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ABSTRACT _

Unsteady three dimensional numerical simulations were conducted for oscillatory Marangoni
convection in half zone liquid bridges (radius a and length L) with non-deformable cylindrical surface
by means of a finite difference scheme. Temperature and velocity fields in an adiabatic liquid bridge
of Pr=1 fluid with four different aspect ratios As (=L/a) =0.75, 1.0, 1.33 and 1.60, and also in liquid
bridge of Pr=0.02 with As=1.8, under various Marangoni numbers (Ma). The results for a fluid of
Pr=1.0 indicated the transition from an axisymmetric to 3-D flow is accompanied by traveling
hydrothermal waves in high Prandt] number fluid with different azimuthal wave numbers (7=1, 2, 3
and 4) and two types of oscillation, ie., pulsating and rotating oscillations, depending on the
Marangoni number and the flow structure previously experienced. In low Prandtl number fluid liquid
bridges, however, the first instability bring out a steady 3-D flow, as linear stability analyses predicted.
At larger Marangoni numbers, there occurs a second instability to initiate a three dimensional
oscillatory flow which does not indicate distinguishable rotating motion. The present simulations also
revealed that the 3-D disturbances grow exponentially with time. And the growth rate constants were
determined as a function of the Marangoni number. The resultant critical Marangoni number values
show good agreements with those predicted by linear stability analysis and previous numerical
simulations.

1. INTRODUCTION

Thermocapillary (Marangoni) convection occurs in many crystal growth and other technical
processes. Beside the full zone liquid bridges in practical FZ processes, the half zone liquid bridge of
length L and radius a confined between two differentially heated isothermal solid disks becomes a
typical model for the study of thermocapillary flows, their stability and their bifurcation, the so-called
half-zone problems. Experiments with this simple geometry revealed that the basic thermocapillary
flow in a half-zone is steady and axisymmetrically two dimensional if the temperature difference
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between the two disks is sufficiently small. However, the basic steady axisymmetric flow becomes
unstable and three dimensional (3-D) flow arises when the Marangoni number exceeds a certain
threshold value. Many features of the super-critical flow, such as the azimuthal wave numbér m and
the type of oscillation, i.e. pulsating or rotating, have been reported at different aspect ratios As=L/a
and the Marangoni numbers, Ma, for various fluids .

To date, several numerical investigations of the half-zone problem have become available. Rupp et
al.® performed a series of fully 3-D simulation for an aspect ratio As=1.2 by means of the finite
difference method and found the azimuthal wave number m=2 to be the most dangerous mode for a
wide range of Prandtl number (Pr=v/0). Neitzel et al. ° determined the critical Marangoni number
(Ma), below which the axisymmetric flow is absolutely stable, by means of energy stability analysis
for a half-zone of a fluid with Pr=1.0 and Bi=0.3 (Bi : Biot number) with various aspect ratios and
found the critical Marangoni number and the most dangerous azimuthal wave number depend on the
aspect ratio. Later, Neitzel e al.® determined the critical Marangoni number (Ma,, ) above which three
dimensional disturbances can grow. Wanschura ef al. "and Chen et al.” reported Ma, and some
spatial structures of the 3-D disturbances at their neutral mode, for a wide range of Pr by linear
stability analysis. These linear stability analyses'"* predict that the instability at large Pr is oscillatory,
however, it is stationary at small Pr (Pr<0.1). Levenstam ef al.” performed fully non-linear 3-D
numerical simulations for half-zone for Pr=0.01 and recognized that the first instability is stationary as
predicted by linear stability analysis and also that the second bifurcation to an oscillatory flow occurs
at much higher Marangoni numbers. Savino and Monti " reported 3-D numerical simulations for
liquid bridges of Pr=30, As=2.0 and Pr=74, As=3 showed good agreement with their microgravity
experiments. Imaishi and Yasuhiro™ ' performed series of 3-D numerical simulation for Pr=1.02 fluid
by means of a finite difference method with non-uniform grid points and showed pulsating and
rotating modes with m=1, 2, 2 and 3 for 45=1.60, 1.33, 1.00 and 0.75, respectively. The results
explained the multi-morphological features of the 3-D Marangoni flow in liquid bridge which have
been well known by experiments and by linear stability analyses. Castagnolo and Carotenuto"”
performed 3-D simulations for Pr=1.0, 4s=1.0 and for Pr=32, As=1 and 2. They obtained a critical
Marangoni number value of 2488 for the case of 4s=1.0 and Pr=1.0, which was very close to
Ma=2539 predicted by linear stability analysis. In those simulations for high Prandtl number fluids,
the oscillatory flow started as a pulsating oscillation and then transition occurred to a rotating
oscillation. S

Despite these numerical results, the understanding of the phenomena seems yet incomplete and
growth rates of 3-D disturbances are still unknown. In the previous simulations of the present authors
1 the growth rate of 3-D disturbance was enhanced by applying non-axisymmetric heat exchange
with ambient gas for a short time. This trick was necessary to reduce computing time on an EWS at
that time. In the present paper, a series of numerical experiments on the time evolution of 3-D
oscillatory flows in an adiabatic half-zone with noh—defonnable cylindrical surface under microgravity
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were performed so as to obtain a deeper understanding of the flow structure and the growth process of
3-D steady and oscillatory flows and further to obtain, 1) information on the reliability of linear
stability analysis, 2) correlation of growth rate with Marangoni number, 3) an explanation of the multi-
morphological characteristics of 3-D flows, and 4) 3-D flow characteristics.

2. MATHEMATICAL MODEL v

A half-zone liquid bridge with a non-deformable cylindrical surface of radius & is sustained between
two differentially heated discs in microgravity circumstance as shown in Fig. 1. The distance between
two discs is Z and the temperature difference is A7. The thermophysical properties of the liquid are
assumed constant except for the temperature dependency of surface tension (o= 3 of 8 7). The liquid
surface is assumed to be adiabatic. The initial condition assumes all quiescent liquid at 7. From =0,
the lower disc temperature is instantaneously raised and kept at 7,=T +AT, and the upper colder disc
temperature is maintained at 7.
The fundamental equations, boundary and initial conditions are described in non-dimensional forms

as follows:

Continuity equation: V-U=0 ’ 0y}

Momentum equation: 0 U/d t+(U-V)U=-PrVP+PrVU )

Energyequation: 9 &9 t+(U-V)O =V?*O 3

Initial conditions: ~ U=0, ©=-05 r=0 (€))
Boundary conditions: Uggp)-Ugesy =0, Gpg o=+05, G, =-05 (0) ®)

atR=1 9©/dR=0, dU,/OR=-Mad €9 Z, ©)

Rd (U/RYOR=-Mad ©/d 0, Ug=0 @)

' The dimensionless parameters arising are the Prandtl, the Marangoni and the Biot numbers defined as
Pr=v/a and Ma=-c:ATa/uc.
And the non-dimensional variables are defined as;
{R,Z}={r/a z/a},P=pa*oy),U=ua /o, O=(I-T,)/AT, ©=tola’ ®
where T,, = (T,+T)/2, a=Ak,p (themmal diffusivity), u: velocity, p: pressure, c,: heat capacity, o:
density, A: thermal conductivity, u: viscosity, and v: kinematic viscosity.

