ISSN 0389-4010 UDC 620.168.3 620.173.2 620.178.3

航空宇宙技術研究所報告

TECHNICAL REPORT OF NATIONAL AEROSPACE LABORATORY

TR-1392

カーボン / ポリイミド(T800H/PMR-15) 液合材料有孔試験片 の疲労強度

濱口泰正・下河利行

1999年11月

航空宇宙技術研究所

NATIONAL AEROSPACE LABORATORY

∩ 空

NAL TR-1392

目	次	
P		

概	要	1
1.	はじめに	1
2.	供試体	2
	2.1 供試材	2
	2.2 試験片	2
3.	試験方法	2
	3.1 試験条件および試験装置	2
	3.2 円孔変形量計測	3
	3.3 強度値の計算法	3
4.	試験結果および考察	4
	4.1 静的引張・圧縮強度	4
	4.2 疲労強度	5
	4. 2. 1 S-N 関係	5
	4.2.2 円孔部の変形状況	6
	a) R= 0.1 の場合	7
	b) R= - の場合	8
	c) R= - 1の場合	8
	4. 2. 3 N=10 ⁵ サイクル残存強度	8
	4.3 破面観察	8
5.	結び	9
6.	参考文献	10

カーボン / ポリイミド(T800H/PMR-15) 液合材料有孔試験片の疲労強度*

濱口泰正*1 下河利行*1

Fatigue Strength of Open Hole Specimens of a T800H/PMR-15 Carbon/Polyimide Composite *

Yasumasa HAMAGUCHI * 1, Toshiyuki SHIMOKAWA * 1

ABSTRACT

The objective of this study is to investigate the fatigue properties of a T800H/PMR-15 carbon/polyimide composite, selected as a candidate material for the primary structure of the unmanned space reentry vehicle HOPE-X (H-II rocket Orbiting Plane Experimental). Both static and fatigue tests were conducted to obtain data on the mechanical properties for open-hole specimens of a quasi-isotropic laminate. These tests were conducted at room temperature. The static test investigated static compression strength and static tensile strength, and the relationship between open-hole deformation and load was also examined. The fatigue test investigated S-N relationships for stress ratios R=0.1,R= - and R= - 1, and the residual strength of the non-failure specimens. The fatigue damage process arising from the relationship between number of cycles and open-hole deformation was also investigated. The results of analysis and evaluation of the strength characteristic obtained from these tests is reported.

Keywords : Static Strength, Fatigue Strength, Residual Strength, PMR-15, Carbon/Polyimide composite.

概要

本研究の目的は、宇宙往還技術試験機(HOPE-X)の主構造用材料として選択されたカーボン/ポリイ ミド(T800H/PMR-15)複合材料の疲労強度特性を評価することである。ここでは、擬似等方積層材の有孔 試験片を用い、室温環境において静強度試験ならびに疲労試験を行った。静的試験では、静的引張強度、静 的圧縮強度および荷重と円孔変形量の関係を調べた。また、疲労試験では、代表的な3種類の応力比R=0.1、 R= -1、R= - における S-N 関係、残存引張・圧縮強度、ならびに円孔変形と繰返し数の関係から導かれ る疲労損傷過程を調べた。これら試験から得た強度特性について、解析ならびに評価を行った結果を報告 する。

1 はじめに

カーボン/ポリイミド(Carbon/Polyimide) 複合材料 は、高温環境においても、比強度・比剛性が良好である 事から、航空宇宙構造用材料として有望視されており、H - ロケット打ち上げ型有翼宇宙往環技術試験機 (HOPE-X)のエレボンなどに適用の計画がある。宇宙往 遠機開発計画¹⁾⁻⁵⁾の端緒としては、この耐熱樹脂系複合 材料をわが国の自主技術に基づいて製作し、宇宙往還機 構造用材料としての適用性を確認することであり、この ために、カーボン/ポリイミド複合材料の成形加工技術 の取得や基本強度特性データの取得が必要となった。

そこで著者らは、基本強度特性データ取得を目的とし、 我が国で制作したカーボン / ポリイミド 複合材料 T800H/PMR-15 について、室温および 300 の温度環境 下において静的強度試験を実施して、幾つかの試験項目

^{*} 平成 11 年 8 月 24 日受付 (received)

^{* 1} 構造研究部 (Structures Division)

