

JEM/SMILES Mission

(JEM/SMILES: Superconducting Submillimeter-Wave Limb-Emission Sounder designed to be aboard the Japanese Experiment Module on ISS; Collaboration project of JAXA - Japan Aerospace Exploration Agency - and NICT - National Institute of Information and Communications Technology -)

<u>1. Demonstration of superconductive mixer and 4-K mechanical cooler for</u> the submillimeter limb-emission sounding in space

[Mechanical Cooler] Twostage Stirling and J-T; 20mW @4K, 200mW @20K, 1000mW @100K; Power Consumption: <300 W; Mass: 90 kg

[SIS Mixer] RF: 640 GHz, IF: 11-13 GHz; Junction: Nb/AIOx/Nb, ~7 kA/cm²; Fabricated at Nobeyama RO

2. Observation on atmospheric minor constituents in the middle atmosphere

[Standard Products]

- 1 scan: O₃, HCl, ClO, CH₃CN, O₃ isotopes, HOCl, HNO₃
- Multi-scan: HO₂, BrO

[Research Products] UTH, Cirrus Clouds, volcanic SO₂, H₂O₂

Background: Future Ozone Layer

Not only in the polar latitudes, but also in the mid- and lower latitudes, ozone depletion is critical whole the globe. The recovery is estimated around 2060-2070, but there is very big uncertainty in association with the Cl and Br chemistries (WMO, 2006)

Model results for the future Antarctic ozone amount calculated from chemistryclimate models (WMO, 2006)

Origin of Cl and Br in the Stratosphere

Our quantitative understanding of how halogenated very short-lived substances contribute to halogen levels in the stratosphere has improved significantly since the 2002 Assessment, with brominated very short-lived substances believed to make a significant contribution to total stratospheric bromine and its effect on stratospheric ozone. (WMO Ozone Report, 2006)

4

Scientific targets of SMILES

- 1. Inorganic Chlorine chemistry
 - CIO to HCl ratio
 - HOCl production (O₃ trend in the LS)
 - Global CIO
- 2. Bromine budget
- 3. HO_x budget
- 4. Cirrus clouds
- 5. O₃ isotope
- (6. UT/LS mixing

- $(O_3 \text{ trend in the US})$
- - (background CIO)
 - (very short-lived source gas)
 - $(HO_x dilemma)$
 - (Het. reactions & rad. budget)
 - (mass independent chemistry)
 - $(O_3 flux))$

JEM/SMILES payload and status

- Sep. 11, 2009: SMILES was carried by H-IIB with H-II Transfer Vehicle (HTV)
- Sep. 18: HTV was attached to ISS ; Sep. 25: SMILES was attached to JEM
- Sep. 28: The cooler reached 4K
- Oct. 12: Continuous observations started

• Apr. 21, 2010: SMILES observations have been suspended due to the failure of a critical component in the submillimeter local oscillator.

 June 5: The cooler stopped its operation due to the failure of the JEM thermal control system.

 Jan 19, 2011: JAXA officially announced termination of the normal operation (All dates in JST)

SMILES measurements

• High sensitivity in detecting atmospheric limb emission of the submillimeter wave range; Band-A: 624.32- 625.52GHz, Band-B: 625.12- 626.32GHz, Band-C: 649.12- 650.32GHz

• Vertical profiling (about 3km resolution) from ISS with latitudinal coverage of 65N to 38S; 53 sec for one sequence, about 100 points per one orbit, and about 1600 points per day.

• SMILES can measure the atmosphere at different local times because of the non-sunsynchronous ISS orbit.

Globally mapped ozone distributions at 28 km on October 12, 2009. Original observation points are plotted by white circles with observed ozone mixing ratios.

SMILES observation performance

Measurements on several radical species crucial to the ozone chemistry (normal O_3 , isotope O_3 , ClO, HCl, HOCl, BrO, HO₂ ...)

Cf. EOS Aura measurements

Operational Level 2 products

- v1.0 (005-06-0024): for retrieval test (2010/01/23 released)
- v1.1 (005-06-0032): for mapping test (2010/04/19 released)
- v1.2 (005-06-0150): algorism update I (2010/09/15 released)
- v1.3 (006-06-0200): algorism update II (2011/03/02 released)
- v2.0 (007-08-0300): major update (2011/10/04 released)
- v2.1 (007-08-0310): improvement in HOCl (2012/01/16 released)
 Public release (2012/03/05)
- v2.2 (007-09-0400): algorithm update
- v2.3 (007-09-0402): minor update
- v2.4 (008-11-0502): a priori profile update

http://smiles.isas.jaxa.jp/access/indexe.shtml

A stratospheric sudden warming in January 2010

Limb-Emission Sounder (SMILES) onboard the International Space Station (ISS)

> by Sakazaki et al. (accepted, JGR)

Daily time series and the residual from the 30-day running mean

Daily time series of ozone mixing ratio at the equator averaged over the longitude at an altitude of 44 km.

