND SHARP CORNERS

Figure 1 shows geometry definition of three test
problems. In (A), B1, B2, B3 and B5 are the no-slip
solid walls, B4 the inlet and B6 an open boundary.
Coordinates of points 1 and 2 are (2JH, JH) and (IN,
2JH), respectly. In (B), B1, B2, B3, B4 and B6 are
the no-slip solid walls, B5 the inlet and B7 an open
boundary. Coordinates of points 1, 2 and 3 are (0, JH),
(2JH, 2JH) and (IN, 3JH), respectly. In (C), B1, B2,
B3, B4, B6 and B7 are the no-slip solid walls, B5 the
inlet and B8 an open boundary. Coordinates of points
1, 2 and 3 are (8JH, 2JH), (9JH, 3JH) and (IN, 5JH),
respectly. We note that truncation occurs at x = IN for
unbounded flow. At the inlet, a uniform inlet u-
velocity profile

u (y) = 1 (38)

is chosen.

Initial conditions
Initial conditions for the backward-facing step

problem are from (3) and (38) as follows:

ψ0,JH = 0, (39)
ψ0,JH+1 = 0.945h, (40)
ψ0,j = h + ψ0,j−1, JH + 2 ≤ j ≤ 2JH − 1, (41)
ψ0,JH = 0.945h + ψ0,2JH−1, (42)
ψi,JH = 0, 0 ≤ i ≤ 2JH, (43)
ψ2JH,j = 0, 0 ≤ j ≤ JH, (44)
ψi,0 = 0, 2JH ≤ i ≤ IN, (45)
ψi,2JH = ψ0,2JH, 0 ≤ i ≤ IN, (46)

where h = 1/JH, and the value of 0.945 decided by
numerical experiments.

Initial conditions for the blunt based body problem
are from (3) and (38) as follows:

ψ0,0 = 0, (47)
ψ0,1 = 0.945h, (48)
ψ0,j = h + ψ0,j−1, 2 ≤ j ≤ JH − 1, (49)
ψ0,JH = 0.945h + ψ0,JH−1, (50)
ψ0,2JH = ψ0,JH, (51)
ψ0,2JH+1 = 0.945h + ψ0,2JH, (52)
ψ0,j = h + ψ0,j−1, 2JH + 2 ≤ j ≤ 3JH − 1, (53)
ψ0,3JH = 0.945h + ψ0,3JH−1, (54)
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in case that at the open boundary the inertia terms are
dominant.

Hence

ζ
OB,j

 = ζ
OB,j

− ∆t ((uζ)
OB,j

− (uζ)
OB−1,j

)

−
2∆y

 ((uζ)
OB,j+1

 − (uζ)
OB,j−1

),

for u
OB,j

 ≥ 0, (87)

ζ
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 = ζ
OB,j

− ∆t ((uζ)
OB+1,j

− (uζ)
OB,j)

−
2∆y

 ((uζ)
OB,j+1

 − (uζ)
OB,j−1

),

for u
OB,j

 ≤ 0, (88)

υ
OB,j

 = υ
OB,j

 − ∆tu
OB,j

 ζ
OB,j

− 
4∆x

 ((u
OB,j+1

)2 − (u
OB,j−1

)2 − (υ
OB,j−1

)2), (89)

ψ
OB,j

 = ψ
OB−1,j

 − ∆xυ
OB,j

. (90)

OBC: no.3
The following open boundary condition is the

Sommerfeld radiation condition firstly used by
Orlanski (1976) [5]:

∂φ + c ∂φ = 0 at OB, (91)

where φ is any variable, and  c is the phase velocity of
the waves. Orlanski proposed the following method
which numerically evaluates the phase speed at the
closet interior points every time: Using a leapfrog

ζB−1,j = 3ζB,j − 3ζB+1,j − ζB+2,j, (76)

or

ζB+1,j = 3ζB,j − 3ζB−1,j − ζB−2,j, (77)

Also at the inlet boundary the following equation
is necessary:

ζn+1 = − 
h2

 (ψ2,j + ψ0,j − 2ψ1,j). (78)

Sharp corners
Sharp corners (SC) is the point (2JH, JH) in (A) of

Figure 1, the two points (2JH, JH) and (2JH, 2JH) in
(B), and the four points (8JH, 2JH), (8JH, 3JH), (9JH,
2JH) and (9JH, 3JH) in (C). We assume the values of
ζ at the sharp corners to take two-values. Then we
obtain the following equations:

For the upstream walls

ζ
SC,SC

 = 
h2

  ψ
SC,SC+1

, (79)

or

ζ
SC,SC

 = 
h2

  ψ
SC,SC−1

, (80)

and for the downstream walls

ζ
SC,SC

 = 
h2

  ψ
SC+1,SC

, (81)

or

ζ
SC,SC

 = 
h2

  ψ
SC−1,SC

, (82)