8=-=.

o=0

Fig.1 System coordinates.

—119—

This document is provided by JAXA.




3. NUMERICAL METHOD

Using cylindrical coordinates, these equations are discretized by a finite difference method with a
modified central difference treatment for the convective term *and non-uniform staggered grids. The
radial velocities on the central axis were calculated by means of the method of Ozoe ef al.”. The
HSMAC scheme * was used to proceed time evolution of velocity and pressure. The calculations
were run on an MPU of the Fujitsu VPP700 at the Computer Center of Kyushu University. Non-
uniform grids were adopted to increase the resolution. The number of grid points is listed in Table 1
together with the other conditions. Time step AT was chosen between 5x10” and 2x10° for Pr=1 and
between 1x10° and 5x10° for Pr=0.01. A two dimensional simulation code with the same scheme and
2-D grids was run in order to obtain a 2-D solution under the same conditions. For a liquid bridge of
Pr=1 fluid, thermophysical properties of molten KCl were adopted here as; «=7.2x107[m¥s], A
=099 [W/(m-K)], x=1.13 [mPa-s], v=741x10" [m%s], 0,=7.1x10° [N/(mK)] and Pr=1.02.
Thus A7=1 corresponds to 13 seconds for a real system in which a is 3.0mm. For Pr=0.01 liquid
bridge, thermophysical properties of molten silicon were adopted as; @ =2.5x10° [m%s), A =64
[W/m-K)], =062 [mPa-s], v=2.5x10" [mZs], 6,= -1.0x10* [N/(m-K)] and Pr=0.01. Thus
At=1 corresponds to 1 second for a real system in which a is 5.0mm.
The local and average Nusselt numbers are defined on both solid walls as

2rl

Nu=|d @3Z|ad Nu = [ [R|30/3Z|dRdO/2n ©)
00

In order to express the motion of fluid elements, trajectories of infinitesimal tracer particles were
calculated during the unsteady calculation by using the Euler method. The tracer particles are assumed
to follow the local velocity of fluid without any slip velocity.

4. Code validation

For the whole range of the Marangoni number adopted in this work, the 2-D unsteady code gives
axisymmietric steady solutions. The present 3-D code also gives axisymmetric steady solution which
is indistinguishable from the 2-D solution, if the Marangoni number is smaller than the corresponding
critical value which will be described later. And even beyond the critical Marangoni number, the 3-D
code gives practically the same results with those of the 2-D code during the initial transient stage
except for the growing 3-D disturbances, as far as their oscillation amplitudes are very small. The
present discretization method provides very good heat balance (within 0.6%) on both solid disks. This
is also true for all 3-D calculations, indicating the reliability of the present 2-D and 3 D numerical
codes. Further, as will be discussed in detail later in section 4.3, the critical Marangoni number value
fall very close (in few percents) to those of linear stability analyses and also very close to the first and
the second critical Marangoni numbers given by Levenstam et al. for Pr=0.01 with As=1.0. And our
3-D simulation results could semi-quantitatively explain the experimentally observed characteristics
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of 3-D oscillatory thermocapillary flows of Ref..2, such as the oscillation frequency and the flow
pattern, as have been discussed in our previous paper'”. These results support the validity of the present
3-D code for both low and medium Prandtl number fluids.

5. Casestudies with fluid of Pr=1
51 Ass10
511 Ma=4440 ,

For all values of Marangoni numbers used here, the 2-D code gives axisymmetric steady solutions,
however, 3-D simulation gives time evolution of 3-D disturbance. Fig.2 shows time evolution of the
axial and the azimuthal velocities at point A (R=1, 6=31w/4, Z=0.5) and B (R=1, ==, Z-0.5), the local
temperatures at points A, B, C(R=0.5, 6=3w/4, Z-0.5) and D (R=0.5, 6= =, Z=0.5), a local Nusselt
numbser at point E (R=0.5, 6=r, Z-0) and the spatially averaged non-dimensional heat fluxes (Vu) on
the end plates. At the initial transient stage, surface velocity U, shows a large overshoot due to the step-
wise temperature increase at 7. During a time span of about A7=0.75 after the overshoot, a steady
and axisymmetric flow pattern was established and appears to be stable. At this stage, the velocity and
temperature distributions are indistinguishable from those of 2-D solution on a linearly scaled plot. As
the plot of In(U,) in Fig.2-b reveals, however, some periodic azimuthal motions, although very weak,
have been created within the initial transient stage. This indicates the 2-D steady axisymmetric flow in
a liquid bridge with 4s=1.0 can not sustain itself stable in a 3-D system at Ma=4440. It should be
noted that we did not give any structured initial disturbances as an initial condition. The 3-D
disturbances are caused by unavoidable small numerical errors in calculations. The slope of the line
connecting the peak velocities corresponds to the growth constant 3 by which linear stability analysis
expresses time evolution of a quantity X in the following form,

Xy=Fa X0 B+ ieo)T) sinm6) (10)
where @ =27f/atis the nondimensional expression of the frequency of oscillation f; m the azimuthal
wave number, and F, the eigen-function for the quantity.

