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  ABSTRACT
Four open boundary conditions for incompressible unbounded flows are evaluated in the

framework of the Leith type third-order upwind scheme (QUICKEST scheme), and the effectiveness
of each is compared by two means: the difference of flows among open boundary conditions, and
between short and long open boundaries. Three test problems used for the open boundary condition
evaluation are the backward-facing step flow, the blunt based body flow and the rectangular cylinder
obstacle flow in a channel. The investigated open boundary conditions are (1) the one first used by
Thoman and Szewczyk (1966), (2) the one proposed by Mehta and Lavan (1975), (3) the Sommerfeld
radiation condition first used by Orlanski (1976), and (4) the Sommerfeld radiation condition used by
Bottaro (1990) and Kobayashi et al. (1993). In (3), Orlanski proposed a method which numerically
evaluates the phase speed at the closest interior points every time. In (4), Bottaro and Kobayashi et al.
proposed taking the mean channel velocity as the phase speed. The author proposes taking the uniform
inlet velocity as the phase speed. As the conclusion, we show that (4) is the optimum open boundary
condition of the four conditions. The effects of several values of constant phase speed are shown.

Keywords: Leith type 3o upwind scheme, open boundary condition, Sommerfeld radiation
condition, backward-facing step flow, blunt based body flow, rectangular cylinder
obstacle flow

概　　　　要

　本欄では、非圧縮・非有界流れのための４つの open boundary conditions が Leith type third-order upwind

scheme を用いて評価され、その各々の有効性が open boundary conditions の間の流れの差異と長短の２つ

の open boundary の間の流れの差異の２つの手段によって比較検討される。open boundary condition の

評価のために使用された３つの実験問題は流路管内の backward-facing step flow, blunt based body flow

及び rectangular cylinder obstacle flow である。検討された open boundary condition は（1）Thoman と

Szeweczyk（1966）によって最初に用いられたものと、（2）Mehta と Lavan（1975）によって提案されたもの（3）

Orlanski（1976）によって最初に用いられた Sommerfeld radiation condition 及び（4）Bottaro （1990）と

Kobayashi ら（1993）によって用いられた Sommerfeld radiation condition とである。（3）に於いて、Orlanski

は各シュミレーション時間毎に、open boundary の１つ左の最内点において位相速度を数値的に評価する方法

を提案した。一方（4）において、Bottaro と Kobayashi らは位相速度として平均流路内速度をとることを提案

した。これに対して、著者は本稿において、位相速度として一様インレット速度をとることを提案している。

各種の数値実験の全結果は著者の提案した（4）が最も優れた open boundary condition であることを示したこ

とを付言しておく。
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1.  INTRODUCTION

In many computational problems, we are faced
with infinite domains, which for computational
reasons must be made finite. One possibility is to
introduce an artificial boundary in order to reduce the
infinite computational domain to a finite one. Then,
the introduction of the artificial boundary makes it
necessary to formulate appropriate artificial boundary
conditions, the open boundary conditions (OBCs).
However, mathematics does not tell us how to select
the OBCs. While we are not able to state the best
OBCs, we can list some qualities that they would
display: They should permit the flow to exit the
domain gracefully and passively, and not have any
effect on the behaviour of the solution in the domain
near the open boundary, especially far from it. They
should be transparent, and lead to the same solution
inside the common domain no matter where truncation
occurred [1].

Historically, Thoman and Szewczyk (1966) firstly
developed less restrictive OBCs [2]. But use of their
zero-gradient OBCs causes premature smoothing of
the wake. For the sake of this phenomenon, by Lugt
and Haussling (1974), and Metha and Lavan (1975),
the computation of local velocities at the exit was
selected as the best method of allowing vortices to
leave the domain with minimal interference [3, 4].
Afterwards, studies for the OBCs have been done by
many researcheres [1, 5-7]. The recent trend of this
study seems to separate two branches. One is the
course of studying ‘no boundary condition at outflow’
[8-11]. This has been developed for the finite element
method, but cannot apply to the finite difference
method yet. The other is the course of studying the
Sommerfeld radiation condition [12-16]. This seems
to be the most promising as the OBCs at the present
time.

