「天文学における補償光学の原理と応用」

いえ まさのり
家 正則（国立天文台）

1）すばる能動光学望遠鏡とその成果
2）ボケを直すレーザーガイド補償光学
3）次世代超大型望遠鏡TMT

「補供光学の原理と応用」，12／11／2，分子イメージングフォーラム，家正則（国立天文台）
第一部

すばる能動光学望遠鏡とその成果
遠くを見ることは昔を見ること

磨くのにさらに4年
（削りすぎたら最初からやり直し）

薄くて柔な鏡をコンピュータ制御

銀河団の重カレンズ効果
質量分布がX線分布と一致

宇宙考古学：宇宙の歴史を観測でひもとく

第2部

次世代の観測を担う超ハイテク技術「ボケ」を直してしまう
レーザーガイド補償光学

「補偵光学の原理と応用」，12／11／2，分子イメージングフォーラム，家正則（国立天文台）

集 光 力	$A=D^{2}$
像ザてづ	$s=D^{-2}$ （回虾限界明 0 日
中心強度	$A / S \propto \square^{4}$
背景光強度	\square^{0}
S / \mathbb{N}	\square^{2}

原理と用語

回折限界：λ / D（波長入，口径D）
フリード長：$r_{0} \propto \lambda^{6 / 5}$
等波面離角：$\theta \propto$ ro $/ \mathrm{H}$（有効高 H ）
制御素子数：$N \propto\left(D / r_{0}\right)^{2} \propto D^{2} \lambda^{-2.4}$
制御演算数：$N / \Delta t \propto D^{3} \lambda^{-2.4}$
$8 m$ 級，近赤外 $(\lambda>1 u m)$ で実用化
大口径ほど，短波長ほど計測と制御は急激に難しくなる。

波面センサー受光部

望遠鏡開口を188の小開口に分割

27

188素子補償光学初観測 （2006／10／9）

400億円の望遠鏡の解像力を 6億円で10倍に！

補償オフ（0．6秒角） $2.2 \mu \mathrm{~m}$ 補償オン（ 0.063 秒角）
「補賽光学の原理と応用」，12／11／2，分子イメージングフォーラム，家正則（国立天文台）

すばる188素子補償光学装置

すばるが撮影に成功した2つの太陽系外惑星

35役に立つ天文技術
－リモートセンシング

- 網膜診断 \longrightarrow
- レーザー手術
- 光通信
- レーザー加エ
- レーザー核融合
- 誘導避雷合
－ウラン濃縮

「補偵光学の原理と応用」，12／11／2，分子イメージングフォーラム，家正則（国立天文台）

第3部

10年後の天文学を担う次世代超大型望遠鏡TMT

「補偵光学の原理と応用」，12／11／2，分子イメージングフォーラム，家正則（国立天文台）

33等星～月面の蛍（数 10 mW 相当）が
補䙡光学観測の1時間露出で見える！補償光学钼測の1時間露出で見える！