As mentioned above, the 3-D disturbances are automatically self-excited without any addition of
random disturbances on temperature or velocity, they may be excited even from very small numerical
errors. Here, we seek what kind of disturbances is excited at the initial stage and also how a single
mode is selected to grow and others would be faded out. Fig. 3 and Fig4 show snapshots of the
velocity vectors and oontbur lines of temperature deviations on the liquid surface and a horizontal cut
plane at Z=0.5 at a very early stages, where the disturbance is defined by substituting an azimuthally
averaged instantaneous value, such as;

i
Oozm=Owozm— | ROwozmdd/2n R (11)
0
and
2z
U(,R,B,Z,fﬂ)zU(R,B,Z,fN)— JR U(R,G,Z,fﬂ) de/an (12)
0
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As shown in Fig3, at = 0470 (indicated by a in Fig. 2-b), we can see some three-dimensional
disturbances, a mixture of m=2 and 3 on Z=0.5 plane, but a structure of #=2 seems prevailing near the
liquid surface. But as seen in Fig4 taken at 7=0.615 (indicated by b in Fig.2-b), there is no remaining
of m=3 disturbance. This suggests there worked a mode selection rule which determined unique
dominant wave number under a given condition. The details of this rule will be discussed later in
section 5.5. Once a 3-D disturbance of m=2 is selected, its oscillation amplitude increases
exponentially with time for a long time span with a constant value of . And at around 2.7 ,
a pulsating, m=2 oscillatory flow with constant oscillation amplitude was established.

The velocity and temperature distributions of the fully developed pulsating, m=2 oscillatory flow
at Ma=4440 are exactly the same as those shown in Fig, 12 of Ref.16. Under this condition, pudsating
type oscillation prevails throughout the time span of the simulation up to 7=4.45.

After the oscillation amplitudes and period settle down to constant values, the Marangoni number

was increased instantaneously at 7=4.45 from Ma=4440 to 6660. The transient response was quick
and soon a new steady stage of oscillation was established. The velocity and temperature distributions
oscillate as a pulsating, m=2 type and it sustained pulsating oscillation for long time. Fig. 5 shows the
oscillations of velocity and temperature fields over one period of local azimuthal velocity oscillation

(%)
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Fig.2 Developments of thermocapillary flow from a quiescent isothermal condition;
evolution of velocities, temperatures and Nusselt numbers under Ma—4440.
At = 4.45, Ma was raised to 6660.
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(a)
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Fig.3 Snapshot of 3-D disturbances at a very early stage of growth, at 7=0.470, under Ma=4440.
(a) Contour lines of the temperature disturbance and vector of velocity disturbances on the liquid
surface.
(b) Isotherms, contour lines of the temperature disturbance and velocity disturbances on a horizontal
cutat Z=0.5. Solid line indicates positive deviation and dotted line indicates negative deviation.

Fig.4 Snapshot of deviation temperature and velocity on the surface and Z=0.5 at 7=0.615.
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Fig.5 Snapshots over one period of azimuthal velocity oscillation during the fully developed
pulsating m=2 oscillation under Ma= 6660 after a raise from 4440.
(a) Velocity vectors and isotherms, the upper plane is a horizontal cut at Z=0.85.
(b) 3-D structure of an isothermal surface of @=- 0.05.
(c) Projected velocity vectors and isotherms on a cut at Z=0.5.

51.2 Ma=6660
The second unsteady simulation of self-excitation of oscillatory flow was performed with

Ma=6660 and As=1.0. In this case, a 3-D disturbance starts and its mode is selected at a very early
stage. Its azimuthal wave number is m=3 and the growth rate is larger than in the previous case of
Mar4440. The oscillation behavior is quite similar to that shown in Fig. 7 in the next section.

5.1.3 Ma=8880
The third simulation for 4s=1.0 was performed with Mu=8880. The time evolution of local

velocities, temperatures, and the averaged and Jocal Nusselt numbers are shown in Fig. 6. A pulsating
3-D disturbance with #=3 is self-excited and grows much faster than the previous two cases. After the
growth period, a fully developed pulsating oscillatory flow with constant amplitude and frequency is
established and maintains pulsating oscillation for a while. The velocity and temperature fields vary
with time as shown in Fig.7 during one period of Uj oscillation (£.=0.0349) starting from 7=1.249
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(indicated by a in Fig.6). As time goes on, a transition occurs fiom the pulsating m=3 oscillation to a

rotating m=3 oscillation. Fig.8 compares the power spectrum obtained by means of FFT analyses of
local temperature and surface velocities at different points during the pulsating and the rotating

oscillation periods. During the pulsating oscillation, some signals show only one fundamental

frequency, i.e., =180, but Oy 05, Bps0055 Qs s 055204 U, 4,0,055how second harmonics and the

relative strength of the fundamental and the second harmonic varies with the location and, in some

cases, the second harmonic appears stronger. In the rotating oscillations, however, the second |
harmonic disappears. This is always the case for all simulation results for Pr=1.0 in this paper. The

fundamental frequency of oscillation is practically independent of the type of the oscillation(ie.,

pulsating or rotating). The transition process from the pulsating to the rotating oscillation is visualized

in FKig.9. The figure shows temperature and velocity distributions on a horizontal cut at Z=0.5 and on

the liquid surface at 7=1.356, 1.570, 1.784 and 1.998 (at points b, ¢, d and e in Fig.6, respectively).

The transition proceeds with gradual distortions of the temperature and velocity fields near the axis

and also on the surface. Kuhlmann and Rath * suggested a standing wave type oscillation as a result

of the superposition of two hydrothermal waves counter-propagating with angular velocities + .

The pulsating oscillation in this fully nonlinear simulation also corresponds to the standing wave type

oscillation. During the pulsating m=3 oscillations, the flow field consisted of 6 equal sized

independent cells. But as time passed, the temperature and velocity fields in the inner region became

slightly distorted. Gradually one of the two propagating disturbances (+ @) becomes dominant and

results in a one~directionally rotating oscillatory flow structure which consists of 3 larger and 3 smaller

distorted cells as shown in Fig.10. The figure illustrates the temperature and velocity distributions of
the rotating =3 oscillatory flow in almost 0.57, starting from 7=2.50 (at the point f in Fig.6). The

figure indicates that during a half period of U oscillation, the 3-D structure of 7=3 has rotated 1/6

way of its full rotation. If these are observed from a coordinate rotating with a constant angular

rotating rate @, we will see a steadily sustained 3-D structure of temperature and velocity field as

shown in Fig.11. Therefore the average Nu on both plates converge to a constant value, which is

slightly smaller than the averaged Nu value obtained by a 2-D simulation. The local Vi at any point,

. however, keeps its oscillation.

Fig.12 shows the calculated trajectories of tracer particles over 12, i.e., a time interval that allows 4
rotations of the 3-D structure of temperature-velocity distributions. In spite of the rotation of the 3-D
temperature-velocity field, the whole body of the liquid bridge does not follow the rotation. Most of
the fluid motions are rather localized. A very small portion of fluid continues long distance azimuthal
displacement. But it should be noticed the speed of the azimuthal motion is very small and the
particles move rather in the opposite direction to the rotation of the 3-D temperature-velocity field (i..
propagation direction of the hydrothermal wave).

