21

衝撃荷重と衝撃

損傷の関係

4

衝擊後残留強度解析

0.00

-0.10

0

200

400

計測誤差:1%

計測点数の影響(コード方向位置:200)

600

スパン方向位置

800

1000

18

1200

1000

1200

0.00

200

400

600

スパン方向位置

計測点数:スパン方向・・・6点

計測誤差の影響(コード方向位置:200)

800

コード方向・・・3点

		今後の予定
年度	研究目標	研究課題と方法
H23	ひずみ応答を用いた 静的・動的荷重分布 の同定法の開発	 ・1点集中衝撃荷重の衝撃荷重位置と荷重履歴の同気 ・圧力分布の多項式近似による係数決定問題 ・最適なセンサ配置 ・適切化項導入によるill-posed問題の改良 を用いて、少数のセンサ計測により計測誤差にロバス トな荷重同定法を開発する
H24	荷重分布同定法の確 立と、同定した分布荷 重からの応力・ひず み分布予測法の開発	 ・荷重同定法の片持CFRP板による実験的検証と同定法の改良 ・同定分布荷重によるFEMによる応力・ひずみの予測 ・少数のひずみ計測データのみを用いた応力・ひずみ 分布の予測
H25	損傷発生位置推定法 の開発、および、本手 法の集中荷重問題へ の適用と妥当性検証	・同定した応力・ひずみ分布から損傷発生位置の推定 ・CFRP補強パネルおよび落錘衝撃を受ける積層板 に適用し、本研究で提案する手法の妥当性の検証

30