(積層構成、負荷形態、試験片形状など)について静的強度特性データを取得し評価^(),7)を行ってきた。

材料を評価する為には、繰返し負荷を受ける疲労強度 特性に関する調査およびデータ蓄積も重要となる。対象 としたT800H/PMR-15材は耐熱性を特徴とする先進複合 材料であることから、実施されている疲労強度評価試験 は、平滑試験片を用いた特定試験条件の結果だけで、公 表4)8)もわずかである。そこで、疲労強度データの蓄積 を目的として、擬似等方積層材の有孔試験片の強度評価 試験を実施した。有孔試験片はファスナー孔を想定した もので、T800H/PMR-15 耐熱樹脂複合材料の成形加工性 からも、単純なファスナー結合構造部位の存在が予想さ れる
いことに因る。この有孔試験片の強度評価試験は、ま ず、静的引張強度および静的圧縮強度試験を行い。次に、 疲労試験としては、HOPE 等の宇宙往還機における累積 使用回数は100未満であると予想されることから、比較 的短い繰返し領域、すなわち N=10⁵ サイクルまでのでの 疲労強度特性を調べる事を目標として、代表的な3種の 応力比、すなわち R=0.1、R= - 1 で 疲労 試験 を 行い、これら試験から得られた有孔試験片の静的強度、S-N 関係、N=10⁵ サイクル未破断試験片の残存強度につい て、解析および評価を行った。また、静的破壊および疲 労損傷過程については、円孔挿入型クリップゲージで計 測される円孔部変形率を用いた評価を行った。さらに、 取得した特性については、類似する試験条件で行われた エポキシ樹脂複合材料の研究報告データとの比較を行っ た。

2 供試体

2.1 供試材

供試材であるカーボン/ポリイミド(T800H/PMR-15) 複合材料の特性および仕様を表1示す。積層材は、オー トクレーブにより成形硬化した。成形硬化条件の概要は、 成型用バッグを脱気して、約220 で3時間程保持して, 約290 、14kgf/cm²でほぼ3時間硬化させ、更に316 で24時間のポストキュア硬化である。

2.2 試験片

図1に試験片の形状・寸法を示す。これはバックリン グの生成をタブによって抑える試験片形状で、N.S. Rosenfeldらが行った炭素繊維/エポキシ樹脂複合材料の 試験片形状¹⁰⁾と同じである。試験片の加工は、オートク レープによって成形した積層材平板にGFRPタブを接着 し、短冊形に切断加工を行い、中央部の円孔はドリル穿 孔後リーマー加工を施した。標定部の実測板厚値は、3.22 ~ 3.41mmで、強度評価に用いる公称板厚(3.126mm、プ リプレグ公称板厚と積層数の積で算出)に比べて若干厚い。

	引張強度	5.59 GPa (570kgf/mm ²)				
	引張弾性率	294 GPa (30,000kgf/mm ²)				
T800H (喜改度 由磁性	密度	1.81 g/cm ³				
(周强度) 千年已 炭素繊維)	伸度	~1.9 %				
	線膨張率	-0.57 × 10 ⁻⁶ /°C				
	製造メーカー	東レ				
PMR-15	密度	1.30~1.32 g/cm ³				
(Polymerzation of	引張弾性率	4.03 GPa (411kgf/mm ²)				
Monomeric Reactants, ポロスネビ体化)	ガラス転移点	345°C				
	製造メーカー					
	目付量	145 g/m ²				
ゴルゴルガ	揮発分	11%				
2.1209	公称(ノミナル)板厚	0.134 (mm)				
	製造メーカー	ICI Fiberite社				
	積層構成	[+45/0/-45/90] _{3S} ,24Plies				
	公称(ノミナル)板厚	3.216 mm				
	引張強度	784 MPa (80kgf/mm²)				
積層材	引張弾性率	55.9 GPa (5,700kgf/mm ²)				
	伸び	1.44%				
	Vf	56~58%				
	製造メーカー	富士重工業株式会社				

図1 試験片の形状・寸法

3 試験方法

3.1 試験条件および試験装置

有孔試験片の強度評価は、静的引張・圧縮試験、およ び繰返し応力を作用させる疲労試験で行う。疲労試験は、 代表的な3種の応力比(繰返し応力中の最小応力と最大 応力の比、R=Smin/Smax)、すなわちR=0.1の片振り引張疲 労、R= - 1の引張 - 圧縮疲労、およびR= - の片振り圧 縮疲労で実施した。また、累積繰返し数が10⁵サイクルに 達して未破壊の疲労試験片については、R=0.1の場合は引 張り残存強度試験、R= - 1とR= - の場合は圧縮残存 強度試験を行った。

試験装置は、デジタル制御の油圧サーボ式材料試験機 (Instron Model 8502)を使用した。試験片のグリップは 油圧グリップ(Instron Model 2724-404)を用いた。写真 1に試験装置全景を示す。

表1 供試材の特性および仕様

静的試験はアクチュエター速度を、引張試験で1mm/ min、圧縮試験で0.75mm/minに定めて実施した。疲労試 験は、いずれも、sin 波形、一定荷重の荷重制御試験、繰 返し速度 5Hz で実施した。残存強度試験は、静的試験と 同じ試験方法で行った。なお、試験室の温度および相対 湿度は、22 ± 2 および 55 ± 5%である。

3.2 円孔変形量計測

写真1 試験装置全景

写真2 円孔挿入型クリップゲージと動的変位計の試験 片への取付け状況

写真3 円孔挿入型クリップゲージ

本試験片では有孔(円孔)部が標定箇所となる。そ こで,円孔挿入型クリップゲージを試作して,円孔径の 変形量を計測し、静的試験では荷重と円孔変形の関係、 疲労試験では円孔変形と繰返し数の関係を導いた。また, 動的変位計(Instron Dynamic-Extensometer Model 2620-602)を用いて,円孔部を挟んだ標点間距離25mmでの試 験片変位量も計測した。写真2は、円孔挿入型クリップ ゲージと動的変位計の取付け状態を示す。なおこの写真 は、試験が終了し、上部の油圧グリップを解除した状況 を示す。