These three case studies mentioned above indicate that many types of 3-D oscxllatory flow will arise
depending on the initially imposed Marangoni number (temperature difference between solid discs).
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This may explain the reported multi-morphological feature of the 3-D oscillatory Marangoni flows in
liquid bridges, pulsating and rotating, m=2 and 3 (and probably more m’s) for A4s=1.0. At smaller
Marangoni numbers, the pulsating oscillation prevails quite a long time. But at larger Marangoni
numbers, the pulsating oscillation is easily taken over by the rotating oscillation.
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Fig.6 Evolution of 3-D flow under Ma=8880.
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Fig.7 Snapshots of pulsating m=3 oscillation self-excited at M/¢=8880 over one period of local
velocity oscillation starting from 7= 1.249 indicated by point a in Fig. 6.
(a) Velocity vectors and isotherms, the upper plane is a cut at Z=0.85,
(b) 3-D structure of an isothermal surface of @=0.05.
(c) Isotherms and velocity vectors projected on a cut at Z=0.5.
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Fig.8 Power spectrum of local température and velocity oscillations at Aa=8880.

A: Power spectrum of fully developed temperature oscillations at different points. Al and A-2: during
pulsating oscillations, A-3: during rotating oscillations.
A-1 at points (R=1.0, 60, Z=0.5) and (R=0.5, 60, Z=0.5). A-2 at points (R=1.0, 6=/4, Z-0.5) and
(R=0.5, 6=v/4, Z=0.5). A-3: at point (R=0.5, 60, Z=0.5).
B: Power spectrum of fully developed surface velocity oscillations at different points. B-1 and B-2:
during pulsating oscillations, B-3: during rotating oscillations.
B-1 U, and Uj, at (R=1.0, 60, Z=0.5. B-2 U, and Uj at (R=1.0, 6=r/4, Z=0.5). B-3: U, and U, at
any point on Z=0.5 along the liquid surface.
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Fig.9 Transition from pulsating m=3 oscillation to a rotating m=3 under Ma=8880.
Isotherms, temperature deviation from the 2-D steady solution and velocity vectors on llqmd
surface and isotherms and velocnty vectors on a horizontal cut at Z=0.5.

b: at 7=1.356 ( at point b in Fig.6) , c: at 7=1.570 (at point ¢ in Fig.6),
d: at 7=1.784 ( at point d in Fig.6) and e: at 7=1.998 ( at point e in Fig.6)
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Fig.10 Snapshots over one period of the fully developed rotating m=3 oscillation at Ma=8880.
(a) Velocity vectors and isotherms, the upper plane is a cut at Z=0.85.
(b) 3-D structure of an isothermal surface of @=- 0.05.
(c) Projected velocity vectors and isotherms on a cut at Z=0.5.
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Fig.11 Velocity and temperature distributions during the fully developed rotating m=3
oscillation at Ma=8880.
(a) Velocity vectors and isotherms on liquid surface. An arrow on the top indicates the rotation
direction.
(b) Velocity vectors and isotherms on a horizontal cut at Z=0.5. An arrow indicates the rotation
direction.
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Fig.12 Trajectories of tracer particles during 127, of fully developed rotating m=3 oscillation.

Top views and birds-eye views.
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S5.14 Growth rate constant and the critical Marangoni number for 45=1.0

In order to get information on the growth rate and then to make comparison of the critical
Marangoni number with linear stability analysis, transient behaviors under different Marangoni
numbers are tested with the 3-D code. Using the final state in Fig.6 as an initial condition, Ma value
was decreased instantaneously from 8880 to 2500 and maintained for a short period, then increased
stepwise several times. Fig.13 is the plot of In(Up) during these transient calculations. The amplitude
of Uy decreases or increases exponentially with time depending on the Ma value. It should be noticed
that the mode of these oscillations was maintained as the rotating m=3 throughout the whole range of
the Ma change. From these results, the growth rate constant 8 and the oscillation frequency @ were
determined as a function of Ma and shown in Fig.14. For a set of data with the same m value, Band
of the self-excited growing 3-D disturbances (indicated by the key with a horizontal bar) and of those
obtained by the procedure illustrated in Fig.13 fall on the same curve. The results indicate that there is
a threshold value of Marangoni number at which f is zero and above which an infinitesimal 3-D
disturbance starts its growth; i.e. the critical Marangoni number Ma,. The critical Marangoni numbers
and the corresponding oscillation frequencies are determined by means of interpolation as: for m=2;
Ma=2615 w7=65.7 and for m=3; Ma=3175 ©=82.8. The Ma, for m=2 coincides within 4% of error
with the results of the linear stability analysis; Ma, =2532 and @, = 62.1 for m=2 2. As linear stability
analysis predicts, for liquid bridges of 4s=1.0 and Pr=1.02, the most dangerous mode of 3-D
disturbance is m=2 because it has the smallest value of the critical Marangoni number. The present
results of Fig.14 indicate that near this critical value, m=2 mode shows larger 8 value than m=3 mode.
But at larger Marangoni numbers e.g. Ma>5600, 8 value of m=3 exceeds that of m=2. As shown in
section 4.2, the 3-D disturbance with m=2 was automatically selected at Ma=4440, and m=3 at
Ma=6660 and 8880 during their self-excited growth from the quiescent initial state. These results and
Fig.14 suggest that there is a mode selection rule, ie., the 3-D-disturbance which has the largest
growth rate constant under a given Marangoni number, is preferentially excited and grows. But if the
Marangoni number were changed after an oscillatory flow had been established, the previous
oscillation mode sustained itself, as seen in the case of the raise of Ma from 4440 to 6660 in Fig, 3.
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Fig.13 Transient responses of U, oscillation to stepwise changes of Ma. Starting from the
solution at the final state of Fig. 6.
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Fig.14 Growth rate constant Sand oscillation frequency @ as a function of Marangoni number
for As=1.0, Pr=1.02 and B=0.
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5.2 As0.75