Diurnal variations averaged over 10S-10N

SMILES

MIROC3.2-CTM (SMILES)

- SD-WACCM (SMILES)
- MIROC3.2-CTM
 - <u>Whole Atmosphere</u> Community Climate Model

SD-WACCM

Specified Dynamics (SD)

version of WACCM

- Temperature and wind fields from NASA GEOS5.1 are nudged
- horizontal: 1.9°x2.5°, vertical: 88 levels (up to 140km)
- 57 species (Ox, NOx, HOx, ClOx, BrOx etc.)
- 21 230 chemical reactions

Diurnal variations in ozone

Mechanism of the diurnal variations

SAGE sunrise & sunset bias

Validation of ozone data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)

by Imai et al. (under revision, JGR)

26

SMILES and MLS comparisons

SMILES and SD-WACCM comparisons

Comparison of ozone profiles between Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) and worldwide ozonesonde measurements

> by Imai et al. (submitted to JGR)

Relation between vertical gradient and differences (SMILES – ozonesonde)

Ozonesonde measurements with ascending and descending profiles

A time-lag correction proposed by Miloshevich et al. [2004] for humidity measurements of radiosondes

$$\frac{dX_m}{dt} = k(X_a - X_m)$$
$$X_m(t) = X_a - [X_a - X_m(t_0)]e^{-\Delta t/\tau}$$

The ozonesonde's response time is assumed to be within 20–30 s [e.g. Smit et al., 2007]), and our estimation showed response times around 28 s.

By applying this correction to the original profiles, we found a negative bias of the ozonesonde measurement more than 7% at 20 km in the equatorial latitude where the vertical gradient of ozone is steep. 36

Satellite Observations of Ozone in the Upper Mesosphere

by Smith et al. (under revision, JGR)

An intercomparison study of isotopic ozone profiles from the ACE, JEM-SMILES, and Odin-SMR instruments.

by Jones et al. (to be submitted, JGR)

50

Summary of results								
				Species enrichment \pm 1 sigma precision / 1 std (%)				
Diatform	Deference	Altitude range	Latitude	Acum 19	Sum 19	Acum 17	Sum 17	500
Plation	lehneen et el	(кп)		ASyIII-10	Sy111-10	ASyIII-17	Sylli-17	10.2 ±
FIRS-2	[2000]	25 - 35	30N - 35N, 68N	12.2 ± 1.0	6.1 ± 1.8	8.0 ± 5.2	1.6 ± 7.6	10.2 ± 0.9
ATMOS	Irion et al [1996]	25 - 40	80S - 80N	15.0 ± 6.0	10 ± 7.0			13.0 ± 5.0
Ground	Meier et al [1996]	Total column	79N	13.5 ± 4.0	11.9 ± 0.9			13.0 ± 2.7
Balloon	Haverd et al [2005]	25 - 35	35N, 65N, 68N	13.5 ± 2.7	7.7 ± 2.2			11.6 ± 2.0
Balloon	Kronkowsky et al [2001]	22 - 33	43N, 68N					7 - 11 (%)
Balloon	Mauersberger et al [2001]	22 - 34	32N, 34N, 43N, 68N					9.0 ± 0.4
Cryosampler/L ab	Mauersberger et al [1993]	25 - 35						11.8 ± 1.0
ACE		25 - 40	30N - 50N	12.3 ± 0.2/0.9	8.8 ± 0.2/0.4		9.4 ± 0.5/2.3	11.1 ± 0.2
SMILES L2N-C		25 - 40	30N - 50N	21.1 ± 0.3/11.1		17.9 ± 0.2/3.8		
SMILES L2N-B		25 - 40	30N - 50N	20.9 ± 0.1/5.8				
SMILES L2-C		25 - 40	30N - 50N	28.4 ± 0.1/2.9		23.3 ± 01./3.3		
SMILES L2-B		25 - 40	30N - 50N	29.3 ± 0.1/7.6				
Odin SMR		25 - 40	30N - 50N	11.7 ± 0.2/6.4	14.5 ± 0.4/0.3	14.5 ± 1.0/8.0*		12.65± 0.2

Summary of results

Validation of CIO data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)

by Suzuki et al. (to be submitted, JGR)

SMILES and MLS comparisons

SMILES and SD-WACCM comparisons

CIO in the Equatorial lower stratosphere

Diurnal variation of ClO, HO₂, and HOCl

Trial to verify the reaction rate of CIO +HO2 using SMILES data

Chlorine partitioning in the middle atmosphere

Brasseur and Solomon, pp.373

SMILES (+ MIPAS) can provide knowledge of chlorine partitioning in the background atmosphere based upon observations. The above figures are based on observations on October 12, 2009 at local solar noon (53N-60N) and midnight (23S-33S). CIONO2 is taken from MIPAS IMK, day 51N-57N, night 50N-54N.

Validation of HCl data from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES)

by Shiotani et al. (in preparation)

56

SMILES and MLS comparisons

SMILES and SD-WACCM comparisons

by Millan et al. (accepted, JGR)

Ice water content for January 2010

62

Diurnal variation in pIWP (partial Ice Water Path)

Atmospheric Response During Annular Solar Eclipse on 15 January 2010

by Imai et al. (will be presented at AOGS 2013)

64

Solar eclipse on January 15, 2010

SUMMARY

- SMILES made high sensitivity measurements with lower noise than other instruments, and reasonable retrieval results are coming out.
- Diurnal variation of such as O₃, ClO and so on is one of the unique outcomes contributing to scientific issues in the middle atmosphere.
- We released the SMILES level 2 data to the science community in March 2012.