  In this paper, we compute the numerical solu-
tions of the backward-facing step flows, the blunt
based body flows and the rectangular cylinder obstacle
flows in the framework of the Leith type third order
upwind scheme. Four OBCs for incompressible
unbounded flows are applyed to each numerical
solution, its effectiveness is compared with each other,
and whether its OBC can bear practically or not is
confirmed. As the conclusion, we show that the

Sommerfeld radiation condition is the most excellent
OBC within four OBCs, when we take the uniform
inlet velocity as the phase speed.

2.  NUMERICAL METHOD

Basic equations
The two-dimensional viscous incompressible flow

is governed by the following equations : The vorticity
(ζ) transport equation in conservation form in case that
Re is the Reynolds number is given by

ζt + (uζ)x + (vζ)y =         (ζxx + ζyy), (1)

and the Poisson equation for the stream-function (ψ) by

ψxx + ψyy = −ζ, (2)

where t is the time, x and y the axtial and normal
coordinates, respectively. The subscripts t, x and y
refer to partial derivatives with respect to t, x and y,
respectively. The x and y components of the velocity
(u, v) are given by

ψy = u, ψx = −v. (3)

Finite difference schemes
The Leith type third order upwind finite difference

schemes for equation (1) are given as follows [17]:
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Boundary conditions
Figure 1 shows geometry definition of three test

problems. In (A), B1, B2, B3 and B5 are the no-slipe
solid walls, B4 the inlet and B6 an open boundary.
Coordinates of points 1 and 2 are (2JH, JH) and (IN,
2JH), respectly. We take IN = 14JH as the short open
boundary and IN = 20JH as the long open boundary.
In (B), B1, B2, B3, B4 and B6 are the no-slipe solid
walls, B5 the inlet and B7 an open boundary.
Coordinates of points 1, 2 and 3 are (0, JH), (2JH,
2JH) and (IN, 3JH), respectly. We take IN = 14JH as
the short open boundary and IN = 20JH as the long
open boundary. In (C), B1, B2, B3, B4, B6 and B7
are the no-slipe solid walls, B5 the inlet and B8 an
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Hence the phase speed is numerically evaluated at the
closet interior points from the above equation as
follows:

From the above two equations, we can also obtain the
boundary conditions {φ     }  as follows:

where φ is any variable, and c is the phase velocity of
the waves. Bottaro took the average streamwise speed
in the channel as c, and Kobayashi et al. the mean
channel velocity as c. The author proposes to take the
uniform inlet velocity as c. Therefore, c = 1.

4. RESULTS ON THE BACKWARD-FACING

STEP FLOWS

In this problem, we show results for Re = 1,000.
Firstly we compare difference of flows among four
OBCs in case of IN = 20JH = 800. Figure 2 shows
three aspects of flows according to advance of the
simulation time t. In (A), we can see that variation of
flow does not yet arrive at the open boundary at t = 30.
Meanwhile in (B), we can find that variation of flow
already arrives at the open boundary at t = 35, and
hence it is the same as well at t = 40, as showed in
(C). As seen from (B) and (C), there is severe differ-
ence among four OBCs in flows in the domain near
the open boundary. Hence we cannot at all conclude
which of four OBCs gives the most excellent solution,
only from Figure 2. While it is surely true in the
domain near the open boundary, we can also show
complete coincidence in flows among four OBCs in
the domain within x = 14 JH = 560. That is, Figure 3
shows that there is no difference of flows among four
OBCs, which is drawed in piles the stream function
profile and the vorticity profile of flow by each OBC

c =  −                                       . (22)
∆x
∆t

φ − φn
OB−1

n−2
OB−1

φ + φ − 2φn
OB−1

n−2
OB−1

n−1
OB−2

∂φ
∂t

 + c = 0 at OB, (24)
∂φ
∂x

∂u
∂x

∂2ψ
∂x2

∂ζ
∂x

in case that at the open boundary the inertia terms are
dominant.