Fig.15 shows time evolution of the axial and azimuthal velocities at point A(R=1.0, 8=3m/4,
Z=0.54s), temperatures at point A and B(R=1.0, 6=r, Z=0.54s) and the average Nusselt numbers at
both solid surfaces during a self-excited growth of 3-D flow in a liquid bridge of 4s=0.75 with
Mo=T770 nitially being motionless. At the initial transient stage, surface velocity U, shows a large
over shoot due to the step-wise temperature increase at 7=0. As the plot of In(U;) in Fig.15-(b)
indicates, however, periodic azimuthal motions, although very weak, have been created within the
initial transient stage. This indicates the 2-D axisymmetric flow is unstable against 3-D perturbations
at Ma=T7770. The self-excited 3-D perturbation has an azimuthal wave number m=4 and grew
exponentially with time. This oscillatory flow starts as a pulsating oscillation, and maintains itself
pulsating over whole time span of calculation (7=1.9). As the oscillation amplitudes of local
temperatures and velocities increase, the average Nusselt numbers (if averaged over several oscillation
periods) become slightly smaller than those of the axisymmetric steady flow. Fig.16 shows some
snapshots of the fully developed pulsating m=4 oscillatory flow. Fig.16-a shows the 3-D velocity
vectors and isotherms, Fig.16-b; a 3-D isothermal surface at ©=0.05, Fig.16-c; velocity and
termperature distributions at mid plane (at Z=0.54s), Fig.16-d shows the velocity vectors and isotherms
on the liquid surface. The doted isothermal line indicates negative value and the solid line indicates
posttive value of @.

It should be noted that exactly the same 3-D oscillatory flow solution (i.e., pulsating m—=4 oscillatory
flow with the same oscillation amplitudes, frequency and structure of velocity and temperature fields
as shown in Figs.15 and 16 was obtained by a simulation which was started from a 2-D steady
solution at Ma=7770. And in this case, the growth rate of the 3-D disturbance with 7=2 during the
growth period (i.e., the slope of the In(Up) vs. t plot) was also the same as that shown in Fig,15-b.

In Ref 16 a pulsating, m=3 oscillation was obtained at Ma—=5920 (with 34, 57, 32 grid points in R, 6,
and Z direction, respectively) as a result of the growth rate enhancement by postulating an azimuthally
asymmetric (=3) heat exchange between the ambient gas for a short time in early stage. In this work,
similar pulsating, m=3 oscillatory flow was also incubated by applying the same growth rate
enhancement under Ma=7770 with 45, 65, 40 grid points.

If we use a coarser grid (34, 57, 32) at Ma=7770, a 3-D oscillatory flow of m=4 was self-excited. In
this case, however, the oscillatory flow started as a mixture of pulsating and rotating oscillation of
m=4 and later pulsation faded out and rotating, m=4 oscillatory flow remained. We discarded this
result because of its poor resolution.
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Fig.15 Time evolution of self-excited 3-D oscillatory Marangoni flow in 45=0.75, Ma=7770 and
Bi=0. Mode of the fully grown 3-d flow is n—4.
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Fig.16 A series of snap-shots of velocity vectors and temperature distributions
(), 3-D isothermal surface (b), velocity and temperature distributions on a horizontal cut at Z=0.54s ()
and isotherms and velocity vectors on the surface (d), over one period of the fully developed pulsating
m=4 oscillation under Ma =7770 and 4s=0.75.
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53 As=133 _

Fig. 17 shows time evolution of azimuthal velocity at point A(R=1.0, 6=1/2, Z=0.54s), axial and
azimuthal velocities at point A and B(R=1.0, 6=3w/4, Z=0.54s), local temperatures, local and spatially
_ averaged Nusselt numbers at Ma=3330. In this case, a pulsating type oscillation with m=2 was self-
excited and reached a constant amplitude pulsating oscillation stage. Fig. 18 shows instantaneous
velocity and temperature distributions at the mid-plane (at Z=0.54s) and temperature and velocity
distributions on the surface, during one period of oscillation at fully developed stage. The cold plume,
which would have flown down coaxially along the axis if the flow is axisymmetric, sprits into two and
flow down asymmetrically. On every half period, the axes of the cold plumes shift azimuthally by /2
almost instantaneously. The liquid bridge is separated into four equal sized cells. This pulsating
oscillation corresponds to the standing wave composed by the two equivalent hydro-thermal waves
propagating in opposite azimuthal directions™.

But around 7=2.5, the temperature oscillations in inner part (at points ¢ and d) exhibited some
phase sift and the transition to a rotating oscillation starts. The transition proceeded in a way similar to
that reported for m=3 oscillatory flow in a liquid bridge of As=1.0 . Finally the pulsation faded out
and a rotating oscillation established its steady oscillation by 7=3.6. The rotating oscillation
corresponds to a traveling hydro-thermal wave. Fig. 19-a shows a snapshot of the rotating m=2
oscillation. The detailed explanations of the rotating m=2 flow was described in Ref.16. During one
period of a local temperature oscillation, the combined 3-D structure of temperature and velocity fields
(hereafter it is called 3-D structure) rotates 1/2 (=1/m) way of its full rotation. In order to clarify the
fluid motion during the rotating oscillatory flow, tracer particles were released at 74.19. The
isothermal plane at this instance is also shown in Fig.19-b. Some of their trajectories during 7.5
periods of local temperature oscillations (i.e., during 3.75 rotations of the 3-D structure) are plotted in
Fig.19-c. As was pointed out for a 3-D flow * with m=3, the movability of fluid element is strongly
dependent on its initial position. The fluid element near the surface tends to show slow but long
distance azimuthal migration in opposite direction against the propagation of the hydro-thermal wave.
On the other hand, the inner fluid elements remain within rather confined zone, regardless the
unidirectional rotation of the 3-D structure.

Another simulation was conducted with Ma=6660 and 45=1.33. A 3-D oscillatory flow of m=2
was also self excited, grew and reached to a constant amplitude pulsating oscillation and then a
transition occurred to rotating m=2 oscillation. The resultant rotating m=2 oscillatory flow was exactly
the same as that reported in Ref.16.
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Fig. 18 Snapshots over one period of pulsating m=2 oscillations under Ma=3330, As=1.33; velocity
vectors and isotherms on the surface and mid plane (at Z=0.54s)
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Fig. 19 Characteristics of a fully developed rotating m=2 oscillation under Ma= 3330, 4s=1.33.
(a) velocity vectors and isotherms on the surface and mid plane (Z=0.54s), 3-D isothermal surface at
74.19.
(b) trajectories of tracer particles released at 7=4.19 and the points indicated by * and reached to the point
indicated by + during 7.5 periods of local temperature oscillations.
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54 As=1.60