試作した円孔挿入型クリップゲージは、写真3に示す ように、厚さ1mm、幅5mmのリン青銅製帯板をリング 状に加工し、リング開口部を鳥のくちばしの様な形状に したものである。このくちばし形状部を試験片の円孔部 に挿入して円孔変形量を計測する。なお、くちばし形状 部と試験片円孔は微量のゲル状瞬間接着剤を用いて接着 固定する。変形計測の為に、開口側に対応するリング側 帯板の表と裏にそれぞれ2枚、計4枚の歪ゲージを接着し てブリッジ回路を構成した。この歪計測用ブリッジ回路、 動歪計(共和電業 DPM-611B) データアナライザー(共 和電業DAA-100A)を組み合わせて、円孔変形量(d)を 電圧量に変換しデジタルデータとして収集する計測系で ある。図2に円孔変形量に相当するクリップゲージ開口 部変位量(d)と歪ゲージ出力電圧(V)の関係を示す。 図中には回帰直線とその数式および回帰直線への適合度 を表す R² 値を示す。

静的試験においては上記の計測系を用いて荷重と円孔 変形の関係を導くことが出来る。一方、疲労試験におけ る円孔径(d)は、繰返し最大応力または繰返し最小応力 が作用したそれぞれの時点で、最大円孔径(d+ d)また は最小円孔径(d- d)を示すと考えられる。これらの円 孔径を適切な繰返し数毎に計測することで、円孔変形率 (d/d)の繰返し数依存性を調べる事が出来る。疲労試 験では、円孔挿入型クリップゲージのブリッジ回路をデ ジタル油圧サーボ式材料試験機の歪計測回路に接続して、 材料試験機の制御・データ収集用ソフトウェア(Instron FLAPS)を使用し、繰返し最大応力および最小応力時の 円孔変形量を適当な繰返し間隔で収集する方法を採った。

3.3 強度値の計算法

強度評価に用いる応力値は、次式で導く Net Stress を 用いる。

$$S = \frac{L}{A_{net}} = \frac{L}{(W - d) \times t_{nom.}}$$
(1)

ここで、Lは負荷荷重、A_{net}は有孔部の負荷断面積、Wは

図2 クリップゲージ評定部変位量と出力電圧の関係

板幅、d は円孔径、t_{nom}.は公称板厚である。なお、負荷断 面積を板厚と板幅の積として、応力値を計算する Gross Stress を用いる強度評価も多く見られる。本試験片では Gross Stress 値 = 0.802 × Net Stress 値である。

4 試験結果および考察

本試験では、静的引張試験および静的圧縮試験、代表 的な3種類の応力比R = 0.1、R= - 、R= - 1 における 疲労試験、ならびに、疲労試験結果の未破断試験片に対 する残存強度試験を行った。これらの試験結果と試験片 寸法をまとめて表2に示す。ここで、残存強度試験結果 は破線で囲って示し、それぞれの平均値については背後 を淡灰色にして表示する。

4.1 静的引張·圧縮強度

静的引張試験および静的圧縮試験によって導いた応力 - 変形関係を図3および図4に示す。それぞれの(a)図 には、円孔挿入型クリップゲージを用いて円孔の荷重軸 方向変形量(d)を測定し、円孔直径(d=6.35mm)に 対する比率すなわち円孔変形率(d/d)と公称応力の関 係を示す。また(b)図には、試験片側面に取り付けた動 的変位計で測定した標点間距離25mmの変位量と公称応 力の関係を示す。

図3に示した静的引張試験では、破断強度は、平均値 が567MPaで、著者らの求めた無孔(平滑)試験片引張 強度¹¹⁾の対比が0.7程度となる。また、Gross値を用い

