

CNT単分散化によるチタンの静的・動的強度および耐熱性の向上に関する研究

【目的】

CFRPとの表面電位差が小さいチタン(Ti)を対象に、粉末冶金法を基調とした CNTの単分散法によりCNT強化チタン複合材の作製と疲労強度・耐熱性に関 する基礎データ採取、さらにはプロトタイプ素材の試作・性能評価を実施する、

【課題】

①両性イオン界面活性剤によるCNT単分散化溶液を用いたチタン粉末表面へのCNTの均一被覆法の確立

②CNT/Ti複合粉末の固相焼結固化条件の最適化

③静的強度評価と強化機構の解明

(炭素固溶強化, CNT/TiCナノ粒子複合分散強化, Ti結晶粒微細化)

④疲労強度・耐熱性の評価

⑤直径15~20mm, 全長3m以上のプロトタイプ素材の試作および特性評価

Joining and Welding Research Institute, OSAKA UNIVERSITY

Carbon nanotubes (CNTs) benefits to all materials

- High-strength light metal (AI, Mg, Ti) composites reinforced with MWCNTs effective for weight reduction
- > Energy saving and Environmental benign materials

Properties	Single-walled	Multi-walled	Steel
Specific gravity	0.8 g/cm ³	1.4 g/cm ³	7.8 g/cm ³
Tensile strength	50~500 GPa	10~60 GPa	400~1500 MPa
Young's modulus	1.4 TPa	1 TPa	210 GPa
Electric resistivity	~1000 /µQ cm	~20 0 /μΩ cm	9.7 /μΩ cm
Thermal conductivity	3 kW/m K	3 kW/m K	80 W/m K

Joining and Welding Research Institute, OSAKA UNIVERSITY

Segregation of bundled Multi-Walled CNTs due to Van der Waals force

Extruded Ti-CNTs powder composite material via SPS at 1473K.

Joining and Welding Research Institute, OSAKA UNIVERSITY