OBC: no. 3
The following open boundary condition is the

Sommerfeld radiation condition firstly used by
Orlanski (1976):

 + c = 0 at OB, (20)

where φ is any variable, and c is the phase velocity of
the waves. Orlanski proposed the following method
which numerically evaluates the phase speed at the
closet interior points every time: Using a leapfrog
finite-difference representation, we have

= − (φ  + φ − 2φ ).
(21)

φ − φ
       2∆t

n+1
OB

n−1
OB c

2∆x
n+1
OB

n−1
OB

n
OB−1

open boundary. Coordinates of points 1, 2 and 3 are
(8JH, 2JH), (9JH, 3JH) and (IN, 5JH), respectly. We
take IN = 30JH as the short open boundary and
IN = 35JH as the long open boundary. In all the
numerical computations, grid size is decided based
on JH = 40. At the inlet, a uniform inlet u-velocity
profile

u (y) = 1 (17)

is chosen. We note that truncation occurs at x = IN.

3.  TESTED OPEN BOUNDARY CONDITIONS

OBC: no.1
The following open boundary condition was firstly

used by Thoman and Szewczyk (1966):

      |
OB

 = −         |
OB

 = 0,   |
OB

 = 0. (18)

OBC: no. 2
  The following open boundary condition was proposed
by Mehta and Lavan (1975):

      = −          −          ,       = − v,

= − u      − υ       = − vζ +

at OB, (19)

∂ζ
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∂(uζ)
∂x

∂(vζ)
∂y

∂ψ
∂x

∂v
∂t

∂v
∂x

∂v
∂y

1  ∂ (u2 + v2)
2 ∂y

∂φ
∂t

∂φ
∂t

n+1
OB

φ =    φ +          φ .

(23)

n+1
OB

n−1
OB

1 − c∆t/∆x
1 + c∆t/∆x

2c∆t/∆x
1 + c∆t/∆x

n
OB−1

OBC: no. 4
The following open boundary condition is the

Sommerfeld radiation condition used by Bottaro
(1990) and Kobayashi, Pereira and Sousa (1993):
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on several vertical internal points within x = 560 in
case of  IN = 800. This fact promotes us next step.
(We here note that computation of flow by OBC: no.
2 was breaked off due to occure overflow in
computation of ζ at t > 35.1. Hence [3] of Figure 3
does not contain data by OBC: no. 2.)

Secondly we compare difference of flows between
short and long open boundaries by each OBC. Figure
4 (A) and (B) show its aspects of flows by OBC: no. 1,
and (C) its difference of flows between IN = 560 and
IN = 800, which is drawed similarly to Figure 3. Here
we strongly note that the profile for IN = 560 is data
at the open boundary, and on the other hand the profile
for IN = 800 is data on the vertical internal points.
Clearly from (C), there is severe difference of flows
by OBC: no. 1 in the domain near the open boundary
of IN = 560. Hence OBC: no. 1 cannot at all say as a
good OBC. (In (A) and (B) of Figure 4, we use
symbols of DTHP and DTHN. DTHP expresses the
pitch drawed on streanlines for ψ ≥ 0, and DTHN
expresses the pitch drawed on streanlines for ψ ≤ 0.)
Next we examine the case of OBC: no. 2. Figure 5
shows its difference of flows between short and long
open boundaries. As seen from (C), OBC: no. 2 shows
comparatively good coincedence of flows in the
domain near the open boundary of IN = 560.
Regretably this OBC cannot bear practically due to
occure overflow at t > 35.1. Next we look into the case
of OBC: no. 3. Figure 6 shows its difference of flows
between short and long open boundaries. Clearly from
(C), there is severe difference of flows by OBC: no. 3,
especially at the open boundary of IN = 560. Hence
OBC: no. 3 is better than OBC: no. 1, but we cannot
yet say that it is a good OBC.