計除	はか	齿舌	繰返し応	力、強度	静強度比		破断寿命			残存破壊	残存破	坡壞強度	静強度比	有孔詞	式験片	寸法	(mm)
区分	比R	间里 (kN)	Gross	Net	- S/Su	f	Ν	logN	区別	荷重	Gross	Net	S/Su				
			(MPa)	(MPa)		(Hz)				(kN)	(MPa)	(MPa)		SpNo.	板厚	板幅	円孔径
	0.1	40.36	392	489	0.86	5	100,102	5.0004	N.F.	53.76	522	651	1.15	CH-17	3.36	32.03	6.35
	0.1	38.35	373	464	0.82	5	100,002	5.0000	N.F.	52.90	514	641	1.13	CH-09	3.37	32.02	6.34
	-∞	-26.24	-255	-318	0.84	5	1,747	3.2423		平均= 53.33	518	646	1.14	CH-10	3.31	32.03	6.36
	$-\infty$	-24.22	-235	-294	0.77	5	2,398	3.3798						CH-20	3.35	32.01	6.36
	00	-24.22	-235	-294	0.77	5	94,353	4.9748						CH-03	3.34	32.02	6.36
	-∞	-23.22	-226	-281	0.74	5	100,102	5.0004	N.F.	-29.75	-289	-360	0.95	CH-02	3.32	32.02	6.35
疲労	-∞	-22.20	-216	-269	0.71	5	100,102	5.0004	N.F.	-29.76	-289	-361	0.95	CH-14	3.37	32.03	6.35
	-1	24.22	235	294	0.78	5	968	2.9859		平均= -29.75	-289	-360	0.95	CH-05	3.29	32.00	6.36
	-1	24.22	235	294	0.77	5	1,945	3.2889				******		CH-18	3.36	32.01	6.36
	-1	23.21	226	281	0.74	5	7,747	3.8891						CH-04	3.31	32.02	6.35
	-1	23.21	226	281	0.74	5	8,902	3.9495						CH-21	3.37	32.01	6.35
	-1	22.20	216	269	0.71	5	43,484	4.6383						CH-08	3.34	32.03	6.36
	-1	22.20	216	269	0.71	5	51,477	4.7116						CH-15	3.38	32.03	6.36
	-1	21.19	206	257	0.68	5	6,789	3.8318						CH-13	3.36	32.01	6.35
	-1	21.19	206	257	0.68	5	103,106	5.0133	N.F.	-26.76	-260	-324	0.86	CH-07	3.36	32.01	6.35
	-1	20.18	196	245	0.65	5	100,002	5.0000	N.F.	-24.84	-241	-301	0.79	CH-01	3.22	32.02	6.35
		44.26	430	537	0.95	負荷	· 速度:1mm/	/min		平均= -25.80	-251	-313	0.83	CH-06	3.28	32.01	6.36
静的		49.23	478	597	1.05		11				******			CH-12	3.37	32.01	6.36
21.22	平均=	46.74	454	567	1.00		*							*			
		-31.27	-304	-379	1.00	負荷	速度:0.75m	nm/min						CH-11	3.41	32.03	6.35
静的		-31.29	-304	-379	1.00		11							CH-16	3.34	32.01	6.36
工帽	平均=-	-31.28	-304	-379	1.00				*								
	Su=静弓	張強度	たけ静日	縮強度0)平均值	f=繰	返し速度	NE =No	n Failt	ne							

表2 静的試験、疲労試験および残存強度試験の結果

た無孔試験片強度対比は、0.6 程度であり、炭素繊維/エ ポキシ樹脂複合材料で行ったR.S. Whiteheadの結果¹²⁾と 同じである。

円孔の変形を表す円孔変形率(d/d)は、負荷応力の 増加にほぼ比例して大きくなる。そして、有孔部破壊は、 円孔変形率が4%程度になった時点で発生すると判断で きる。なお、図3(a)中の線図では破断の少し前に直線 形から外れた様相を示す。これは円孔挿入型クリップ ゲージの接触箇所である円孔部に局部変形が発生した事 によるものと考えられる。

図4に示した静的圧縮試験では、破断強度は、平均値 が-379MPaで、著者らの求めた無孔(平滑)試験片圧 縮強度¹³⁾との対比が0.56となる。また、Gross値を用い た無孔試験片の強度対比は、0.45と小さく、炭素繊維/エ ポキシ樹脂複合材料の結果¹²⁾の0.65とは異なった値を示 した。なお、引張の場合と同様に、円孔の変形を示す円 孔変形率は、応力の増加にほぼ比例する。そして、圧縮

図3 静的引張試験の応力 - 変位関係

図4 静的圧縮試験の応力 - 変位関係

破断は円孔変形率が3%以上で起きると判断できる。な お、図4(a)中に示す試験片番号CH-11の結果は、比較 的小さい変形率での破壊を示すが、図4(b)に示す動的 変位計の傾向から円孔挿入型クリップゲージの接着固定 が不適切であった為に計測されたと考えられる。

4.2 **疲労強度**

4.2.1 S-N **関係**

表2に示した試験結果をまとめて、図5の片対数S·N線 図にプロットする。ここで、縦座標の応力(S)は、R=0.1 では繰返し最大応力を用い、R= - およびR= - 1では 繰返し最小応力の絶対値を用いた。横座標は対数座標で 累積繰返し数を示す。

S·N 関係を簡便に表わす数式として、片対数座標およ び両対数座標上において、それぞれ直線関係で表す(2) 式および(3)式が使用されている。

$$S = C_1 \cdot \log N + C_2 \tag{2}$$

$$\log S = C_3 \cdot \log N + C_4 \tag{3}$$

そこで、3種の応力比それぞれのS-N データについて、 最小二乗法を用い、直線近似したS-N 曲線の勾配(C_1 お よび C_3)と切片(C_2 および C_4)を求めて、表3に示す。

図 5 S-N 関係

表3 直線近似し S-N 曲線の勾配と切片

R	s	7	[*] ータ 数	片対数座標直線 S = C ₁ *logN + C ₂		両対数座標直線 logS = C ₃ *logN + C				
	-	F	N.F.	C ₁	C ₂	C ₃	C₄			
0.1	S,max	0	2	(-15.60)	(566.7)	(-0.01286)	(2.753)			
-∞	S,range	3	2	-20.08	378.9	-0.02590	2.579			
-1	S,max	7	2	-26.00	378.9	-0.03492	2.579			
	注)F列は破断データ数、NF.列は未破断データ数									