5. OPEN BOUNDARY CONDITIONS
FOR UNBOUNDED FLOWS

OBC: no. 1
The following open boundary condition was firstly

used by Thoman and Szewczyk (1966) [3]:

∂υ |
OB

= − ∂2ψ |
OB

= 0, ∂ζ |
OB

= 0. (83)

Hence

ψ
OB,j 

= 2ψ
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 − ψ
OB−2,j

, (84)

n
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n

∆t

n n n

n n n

n

∂t ∂x

n+1 n

      = −          −          ,

           = −υ,        = − u      − υ

= − υζ +

at OB, (86)

∂ζ
∂t

∂(uζ)
∂x

∂(υζ)
∂y

∂ψ
∂x

∂υ
∂t

∂υ
∂x

∂υ
∂y

1  ∂ (u2 + υ2)
2 ∂y

ζ
OB,j 

= ζ
OB−1,j

 . (85)

OBC: no. 2
The following open boundary condition was

proposed by Mehta and Lavan (1975) [4]:

n
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= − (φ  + φ − 2φ ).

(92)

Hence the phase speed is numerically evaluated at the
closet interior points from the above equation as
follows:

φ − φ
       2∆t

n+1
OB

n−1
OB c

2∆x
n+1
OB

n−1
OB

n
OB−1

c =  −                                            .(93)
∆x
∆t

φ − φn
OB−1

n−2
OB−1

φ + φ − 2φn
OB−1

n−2
OB−1

n−1
OB−2

From the above two equations, we can also obtain the
boundary conditions {φ n+1} as follows:OB

φ =    φ +           φ .

(94)

n+1
OB

n−1
OB

1 − c∆t/∆x
1 + c∆t/∆x

2c∆t/∆x
1 + c∆t/∆x

n
OB−1

finite-difference representation, we have

OBC: no. 4
The following open boundary condition is the

Sommerfeld radiation condition used by Bottaro
(1990) and Kobayashi, Pereira and Sousa (1993) [6]:

∂φ + c ∂φ = 0 at OB, (95)

where φ is any variable, and c is the phase velocity of
the waves. Bottaro took the average streamwise speed
in the channel as c, and Kobayashi et al. the mean
channel velocity as c. The author proposes to take the
uniform inlet velocity as c. Therefore, c = 1.

Hence

φ
OB,j

 = φ
OB,j

 − ∆t (φ
OB,j

 − φ
OB-1,j

). (96)

Under the above preparation, we computed the
numerical solution of flows to the three test problems
for unbounded flows to obtain the results shown in
the following Sections. As seen from the results, the
Leith type third-order upwind scheme is stable and
accurate. Also the results showed that there is severe
difference among the above four open boundary
conditions in flows in the domain near the open
boundary,  when the problem becomes more
complicate. By the way all the computations
conducted under the condition of JH = 40, uniform
grid and hence ∆x = ∆y = h = 1/JH.

∂t ∂x

n+1

∆x
n n n

6. RESULTS ON THE BACKWARD-FACING
STEP FLOWS

In this problem, we show results for Re = 1,000
and IN = 800. Figure 2 shows aspects of flows
according to advance of every simulation time t =  5
for OBC: no. 1, Figure 3 for OBC: no. 2, Figure 4 for
OBC: no. 3, and Figure 5 for OBC: no 4. (In Figure 2,
we use symbols of DTHP and DTHN. DTHP expresses
the pitch drawn on streamlines for ψ ≤ 0, and DTHN
expresses the pitch drawn on streamlines for ψ ≤ 0.
Also ω in this Figure is equal to ζ. Hence we use
symbols in similar mean for this ω.) Also Figure 6
compares aspects of flows at t = 30, 35 and 40 among
the four OBCs. In (A) of Figure 6, we can see that
variation of flow does not yet arrive at the open
boundary at t = 30. Meanwhile in (B), we can find
that variation of flow already arrives at the open
boundary at t = 35, and hence it is the same as well as
at t = 40, as shown in (C). As seen from (B) and (C),
there is severe difference among the four OBCs in
flows in the domain near the open boundary. Hence
we cannot at all conclude which of four OBCs gives
the most excellent solution, only from these Figures.
(We here note that computation of flow by OBC: no.
2 was broken off due to overflow in computation of ζ
at t > 35.1.) Hence it is necessary to investigate in
detail which of the four OBCs is the most excellent,
but this is not the purpose in this paper. Detailed
investigation will be given in the other paper.