Finally we examine the case of OBC: no. 4. Figure
7 shows its difference of flows between short and long
open boundaries. As seen from (C), OBC: no. 4 shows
tolerable good coincedence of flows even at the open
boundary of IN = 560. Hence we can conclude that
OBC: no. 4 is the best OBC among four OBCs, and is
the excellent OBC.

5. RESULTS ON THE BLUNT BASED

BODY FLOWS

This problem is more complicated than the previous
one, and hence OBC: no. 2 could not bear practically
for this problem due to this complexity. We discuss

about OBCs for this problem similarly to the previous
problem. We show here results for Re = 1,000. Firstly
we compare difference of flows among three OBCs
in case of IN = 20JH = 800. Figure 8 shows three
aspects of f lows according to advance of the
simulation time t. In (A), we can see that variation of
flow does not yet arrive at the open boundary at t = 30.
Meanwhile in (B), we can find that variation of flow
already arrives at the open boundary at t = 35, and
hence it is the same as well at t = 40, as showed in
(C). As seen from (B) and (C), there is severe differ-
ence among three OBCs in flows in the domain near
the open boundary. Hence we cannot at all conclude
which of three OBCs gives the most excellent solution,
only from Figure 8. While it is surely true in the
domain near the open boundary, we can also show
complete coincidence in flows among three OBCs in
the domain within x = 14JH = 560. That is, Figure 9
shows that there is no difference of flows among three
OBCs, which is drawed in piles the stream function-
profile and the vorticity-profile of flow by each OBC
on several vertical internal points within x = 560 in
case of IN = 800. This fact promotes us next step.

Secondly we compare difference of flows between
short and long open boundaries by each OBC. Figure
10 (A) and (B) show its aspects of flows by OBC:
no. 1, and (C) its difference of flows between IN = 560
and IN = 800, which is drawed similarly to Figure 9.
Here we strongly note that the profile for IN = 560 is
data at the open boundary, and on the other hand the
profile for IN = 800 is data on the vertical internal
points. Clearly from (C), there is severe difference of
flows by OBC: no. 1 in the domain near the open
boundary of IN = 560. Hence OBC: no. 1 cannot at
all say as a good OBC. Next we look into the case of
OBC: no. 3. Figure 11 shows its difference of flows
between short and long open boundaries. Clearly from
(C), there is severe difference of flows by OBC: no. 3,
especially at the open boundary of IN = 560. Hence
OBC: no. 3 is better than OBC: no. 1, but we cannot
yet say that it is a good OBC.

Finally we examine the case of OBC: no. 4. Figure
12 shows its difference of flows between short and
long open boundaries. As seen from (C), OBC: no. 4
shows tolerable coincedence of flows even at the open
boundary of IN = 560. Hence we can conclude that
OBC: no. 4 is the best OBC among three OBCs, and
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is the comparatively good OBC for this problem.

6. RESULTS ON THE RECTANGULAR

CYLINDER OBSTACLE FLOWS

This problem is the most complicated among three
problem, and hence even OBC: no. 1 could not bear
practically for this problem due to this complexity.
We discuss about OBCs for this problem similarly to
the previous problem. We show here results for
Re = 1,000. Firstly we compare difference of flows
between two OBCs in case of IN = 35 JH = 1400.
Figure 13 shows three aspects of flows according to
advance of the simulation time t. In (A), we can see
that variation of flow does not yet arrive at the open
boundary at t = 45. Meanwhile in (B), we can find
that variation of flow already arrives at the open
boundary at t = 55, and hence it is the same as well at
t = 65, as showed in (C). As seen from (B) and (C),
there is severe difference between two OBCs in flows
in the domain near the open boundary. Hence we
cannot at all conclude which of two OBCs gives the
most excellent solution, only from Figure 13. While
it is surely true in the domain near the open boundary,
we can also show comparatively good coincidence in
flows between two OBCs in the domain within x =
30 JH = 1200. That is, Figure 14 shows that there is a
little small difference of flows between two OBCs,
which is drawed in piles the streamfunction profile
and the vorticity profile of flow by each OBC on
several vertical internal points within x = 1200 in case
of IN =1400. This fact promotes us next step.