Fig. 20 shows the time evolution of a 3-D oscillation in a slightly longer liquid bridge with 4s=1.60
under Ma=2220. The self-excited and fully developed 3-D disturbance in this case has a structures of
m=1. But for rather long time during growth (up to 7=1.7), pulsating 3-D disturbances with #=1 and 2
seemed to compete each other. Finally, disturbance with 7=1 became dominant. A pulsating
oscillation prevailé in the initial stage (7<3.9). In this pulsating m=1 oscillation, a cold plume flows
down off-center, and the axis of the cold plume swings back and forth on every half period along a
straight path as shown in Fig4 of Ref.16. The pulsating oscillation under this Marangoni number
lasted longer than the case reported in Ref.16, however, a transition to the rotational mode started at
739 accompanied with phase shifts in local temperatures and velocities. When the rotating
oscillation is fully developed (1>4.7), the averaged Nu converges to a constant value (Nu=3.05)
slightly smaller than that of steady axisymmetric flow (Mu=3.21), although the local Nu keeps
periodic oscillation. Some snapshots of the fully developed rotating m=1 oscillation are shown in Fig.
21. Trajectories of tracer particles during 4 periods of the temperature oscillation (or during 4 rotations
of the 3-D structure) are shown in Fig. 22. Fluid elements move over much wider area than the case of
As=1.33 (Fig.19-¢). Some fluid elements flow across the axis, justifying the experimental observations
of tracer motion in =1 oscillatory flow . It should be noted again that fluid elements migrate in
opposite direction to the hydro-thermal wave’s propagation,

_ The velocity vector in Fig. 21 shows two vortices on the middle plane (at Z=0.54s). Similar vortex-
pair was observed by Ar et. al.” by means of a PIV technique in =1 oscillatory Marangoni flow ina
liquid bridge of silicon oil (Pr=105.6) with highly distorted surface (see Fig.9 of Ref23).

As shown in Figs.23 and 24, the self-excited 3-D flow under Ma=4440 grew up as a pulsating
m=2 oscillation and there seemed no indication of transition to a rotating m=2 oscillation within the
calculated time span (7<3.4). This is the only case of pulsating oscillation being preferred to the
rotating one at larger Marangoni number.

By being started from a 2-D steady solution for Ma=4440, our 3-D simulation code also gave an
m=2 pulsating oscillating flow. As shown in Fig. 25, the incubation process in this case is quite
different from that of Fig. 23. However, the structures and characteristics of the finally attained
constant amplitude oscillatory flow were exactly the same as those self excited from quiescent
isothermal liquid.

This result again confirms the uniqueness of the oscillatory flow solution under a given Marangoni
number.
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AS=0.02

Fig.21 Snap-shots over one period of rotating m=1 oscillation, self-excited at /a=2220, 45=1.6.
(a) Velocity vectors and isotherms, the upper plane is a cut at Z=0.854s.
(b) 3-D structure of an isothermal surface of @=-0.05.
(c) projected velocity vectors and isotherms on a cut at Z=0.54s.

v g‘. h E L o
Fig.22 Trajectories of tracer particles released at 7=5.265 and the points indicated by * and reached
to the point indicated by + during 4 periods of local temperature oscillations in fully developed
rotating oscillatory flow under Ma=2220 and As=1.6.
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Fig.23 Time evolution of 3-D flow under A4s=1.60, Ma—=4440. A pulsating n=2 structure was self-
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Fig.24 Snap-shots of the fully developed pulstating m=2 oscillation at Ma=4440 and As=1.60.
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55 Growth rate of the 3-D disturbances .

The 3-D numerical code is used to clarify the transient response of the oscillatory flow to stepwise

decreases or increases of Marangoni number, as was illustrated in 5.1.4. During these processes, the
type (pulsating or rotating) of the oscillation was maintained its initial type, ie., that of the fully
developed oscillation. We have never experienced any transition from rotating to pulsating or vice
versa and shift of azimuthal wave number, m, caused by the serial change of Ma in the present series
of simulations for wide range of m, Ma and 4s.
The logarithmic plot of U, indicates that the growth of the oscillatory flow are well approximated by
an exponential function over very wide range of amplitude, and the slope of the line segment
connecting the peaks in In(Uj) vs. 7 plot provides 3 value. Thus determined f values and frequencies
@ are plotted in Fig. 26 as a function of Ma for all As and m studied here. From these plots for each
condition, we can determine the critical Marangoni numbers Ma,, at which Sbecomes zero, above
~ which the disturbances grow (8>0) and below which they decay (<0). Thus obtained Ma, and critical
oscillation frequency @, are tabulated in Table 1. These fall very close to the corresponding values
predicted by the linear stability analysis, the deviations are mostly within 4%, but discrepancy as large
as 8% was observed for 45=0.75. From our simulations for 4s=0.75, the most dangerous mode is
m=4, ie., the Ma, of m—4 is smaller than that of »=3. This is controversial to the result of a linear
stability analysis which predicts m=3 mode as the most dangerous mode. This discrepancy may be
attributed to the insufficient axial and azimuthal grid points in the present numerical simulations.

Beside the critical Marangoni numbers, the present simulations reveal the order of magnitude of the
growth rate constant Sand oscillation frequency @ over wide range of the Marangoni number.

In 5.1.4, we proposed a mode selection rule: i.e., a 3-D disturbance, which possesses largest growth
rate constant under a given condition, can grow up selectively. All case studies in this report satisfied
this mode selection rule. This fact indicates the validity of our mode selection rule.

Table1 Critical Marangoni numbers and frequencies.

As m Present results Linear stability theory
Ma, - Q. Ma;, )y
075 3 5424 1442 4944 129.2
) 4 5350 161.3 5775 166.7
1.00 2 2615 65.7 2532 62.1
) 3 3175 82.8 - -
1.33 2 1772 420 1752 41.1
160 1 1430 283 1413 27.4
: 2 1781 36.5 1734 35.5
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Fig.26 Growth rate constant 3 and oscillation frequency  at different aspect ratios and
Marangoni numbers for all calculated results.