また、(2)式で表す近似直線を図5に示す。なおこれらの係数は、独立変数を応力値とする、静的強度の寿命は N=1とする、曲線は静的強度の平均値点を通過する、破 断データのみを使用する、との条件で導いた。また、 R=0.1の係数は、静的強度と未破断データの最大値から導 いた値を示す。

これらの図および表から、R=0.1の引張疲労では、S-N 曲線の勾配が小さく、良好な耐疲労性を示す事がわかる。 また、R= - の圧縮疲労では、S-N 曲線の勾配が大きく なり、耐疲労性が低下すると判断できる。

一方、R= - 1の圧縮応力と引張応力が交互に作用する 場合は、S-N曲線の勾配がいくぶん大きくなっている。こ の場合は、繰返し応力範囲が表示した応力値の2倍に相 当する試験であるが、R= - に比較して、耐疲労性が大 きく低下していないと判断できる。つまり、繰返し引張 応力は、圧縮応力に比較して、疲労損傷にあたえる影響 がきわめて小さいことを示している。

ポリイミド樹脂をマトリックスとした複合材料の S-N 線図として、Walter らの報告¹⁴⁾ には、HTS/PMR-15 複合 材料について、積層構成が 0/45/90/ - 45]で、d=6.35mm の有孔試験片、応力比 R= - 1の低温、室温および高温に おける S-N線図が図示されている。同様に、J. F. Haskins らの報告¹⁵⁾ には、2種の炭素繊維 / ポリイミド樹脂複合 材料すなわち Celion 6000/LARC-160 および HT-S/710 に ついて、積層構成がいずれも [0/ ± 45]。で、d=6.35mm の有孔試験片、応力比 R=0.1、R= - 1 の S-N 線図が図示 されている。これらの S-N 線図のデータプロット位置や 近似曲線の傾きなどの巨視的な傾向は、図5 の S-N 線図 の傾向と類似していると判断できる。

次に、縦座標を静的破壊強度(Su)に対する比率、す なわち、R=0.1では静的引張強度に対する繰返し最大応力 の比率、R= - およびR= - 1では静的圧縮強度に対する 繰返し最小応力の比率を取ったS/Su-logN 関係を図6に 示す。これはS-N 関係を基準化して材料別の疲労強度比 較を目的とする。

このS/Su-logN 関係について、ほぼ類似する試験条件 で行われたエポキシ樹脂複合材料の結果と比較する。ま ず、B.D. Wright の報告¹⁶⁾では、炭素繊維/エポキシ樹脂 複合材料(XAS/914C)について、積層構成(50%0 °; 50 %45 °; 0%90 °) 皿頭形の有孔試験片、応力比 R=0.1, R= - 10, R= - 1 の S/Su-logN グラフが図示されている。こ のグラフの傾向は図6に示した結果と同様の傾向を示す。

M.S. Rosenfeld らの報告^{10,17}では、2種の炭素繊維/エ ポキシ樹脂複合材すなわちMODMOR Type II NARMCO 5209 および AS3501-6 について、積層構成が [(0/ ± 45) s]および [± 45/0/ ± 45/0/0/ ± 45] と [0/90/45/90/ 0/45/45/0/90] で、d=6.35mmの有孔試験片で、応力比 R=0、R= - 、R= - 1のS-N 線図が図示されている。こ れらをS/Su-logN 関係に変換したグラフは、図6に示し た結果と幾分異なる。すなわち、T800H/PMR-15 複合材 料は、前者の材料に比べて低い耐疲労性を示し、後者の 材料比べて R= - 1の条件では高い耐疲労性を示す。

D. Schuitz らの報告¹⁸⁾ では、炭素繊維 / エポキシ樹脂 複合材料 (T300/914C)、積層構成 [0₂/±45/0₂/±45/ 90]。、d=3mm の有孔試験片で、応力比 R=0.1, R= -1 に おける S-N 線図が示されている。同様に、H. Tomioka ら の報告¹⁹⁾では、炭素繊維 / エポキシ樹脂複合材料(T300/ #3631)、積層構成 [45/0/-45/90]、d=4mm の有孔試験 片で、応力比 R=0.1 における S-N 線図が示されている。ま た、E.P. Phillips の報告²⁰⁾ では、炭素繊維 / エポキシ樹 脂複合材 (T300/5208)、積層構成 [45/0/-45/90]。。 d=6.35mm の有孔試験片で、応力比 R= - 、R= -1にお ける S-N データが表示されている。これらの S-N データ をS/Su-logN グラフに変換し、図6に示したT800H/PMR-15 材と比較すると、R= -1において、T800H/PMR-15 材 が幾分良好な耐疲労性を示すが、ほぼ類似した傾向を示 す。