Secondly we compare difference of flows between
short and long open boundaries by each OBC. Figure
15 (A) and (B) show its aspects of flows by OBC:
no. 3, and (C) its difference of flows between IN
= 1200 and IN = 1400, which is drawed similarly to
Figure 14. Here we strongly note that the profile for
IN = 1200 is data at the open boundary, and on the
other hand the profile for IN = 1400 is data on the
vertical internal points. Clearly from (C), there is
severe difference of flows by OBC: no. 3, especially
at the open boundary of IN = 1200. Hence we cannot
yet say that OBC: no.3 is a good OBC.

Finally we examine the case of OBC: no. 4. Figure
16 shows its difference of flows between short and
long open boundaries. As seen from (C), OBC: no. 4
shows considerably smaller difference of flows than

OBC: no. 3 at the open boundary of IN = 1200. Hence
we can conclude that OBC: no. 4 is better than OBC:
no. 3, and bears more well practically for this problem.

7. DISCUSSION

On the backward-facing step flows
(1) Figure 17 shows difference of flows between short

and long open boundaries computed under the
condition of Re = 800 and OBC: no. 1. We com-
puted this flows in the framework of the first order
upwind scheme. As seen from (C), OBC: no. 1 can
bear well practically for such the problem as
Re≤ 800.

(2) We examined the case of IN = 400 where
truncation occurs. This value of IN is fairly smaller
than the case of Figure 7. We show its result in
Figure 18. As seen from this, there is a little
difference of flows, especially at the open
boundary of IN = 400. Hence we had better not
shorten location of truncation to IN = 400.

On the blunt based body flows
(1) As we compare Figure 7 with Figure 12, we clear-

ly see that the complete coincidence of flows
between short and long open boundaries as Figure
7 cannot obtain when the problem becomes more
complicated.

(2) This fact suggests that OBC: no. 4 no longer is
the complete OBC for this problem, although it is
the excellent OBC for the backward-facing step
problem. Hence we must be studying to search
for a better OBC.

On the rectangular cylinder obstacle flows
(1) Firstly we note that numerical solution of flows

for IN ≤ 1000 cannot give the right solutions even
by OBC: no. 4. Because reflection occurs at the
open boundary, its effect is changed the behaviour
of the solution in the domain far from the open
boundary, and at last its accumulation leads the
wrong solution.

(2) In this paper, the author proposes to take c = 1 as
the phase speed of the Sommerfeld radiation
condition. Its result is given in Figure 16. Figure
19 and 20 show difference of flows between short
and long open boundaries by OBC: no. 4 in case
of c = 0.7 and c = 1.3, respectively. When we
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compare each (C) of Figure 19, 16 and 20, c = 1.3
seems to be the best among three phase speeds.

On the open boundary conditions
(1) Such the OBCs as OBC: no. 1 and 2 force to

prescribe any condition at the open boundary.
Hence they seem to oppose some qualities that an
ideal OBC would display. As its poofs, flows by
these OBCs are necessarily influenced heavily
whenever variation of flow arrives at the open
boundary, as seen in Figure 4, 5 and 10.

(2) Such the OBCs as OBC: no. 3 and 4 (that is, the
Sommerfeld radiation condition) do not force to
prescribe any condition at the open boundary, but
seem to aid to permit the flow to exit the domain
gracefully and passively. Such phenomenon is one
of qualities that an ideal OBC would display

(3) The Sommerfled radiation condition is used by
some researchers, but the method of deciding its
phase speed is different by each researcher.
However there is not a firm ground why the phase
speed would be decided by their methods. Then
the author proposes to take a constant as the phase
speed, despite of being not able to state a firm
ground.