7. RESULTS ON THE BLUNT BASED
BODY FLOWS

This problem is more complicated than the
previous one, and hence OBC: no. 2 could not bear
practically for this problem due to this complexity.
We discuss about OBCs for this problem similarly to
the previous problem. We show here results for Re =
1,000 and IN = 800. Figure 7 shows aspects of flows
according to advance of every simulation time t = 5
for OBC: no. 1, Figure 8 for OBC: no. 3, and Figure 9
for OBC: no. 4. Also Figure 10 compares aspects of
flows at t = 30, 35 and 40 among three OBCs. In (A)
of Figure 10, we can see that variation of flow does
not yet arrive at the open boundary at t = 30.
Meanwhile in (B), we can find that variation of flow
already arrives at the open boundary at t = 35, and
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hence it is the same as well at t = 40, as shown in (C).
As seen from (B) and (C), there is severe difference
among three OBCs in flows in the domain near the
open boundary. Hence we cannot at all conclude which
of the three OBCs gives the most excellent solution,
only from these Figures. Hence it is necessary to
investigate in detail which of the three OBCs is the
most excellent, but this is not the purpose in this paper.
Detailed investigation will be given in the other paper.

8. RESULTS ON THE RECTANGULAR
CYLINDER OBSTACLE FLOWS

This problem is the most complicated among the
three problem, and hence even OBC: no. 1 could not
bear practically for this problem due to this complexity.
We discuss about OBCs for this problem similarly to
the previous problem. We show here results for Re =
1,000 and IN = 1400. Figure 11 shows aspects of flows
according to advance of every simulation time t = 5
for OBC: no. 3, and Figure 12 for OBC: no. 4. Also
Figure 13 compares aspects of flows at t = 45, 55 and
65 between two OBCs. In (A) of Figure 13, we can
see that variation of flow does not yet arrive at the
open boundary at t = 45. Meanwhile in (B), we can
find that variation of flow already arrives at the open
boundary at t = 55, and hence it is the same as well at
t = 65, as shown in (C). As seen from (B) and (C),
there is severe difference between the two OBCs in
flows in the domain near the open boundary. Hence
we cannot at all conclude which of the two OBCs gives
the more excellent solution, only from these Figures.
Hence it is necessary to investigate in detail which of
the two OBCs is the more excellent, but this is not the
purpose in this paper. Detailed investigation will be
given in the other paper. By the way we note that initial
aspects of flows in this problem are like shown in
Figure 14.

9.  CONCLUSION

In this paper we gave detailed description for the
Leith type third-order upwind finite difference
schemes. Development of such a stable and accurate
schemes is indispensable to compute numerical
solutions of incompressible unbounded flows for Re
≥ 1,000. To test effectiveness of this scheme, we
defined three problems, gave detailed description of
finite difference approximations of initial conditions,

boundary conditions and sharp corners for each
problem, and gave detailed description of finite
difference approximations for the four investigated
open boundary conditions.

The results showed that this scheme is stable and
accurate as was expected. Also the results showed that
there is severe difference among the four open
boundary conditions in flows in the domain near the
open boundary, when the problem becomes more
complicated. Hence it is necessary to investigate in
detail which of the four open boundary conditions is
the most excellent, but this is not the purpose in this
paper. Detailed investigation will be given in the other
paper.
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Fig. 1 Geometry definition of three test problems
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Fig. 2 Difference of flows for open boundary: IN = 800 (Re = 1,000, OBC: no. 1)
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Fig. 3 Difference of flows for open boundary: IN = 800 (Re = 1,000, OBC: no. 2)
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Fig. 4 Difference of flows for open boundary: IN = 800 (Re = 1,000, OBC: no. 3)
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Fig. 5 Difference of flows for open boundary: IN = 800 (Re = 1,000, OBC: no. 4)
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Fig. 6 Difference of flows among four OBCs (Re = 1,000, IN = 800)
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Fig. 7 Difference of flows for open boundary: IN = 800 (Re = 1,000, OBC: no. 1)
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Fig. 8 Difference of flows for open boundary: IN = 800 (Re = 1,000, OBC: no. 3)
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Fig. 9 Difference of flows for open boundary: IN = 800 (Re = 1,000, OBC: no. 4)
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Fig. 10 Difference of flows among three OBCs (Re = 1,000, IN = 800)
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Fig. 11 Difference of flows for open boundary: IN = 1400 (Re = 1,000, OBC: no. 3)
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Fig. 12 Difference of flows for open boundary: IN = 1400 (Re = 1,000, OBC: no. 4)
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Fig. 13 Difference of flows between two OBCs (Re = 1,000, IN = 1400)
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Fig. 14 Initial aspects of flows for open boundary: IN = 1400 (Re = 1,000, OBC: no. 4)
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