上記のように本試験データと既存データとの比較調査 から、T800H/PMR-15 複合材料のS-N 関係は、同種の炭 素繊維/ポリイミド樹脂複合材料や一般的な炭素繊維/ エポキシ樹脂複合材料と類似する S-N 関係を示した。こ れは、T800H/PMR-15 複合材料が一般的な CFRP と同じ ように良好な耐疲労性を持つことを意味する。また、 HOPE-X 構造に T800H/PMR-15 擬似等方積層板を使用す る場合の設計許容値として、圧縮強度は184MPaと設定 されている²¹)。本試験で取得した S-N データは、圧縮荷 重の作用するR= - 1およびR= - におけるN=10サイク ルの時間強度が 350 Mpa 程度であり、圧縮許容強度に対 して2倍近くの余裕を示した。また、繰返し圧縮応力が 184MPa 程度では N=10⁵ サイクルの繰返し数においても 疲労破壊は起こさないことを示した。さらに、有孔部の 設計においては、切欠きに関する割引係数が考慮されて 22)より低い設計許容値を取ることになり、疲労破壊に対 する余裕は大きくなる。これらのことから、T800H/PMR-15は、良好な耐疲労性を持ち、HOPE-X用構造材料とし て適用可能であると判断できる。

4.2.2 **円孔部の変形状況**

疲労損傷は応力集中箇所に発生し、試験片の剛性変化 として表われる。本試験片の場合、応力集中箇所が有孔 部であることから、疲労損傷は円孔径の変化で表される。 それゆえ、3.2項に記述した疲労試験における円孔変形計 測方法に従って円孔変形データを収集した。これらの データを、縦座標を円孔変形率、横座標を累積繰返し数 としたグラフ上にプロットして、円孔変形率と繰返し数の関係を調べた。

この円孔変形率と繰返し数の関係を、3種の応力比そ れぞれの場合について、整理・検討した結果を以下に述 べる。 a) R=0.1 の場合 静的引張強度対比が 0.82 と 0.86 で 繰返し最大応力が 464 MPa と 489 MPa である試験片につ いて、その円孔変形率をN=10⁵ サイクルまで計測した。こ のうち後者の結果を図7に示す。なお、図中の実線は、繰 返し最大応力時点および繰返し最小応力時点に計測した

それぞれの円孔径から導かれる円孔変形率を表わす。灰 色線は、最小応力時点と最大応力時点の範囲を用いて導 かれる円孔変形率を表わす。さて、R=0.1における円孔変 形率は、初期の段階で変動が見られるが、その後はN=10⁵ サイクルまで安定した円孔変形率が測定された。つまり、 静的強度に対する繰返し最大応力の比率が0.8~0.9程度 の引張疲労の場合は、初期の時点での疲労損傷が少し見 られるが、疲労損傷の進展は極めて少ない事を示した。

b) R=- の場合 静的圧縮強度対比が0.74で繰返し 最小応力が - 281Mpa である試験片、および、静的圧縮 強度対比が0.84で繰返し最小応力が - 318MPa である試 験片の円孔変形率と累積繰返し数の関係を図8および図 9 に示す。静的圧縮強度に対する比率が0.74程度の繰返 し圧縮応力でも円孔変形率は、累積繰返し数に伴って増 加する傾向が見られた。つまり、圧縮荷重が作用する場 合は、R=0.1の引張疲労に比べて小さい繰返し応力振幅を 作用させた場合でも、疲労損傷が発生し進行することを 示した。また、円孔変形率が4%に近づくと破壊が起こる と判断できる。

c) R= - 1の場合 静的圧縮強度対比が0.65で繰返し 最小応力が - 245MPa である試験片の円孔変形率と累積 繰返し数の関係を図10に示す。R= - 1群では最も小さい 繰返し応力の試験片であるが、円孔変形率は増加する傾 向を示す。また、静的圧縮強度対比が0.71で繰返し最小 応力が - 269MPa である試験片の円孔変形率と累積繰返 し数の関係を図11に示す。この図では、圧縮応力が作用 した時の円孔変形率が4%を超えると疲労破壊を起こし ている事を示す。同様な傾向は他の繰返し応力条件にお いても見られた。

これらの事から、疲労損傷の進展は、圧縮応力下では 観察されるが、引張応力下では極めて小さいと判断でき る。

4.2.3 N=10⁵ サイクル残存強度

図12 に、N=10⁵ サイクル未破断試験片の残存強度試験 結果ならびに静的強度試験結果を棒グラフで比較表示す る。ここで、圧縮強度は絶対値で表し、棒グラフ内の淡 色棒グラフは10⁵ サイクル作用させた繰返し応力値を表 した。

また、それぞれの強度試験結果の平均値に基づいて、 比較を行うと、引張荷重が作用した R=0.1 の残存引張強 度は、静的引張強度の114%の値を示す。この様な残存引 張強度の向上は、CF/Epoxyの有孔試験片について調べ たV. Giavotto らの報告²³⁾にも見られる。一方、圧縮荷重 が作用した R= - および R= - 1の残存圧縮強度は、そ れぞれ、静的圧縮強度の95%および83%で、静的引張強 度の - 64%および - 55%である。 これらの事から、繰返し引張応力による損傷は極めて 小さく、むしろ、繰返し引張応力を負荷させる事で、円 孔部の残留応力が開放されて応力緩和がおこり、試験片 の引張強度を向上させると考えられる。一方、繰返し圧 縮応力は、試験片の圧縮強度特性に影響与える層間はく 離などの損傷の生成に寄与していると判断できる。