(4) Clearly from comparison of Figure 6 and 7, Figure
11 and 12, and Figure 15 and 16, OBC: no. 4 is
more excellent than OBC: no. 3 for all the
problems. Moreover clearly from comparison of
each (C) of Figure 19, 16 and 20, the case of c =
1.3 seems to show the best result.

(5) Hence we will say that to take a constant as the
phase speed is also better than to take a mean
channel velocity every time as the phase speed.
Because a mean value necessarily becomes to
c < 1. From its reason, we can say that a larger
value of c is profitable to premit the flow to exit
the domain gracefully and passively.

8.  CONCLUSION

In this paper we studied about the open boundary
conditions for incompressible unbounded flows,
reported numerical solutions of flows by four OBCs
for the backward-facing step problem, the blunt based
body problem and the rectangular cylinder obstacle
problem, and evaluated these results by means of
difference of flows among four OBCs and between

short and long open boundaries.
As the conclusion in all the cases, we showed that

the OBC proposed by the author is the most excellent
among the investigated OBCs. It is a very simple
method which uses the Sommerfeld radiation
condition as the OBC, and take a constant as its phase
speed. This OBC showed to be the excellent OBC for
the backward-facing step problem. However for the
blunt based body problem and the rectangular cylinder
obstacle problem, that is, as the problem becomes
more complicated, this OBC no longer is the complete
OBC. Hence we must be studying to search for a better
OBC.
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(B) Blunt based body problem

(A) Backward-facing step problem

(C) Rectangular cylinder obstacle problem

Fig. 1 Geometry definiton of three test problems

This document is provided by JAXA.
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(A) The aspect of flow at t = 30

(B) The aspect of flow at t = 35

(C) The aspect of flow at t = 40

Fig. 2 Difference of flows among four OBCs (Re = 1,000, IN = 800)

This document is provided by JAXA.
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Fig. 3 Difference of flows among four OBCs which is drawn in piles ψ profile and ζ profile
by each OBC on several vertical internal points within x = 560 (Re = 1,000, IN = 800)
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(A) Aspects of flow every t = 5 (IN = 560) (B) Aspects of flow every t = 5 (IN = 800)

(C) Difference of flows between IN = 560 and IN = 800 which is drawn in piles ψ profile and ζ
profile on several vertical internal points each t

Fig. 4 Difference of flows between short and long open boundaries (Re = 1,000, OBC: no. 1)

This document is provided by JAXA.



Comparison of Effectiveness of Four Open Boundary Conditions for Incompressible Unbounded Flows 13

(A) Aspects of flow every t = 5 (IN = 560) (B) Aspects of flow every t = 5 (IN = 800)

(C) Difference of flows between IN = 560 and IN = 800 which is drawn in piles ψ profile and
ζ profile on several vertical internal points each t

Fig. 5 Difference of flows between short and long open boundaries (Re = 1,000, OBC: no. 2)

This document is provided by JAXA.
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(A) Aspects of flow every t = 5 (IN = 560) (B) Aspects of flow every t = 5 (IN = 800)

(C) Difference of flows between IN = 560 and IN = 800 which is drawn in piles ψ profile and ζ profile on
several vertical internal points each t

Fig. 6 Difference of flows between short and long open boundaries (Re = 1,000, OBC: no. 3)

This document is provided by JAXA.
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(A) Aspects of flow every t = 5 (IN = 560) (B) Aspects of flow every t = 5 (IN = 800)

(C) Difference of flows between IN = 560 and IN = 800 which is drawn in piles ψ profile and ζ profile on several
vertical internal points each t

Fig. 7 Difference of flows between short and long open boundaries (Re = 1,000, OBC: no. 4)
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TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY TR-1374T16