5.6 Experimental Observability
Many experiments have been conducted to determine critical Marangoni number under
microgravity and normal gravity. In these experiments, the incipience of the oscillatory flow has been
detected by the observation of oscillation of temperature or velocity. As has been reported by
Carotenuto et al*, the oscillation amplitude grows very quickly after the first small amplitude
oscillation was detected. The present numerical simulations indicate that there must be an incubation
period during which 3-D disturbance is growing but is not yet observable. As Ma approaches to Ma,,
the growth rate constant approaches to zero and then the incubation time becomes infinitely long.
Therefore, the experimental determination of the true critical Marangoni number seems very difficult.
In order to obtain some idea on the observability of 3-D oscillatory convection, the results in
Fig.26 were re-plotted in Fig. 27 as a function of (Ma/Ma, —1). The figure suggests a very crude

correlation for B as follows,
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Ma !
B = B{ v —1} (13)

a

c

The least square method was applied for the whole set of data in Fig.26, which includes the results of
As=1.0?, to give B=10.7 and n=0.89. It should be noted that this equation is too crude to calculate
precise value of growth rate constant and should be avoided for such purpose as the mode prediction.

Equation (13) suggests the following discussion on the experimental observability of the incipience
of the 3-D oscillatory Marangoni flow in half-zone liquid bridges.

An experiment is always subjected to imperfections such as surface roughness, georﬁehical
asymmetries, thermal asymmetries, thermal fluctuations, etc. These imperfections are always present
at some noise level even at sub-critical conditions. The spectral decomposition of these noises will

contain a certain small but finite amplitude () of the critical mode. When the Marangoni number is
~1)# 2
V’=WoeﬂT=V’O eB(Ma/Ma.c WYeta/a (4)
increased beyond its critical value, the critical mode with amplitude y;, will grow exponentially with
time, independent of other modes. We assume that the growth will continue in the form where we
used Eq.(13) for B. The experimental instrument will detect the perturbation only if a certain threshold
amplitude y* well above the noise-level is exceeded. That means the apparent critical conditions
correspond to
— oBWa, /Ma, -1 1ara’ as)
where Ma, is the apparent critical Marangoni number. If now the observation time is limited to a
constant value £, The apparent critical Marangoni number will be

Ma , n ln(l//"‘/l[fo)av2 :
- "= 16
(Mac ) B (16)
or ’
1 (l//*/ ) 1/n
n
Ma, = Mg |1+ 2V | g a7
| o Bt, A

Therefore the deviation of the apparent critical Marangoni number from the true critical Marangoni
number will scale with the radius of the liquid bridge, such asa®” = a*, provided the observation
period #, is kept constant. Let us assume Eq.13 and Eq.14 hold over wide range of Ma/Ma, with
B=10.7 and n=0.89, and the fluid KCI (0=7.2x10” m%s). Eq.17 predicts a size dependency of the
apparent critical Marangoni number as shown in Fig.28 for different values of £, and (y*/y%). The
results indicate the observation petiod £, is the most important factor and the value of (y*/y,) gives a
minor effect. It should be noted that an extremely long observation time is required to detect the true
critical Marangoni number using large liquid bridges.
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As shown in Fig28, Eq(17) predicts Ma, =4” at large radius. This explains qualitatively the
experimentally determined size dependency of the apparent critical Marangoni numbser, i.c., roughly
Ma, =a"* , as reported by Masud et al.” and Carotenuto et al** .However, the following points made
quantitative discussions difficult. It is not known whether the observation period 7, has been kept
constant for the measurements of Masud et al.”, and how much time they allowed. In the experiments
of Carotenuto et al.*, temperature boundary condition was different from this numerical simulation
since they used non-steady ramped temperature difference method.
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Fig.27 Logarithmic plots of fand (w/®,) vs. (Ma/Ma-1).
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Fig.28 Bridge size dependency of the apparent critical Marangoni number predicted by Eq.17
drawn for molten KCl liquid bridges.
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5.7 Effect of an external perturbation on growth rate of 3-D disturbance
Tn this section, we will show that the growth rate of the 3-D disturbance can be enhanced by
some external perturbations such as vibrations, non-uniform heat exchange, efc. The next simulation
illustrates the effect of a temporary non-uniform heat exchange between ambient gas by assuming an
azimuthally non-uniform heat transfer coefficient (Bi=0.025sin26) with the ambient gas at
T,~(T+T;)/2 for a short time duration. This trick was adopted in our previous papers '*'°  in order to
shorten the incubation time of the 3-D disturbance at a highly super critical condition. Fig. 29
compares the time evolution of U, with and without the temporary non-uniform heat exchange. The
temporal heat exchange condition was applied only for the time interval indicated in Fig.29. The non-
uniform heat exchange provids a stepwise increase of amplitude by a factor of as much as 10° or more
within a 1.5 'period of oscillation. Despite the enhanced growth rate and a small phase shift of
oscillation, the established fully 3-D oscillatory flow has exactly the same structure as the self-excited
3-D flow under Ma—4440. ‘
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Fig.29 Effect of the external disturbance on the growth of 3-D flow under Ma=4440.
Comparison of the time evolution of U, with and without an azimuthally non-uniform heat exchange
with the ambient gas ( @0 ) via Bi=0.025sin26 for a short duration indicated in the figure.
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6. Results with low Prandti number fluids

In the previous sections, we described the oscillatory Marangoni convections in a rather high
Prandtl number fluid (Pr=1) . In these cases, the axisymmetric steady flow becomes unstable to three
dimensional disturbances at certain Marangoni number and the three dimensional flow always start as
either a pulsating oscillation or a rotating oscillation. In the case of low Prandil fluid’s half-zone, the -
transition takes from an axisymmetric to a steady three dimensional flow at a first critical condition.
The steady three dimensional flow becomes unstable and a second transition to a three dimensional
oscillatory flow takes place at higher temperature difference. The first critical number is predicted by
linear stability analyses. Linear stability analysis can not predict the critical condition for the second
transition. The second transition was numerically simulated first by Muller et al and later Levenstam
et al. But the second critical Marangoni number is not yet well understood. We have placed several
simulations for Pr=0.01 and 0.02 and obtained the following results. Again, it should be noted that a
two-dimensional simulation code always predicts steady solutions under any one of the following
conditions. In the following simulations, the three dimensional perturbations has never been excited
without adding very small random noise to velocity values at every mesh ‘points. A set of randum
values (average value = 0, standard deviation=10®) was generated at each time step and added to
velocity values until the three dimensional perturbation grown up to the order of 10 then quitted.
Without these artificial velocity perturbations, no three dimensional flow was initiated. Temperature
perturbations did not work at all.