図 12 残存強度試験結果の比較

4.3 破面観察

本試験で観察された破壊部の様子を以下に示す。

静的引張試験の破壊部は、写真4.1に示すように、円孔 部から放射状に試験片側面まで損傷が広がり、側面は層 間はく離や界面はく離が観察されるほうき状破壊である。 静的圧縮試験の破壊部は、写真4.2に示すように、円孔部 から試験片側面までほぼ直線状に損傷が進行しており、 側面は明確な層間はく離が観察される破壊である。

繰返し引張応力を作用させた R=0.1 の試験片はいずれ も N=10⁵ サイクル未破断試験片となり、残存強度試験を 行ったが、N=10⁵ サイクル後の目視観察では、円孔稜部の 一部において、表面 45 ⁶層の微小な剥がれが見える程度 の損傷が見られた。

繰返し圧縮応力が作用するR=-1およびR=- で行っ た疲労破壊試験片の側面写真を写真4.3に示す。R=-1お よびR=- の場合は、巨視的には、静的圧縮強度試験の 破壊とほぼ同じであるが、試験片剛性低下の原因と考え られる繰返し圧縮応力による層間はく離の生成が見られ る。なお、この写真ではR=- 試験片の損傷領域がR= -1試験片に比べて大きくなっているが、R=- 試験片 の繰返し圧縮応力がR=-1試験片の繰返し圧縮応力より も大きいことに因ると考えられる。

次に、3種の応力比R=0.1、R= - 1およびR= - で行っ た疲労試験において、N=10⁵ サイクル未破断試験片で実 施した残存強度試験結果の破壊部側面写真を写真4.4 に 示す。R=0.1の残存引張強度試験の破壊は静的引張破壊と 同じ様相を示し、R= - 1 およびR= - の残存圧縮強度 試験では破壊荷重が静的圧縮破壊荷重よりも低いことで 脆性的な破壊領域が小さくなっている様相を示す。

写真 4.1 静的引張試験片破壊部写真

写真 4.2 静的 E 縮試 験片 破壊 部 写 真

写真4.3 疲労破壊試験片の側面部写真

写真4.4 残存強度試験片の破壊部側面写真

5 **むすび**

炭素繊維/ポリイミド樹脂複合材(T800H/PMR-15)の 擬似等方積層材有孔試験片について、静的引張、静的圧 縮、および代表的な3種類の応力比すなわちR=0.1、R=-

、R= - 1におけるN=10⁵ サイクルまでの疲労寿命試験、 ならびにN=10⁵ サイクル未破断試験片の残存強度試験を 行い、静的強度および疲労強度特性に関する基本データ を収集した。ここで得られた主な試験結果、および T800H/PMR-15 材のHOPE-X 構造への適用性について以 下に示す。

有孔試験片の静的引張強度は567MPa、静的圧縮強 度は379MPaを得た。したがって、圧縮強度の引張強 度対比は0.67である。

静的引張および圧縮破壊は、円孔変形率がそれぞれ 4.5%程度および - 3.5%程度に達しすると発生した。

R=0.1 の引張疲労試験では、静的引張強度の 86%に 相当する繰返し最大応力下においても、剛性低下など の疲労損傷は観察されず、本材料の繰返し引張応力荷 重下における耐疲労性が良好であることを示した。

R= - およびR= - 1の繰返し圧縮応力が作用する 疲労試験では、それぞれ、静的圧縮強度の70%以上お よび60%以上の繰返し応力条件では、剛性低下などの 疲労損傷が観察され、繰返し圧縮応力条件では耐疲労 性が低下する事を示した。

R= - およびR= - 1の繰返し圧縮応力が作用する 疲労試験では、円孔変形率が - 4%程度になると破壊 を起こした。

R=0.1 の残存強度については、静的引張強度に比べて10%程度高い値を示した。これは繰返し引張応力を与えることで、円孔部の応力緩和が計られたことに因ると考えられる。

R= - およびR= - 1の残存強度については、それ それ、静的圧縮強度の95%および80%程度であった。 これは、繰返し圧縮応力の影響で生成される層間はく 離などの損傷が圧縮残存強度の低下をもたらすと考え られる。

T800H/PMR-15擬似等方積層板を使用する場合の構 造設計許容値として、圧縮強度は184MPaと設定され ている。本試験で取得した S-N データでは、圧縮荷重 の作用するR= - 1およびR= - におけるN=10サイク ルの時間強度が350Mpa程度であり、圧縮許容強度に 対して2倍近くの余裕を示した。