(A) Aspects of flow at t = 30

(B) Aspects of flow at t = 35

(C) Aspects of flow at t = 40

Fig. 8 Difference of flows among three OBCs (Re = 1,000, IN = 800)
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Fig. 9 Difference of flows among three OBCs which is drawn in piles ψ profile and ζ profile
by each OBC on several vertical internal points within x = 560 (Re = 1,000, IN = 800)

This document is provided by JAXA.
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(A) Aspects of flow every t = 5 (IN = 560) (B) Aspects of flow every t = 5 (IN = 800)

(C) Difference of flows between IN = 560 and IN = 800 which is drawn in piles ψ profile and
ζ profile on several vertical internal points each t

Fig. 10 Difference of flows between short and long open boundaries (Re = 1,000, OBC: no. 1)

This document is provided by JAXA.
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(A) Aspects of flow every t = 5 (IN = 560) (B) Aspects of flow every t = 5 (IN = 800)

(C) Difference of flows between IN = 560 and IN = 800 which is drawn in piles ψ profile and
ζ profile on several vertical internal points each t

Fig. 11 Difference of flows between short and long open boundaries (Re = 1,000, OBC: no. 3)
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(A) Aspects of flow every t = 5 (IN = 560) (B) Aspects of flow every t = 5 (IN = 800)

(C) Difference of flows between IN = 560 and IN = 800 which is drawn in piles ψ profile and
ζ profile on several vertical internal points each t

Fig. 12 Difference of flows between short and long open boundaries (Re = 1,000, OBC: no. 4)
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(A) Aspects of flow at t = 45

(B) Aspects of flow at t = 55

(C) Aspects of flow at t = 65

Fig. 13 Difference of flows between two OBCs (Re = 1,000, IN = 1400)

This document is provided by JAXA.
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Fig. 14 Difference of flows between two OBCs which is drawn in piles ψ profile and ζ profile
by each OBC on several vertical internal points within x = 1200 (Re = 1,000, IN = 1400)

This document is provided by JAXA.
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Fig. 15 Difference of flows between short and long open boundaries (Re = 1,000, OBC: no. 3)

(A) Aspects of flow every t = 5 (IN = 1200) (B) Aspects of flow every t = 5 (IN = 1400)

(C) Difference of flows between IN = 1200 and IN = 1400 which is drawn in piles ψ profile and
ζ profile on several vertical internal points each t

This document is provided by JAXA.
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(A) Aspects of flow every t = 5 (IN = 1200) (B) Aspects of flow every t = 5 (IN = 1400)

(C) Difference of flows between IN = 1200 and IN = 1400 which is drawn in piles ψ profile and
ζ profile on several vertical internal points each t

Fig. 16 Difference of flows between short and long open boundaries (Re = 1,000, OBC: no. 4)
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(A) Aspects of flow every t = 5 (IN = 560) (B) Aspects of flow every t = 5 (IN = 800)

(C) Difference of flows between IN = 560 and IN = 800 which is drawn in piles ψ profile and
ζ profile on several vertical internal points each t

Fig. 17 Difference of flows between short and long open boundaries (Re = 800, OBC: no. 1)
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Fig. 18 Difference of flows between three OBCs which is drawn in piles ψ profile and ζ profile
by each OBC on several vertical internal points within x = 400 (Re = 1,000, IN = 800)
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Fig. 19 Difference of flows between short and long open boundaries (Re = 1,000, OBC: no. 4,
c = 0.7)

(A) Aspects of flow every t = 5 (IN = 1200) (B) Aspects of flow every t = 5 (IN = 1400)

(C) Difference of flows between IN = 1200 and IN = 1400 which is drawn in piles ψ profile and
ζ profile on several vertical internal points each t
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(A) Aspects of flow every t = 5 (IN = 1200)

Fig. 20 Difference of flows between short and long open boundaries (Re = 1,000, OBC: no. 4,
c = 1.3)

(B) Aspects of flow every t = 5 (IN = 1400)

(C) Difference of flows between IN = 1200 and IN = 1400 which is drawn in piles ψ profile and
ζ profile on several vertical internal points each t
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