6.1 Results with Pr=0.01
6.1.1 As=1.0 and Ma=50 _

In this case, as shown in Fig. 30 an axisymmetric flow field was established very quickly and the
velocity and temperature distributions are indistinguishable from those given by the two-dimensional
code. By continuous addition of small random noises on velocities, very weak (10*) three dimensional -
* disturbance was incubated and started exponential growth with time. As the disturbance grow up to
O(5x10*) at =20, the surface velocities changed abruptly. The flow field indicated a quick transition
to a three dimensional steady flow with a dominant azimuthal wave number »=2. The three
dimensional flow maintained itself steady thereafter. The structure of the steady three dimensional
flow and temperature fields are shown in Fig. 31. The growth rate constant 8 of the azimuthal velocity
component at the monitoring point depends on the value of the exposed Marangoni number values as
shown in Fig.32. By interpolating to =0, the first critical Marangoni number is determined as
Mac,=20.8. for As=1.0 and Pr=0.01. The value is very good agreement with the result of linear
stability analyses (Mac,=19.0) and also of the nonlinear numerical simulation of Levenstam et al.
They obtained Mac,— 19.6, by means of a three dimensional finite element code. The origin of the 3D
flow is not the temperature gradient in azimuthal direction. There are many controversial flow on the
surface; surface fluid flows toward hotter spot.
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Fig.30 Time evolution of 3D steady Marangoni flow at Ma=50, Pr=0.01 and As=1.0.
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Fig.31 Structure of velocity and temperature fields in a steady 3D Marangoni flow: Ma=50,
Pr=0.01 and As=1.0.
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Fig.32 Growth rate constant constant, 8, of the maximum value of azimuthal velocity as a
function of the Marangoni number. The first critical Marangoni number is determined by
interpolating to §=0.

—157 -
This document is provided by JAXA.



6.1.2 As=1.0 and Ma=90
In this case, after initial transient period, pseudo steady m=2 flow ficld was once established. But
- this flow field is unstable against 3D disturbances of odd azimuthal wave numbers (m=1, 3...). Fig.
33 indicates that a time dependent disturbance of m=1, or odd disturbances, superoposes onto the
steady 3D structure and generates the oscillatory 3D Marangoni flow throughout the liquid bridge.
The basic 3D steady flow maintains itself stationary. The strength of the superposed disturbances
show spacio-temporal variation, then the 3D flow field start oscillation. The origin of the 3D
disturbances in low Prandfl number fluids are, as has been pointed out by Dr. Kuhlmann in this
research group, inertia and hydrodynamic instabilities in the thin shear layer which appears near the
axis. The periodic oscillatory disturbances grow up from very small disturbances expomentially with
time. By plotting the growth rate constant against Ma, we get Fig.34 and the second critical
Marangoni number is determined by interpolating to 8=0. Thus determined Mac, is 66.5 with =
0.765. These are comparable to Mac,=62.5 reported by Levenstam and Amberd ™ by means of finite
element method. This suggests the numerical code is reasonably accurate.

62 Results with Pr=0.02

The code was also applied to a different configurations. Here, we conducted a simulation with
Pr=0.02. The first critical Marangoni number in As=1.0 liquid bridge is determined Mac, =34.8,
which is very close to the Mac, =34.3 predicted by linear stability analysis. v
A second series of simulations for As=1.80 was conducted. The first critical Marangoni numbser is
determined Mac,=21.4, which is also comparable to Mac,=20.6 predicted by linear stability analysis.
The flow structure of the steady 3D flow is illustrated in Fig.35. In this case, as is expected, the
dominant azimuthal wave number is m=1. The center of vortex draws a torus In Fig. 35, a iso-
pressure surface indicated by dark blue color approximately represents the shape of the vortex core.
The vortex core is extended in one direction and also slanted in the same direction. The trajectories of
tracer particles explain the flow field. The trajectories indicate that the liquid bridge is practically
divided into two independent segments by a vertical plane of mirror symmetry.

Further systematic simulations enabled us to determine the second critical Marangoni number
Mac;=61.6 and the critical frequency wc=3.08. There is no report available reference values on Mac,
and a, for 45=1.80.

Some of the numerical results have been visualized and recorded on Video Tape. The tape could be
available upon request.
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Fig.33 Temporal variations of an oscillatory 3D Marangoni flow : Ma=90, As=1.0 and Pr=0.01.
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Fig.34 Growth rate constant for the amplitude of U, as a function of Ma: As=1.0, Pr=0.01
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Fig.35 Structure of velocity and temperature fields in a steady 3D Marangoni flow in a long
liquid bridge : Ma=50, Pr=0.02 and As=1.8.
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7 Conclusion
From the present three-dimensional simulations, we obtained the following conclusion.

1) Three-dimensional oscillatory flows were self-excited even with the errors of numerical
calculations. In this series of simulations with 45=0.75, 1.0, 1.33 and 1.60, the azimuthal wave number
m ranged from 1 to 4 explaining the well-known multi-morphological feature of the 3-D oscillatory
Marangoni flow in half-zones. In most cases studied here, the initially grown disturbances exhibited
-pulsating oscillation. At large Marangoni numbers, the pulsating oscillation became unstable and often
exhibited transition to rotating type oscillation. However, pulsating oscillations were incubated and
remained for very long time span with m=4 at As= 0.75, Ma=7770, and with m=2 at As=1.6,
Ma=4440). ‘

2) 3-D disturbances with small oscillation amplitude grow or decay exponentially with time. The
present simulations clarified the order of magnitude of the growth rate constant fas a function of Ma
as shown in Fig.27.

3) The critical Marangoni numbers were determined. The critical Marangoni numbers are very close
to those of the linear stability analysis within few per cent of error. The largest deviation (about 8%)
occurred at 4s=0.75 where the present simulation was least reliable because of the insufficient
resolution,

4) The azimuthal wave number m of the most dangerous mode is roughly approximated by an
expression, m—2/As. But at super critical conditions (Ma/Ma_>1), disturbances with m other than the
most dangerous mode were excited. These indicate the validity of the mode selection rule proposed in
the previous paper, ie., a disturbance which shows the largest growth rate constant at a given
condition becomes dominant.

5) Growth rate constants were correlated as a function of the reduced Marangoni number. Assuming
the correlation to be the case for wide range of Marangoni number, we concluded that the apparent
critical Marangoni number is very strongly dependent on both the liquid bridge size and length of
observation time. '

6) The numerical code was applicable to low Prandtl number fluids. The code and the results gave us
first critical Marangoni numbers for different configurations. These values fall very close to the linear
stability analysis and previous non-linear simulations. ,

7) Perspective views of 3D flow structure were visualized and represented on hard copies and also
recorded on video tape. These would help understandings of the complex phenomena.
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