本研究を遂行するに当たり、宇宙環境推進利用セン ターの小林智之氏および日本航空機開発協会の田村裕之 氏には、各種のご支援を頂いた。ここに、厚く感謝申し 上げる。

6. 参考文献

- 1) 松下正、三津間秀彦、小林智之、田村裕文、渥美基 弘、「耐熱性CFRPを用いたHOPE機体構造構想と研 究開発の現状」第 32 回構造強度に関する講演会講 演集、1990、pp.42-45.
- 2) 岩間一敬 山本昌孝、「HOPE耐熱機体構造の概念設 計、第32回構造強度に関する講演会講演集、1990、 pp.46-49.
- 3) 松下正、三津間秀彦、小林智之、野尻邦夫、水野宏、 鎌田清敏、「HOPE 耐熱主構造部材(カーボン/ポリ イミド)の研究、第32回構造強度に関する講演会 講演集、1990、pp.54-57.
- 4) 松下正、三津間秀彦、小林智之、前川昭二、長尾広志、伊藤康宏、佐名俊一、「HOPE用耐熱複合材の研究」、第32回構造強度に関する講演会講演集、1990、 pp.58-61.
- 5) 菅原憲明、神山隆之、中島宏和、松下正、三津間秀 彦、小林智之、「HOPE 耐熱樹脂複合材の特性と成形 技術」、第32回構造強度に関する講演会講演集、 1990、pp.62-65.
- 6) 角田義秋、濱口泰正、野口義男、三本木茂夫、下河 利行、松下 正、山本昌孝、渥美基広、「カーボン/ ポリイミド複合材料の基本特性試験」など、第31回 構造強度に関する講演会講演集、1989、PP.56-71.
- 7) 角田義秋、三本木茂夫、下河利行、濱口泰正、山本 昌孝、三津間秀彦、「カーボン / ポリイミド(T800H/ PMR-15) 複合材料の室温および300 における静強 度評価、航空宇宙技術研究所報告 TR-1254、1994
- 8) 富岡史城、夏村 匡、「CF/PMR-15を用いた構造要 素の強度評価に関する研究、第18回複合材料シン ポジウム講演要旨集、1993、pp.87-90.
- 9) 内藤浩和、三保和之、「カーボン/ポリイミド(C/Pi) 複合材の研究開発、第39回構造強度に関する講演 会講演集、1997、pp.189-192.
- 10) M.S. Rosenfeld and S.L. Huang, "Fatigue Characteristics of Graphite/Epoxy Laminates under Compression Loading", Journal of Aircraft, Vol.15, No.5, may 1978, pp.264-268.
- 11) 下河利行、濱口泰正、角田義秋、田村裕文、「カーボ ン/ポリイミド複合材料における引張機械的性質の 統計的評価、日本複合材料学会誌 Vol.20 No.5、

1994, pp.195-204.

- 12) R.S. Whitehead, "Certification of Primary Composite Aircraft Structures", Proceedings of the 14th Symposium ICAF, EMAS, 1897, pp.585-617.
- 13) **下河利行、濱口泰正、角田義秋、「カーボン/ポリイ** ミドT800H/PMR-15**複合材料における圧縮機械的性 質の統計的評価」、日本複合材料学会誌** Vol.22 No.5、1996、pp.184-192.
- 14) Walter IIIg and Richard A. Everett, Jr, "Fatigue and Fracture", NASA CP 2076, 1979, pp.259-271.
- 15) J. F. Haskins and J. R. Kerr, "Effects of Real-Time Thermal Aging on Graphite/Polyimid Composites", NASA CP 2385, 1983, pp.315-319.
- 16) B.D. Wright, "Fatigue Life Prediction for Carbon-Epoxy Composite Design", Proceedings of the 16th Symposium ICAF, EMAS, 1991, pp.431-443.
- 17) M.S. Rosenfeld and L.W. Gause, "Compression Fatigue Behavior of Graphite/Epoxy in the Presence of Stress Raisers", Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, 1981, pp.174-196.
- 18) D. Schuitz, J.J. Gerharz, and E. Alschweig, "Fatigue Properties of Unnotched, Notched, and Jointed Specimens of a Graphite/Epoxy Composite", Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, 1981, pp.31-47.
- 19) H. Tomioka and H. Wada, "Fatigue Strength of Graphite Epoxy Laminates", Proceedings of the 9th International Conference on Composite Materials, Volume V, 1993, pp.745-752.
- 20) E.P. Phillips, "Effect of Truncation Predominantly Compression Load Spectrum on the Life of a notched Graphite/Epoxy Laminate", Fatigue of Fibrous Composite Materials, ASTM STP 723, American Society for Testing and Materials, 1981, pp.197-212.
- 21) 宇宙往還技術試験機 熱構造系開発基礎試験(その 2のア)成果報告会資料、NU-70899-1、1998.12
- 22) 下河利行、三本木茂夫、「HOPE 関連主構造材料の評 価法について、HOPE 関連構造材料ワークショップ 講演集、1988.9
- 23) V. Giavotto, C. Caprile and G. Sala, "Understanding Composite Fatigue: New Trends", Proceedings of the 15th Symposium ICAF, EMAS, 1989, pp.425-451.

航空宇宙技術研究所報告1392号

平成11年11月発行

発行所科学技術庁航空宇宙技術研究所 東京都調布市深大寺東町7 44 1 電話(0422)40 3075 〒182 8522
印刷所株式会社実業公報社 東京都千代田区九段北1 7 8

⑦ 禁無断複写転載

本書(誌)からの複写、転載を希望される場合は、管理部 研究支援課資料係にご連絡ください。

舟 9 11 乍 才 彳 予 阝 孝 彳 ;

Printed in Japan