

This document is provided by JAXA.

Environment – Lowest Noise

• Advanced aerodynamics and GTF engine for low noise

• MRJ90 noise area reduced by 40%

First Rivetting

April/2011

Milestones and Events

Metal Cut Ceremony Sep./2010

MRJメタルカット式用

Last Bolt Ceremony Mar./2011

NA231103 NC

AITSUBISHI AIRCRAFT CORPORATION

Paris Airshow

June/2011

EFD/CFD for MRJ Development : outline

Aerodynamic characteristics will be validated by flight test.

Aerodynamic design : designed by CFD and evaluated by EFD

Aerodynamic data Noise prediction

: estimated by EFD interpolated or corrected with CFD : investigated/estimated/evaluated by EFD and CFD

MITSUBISHI AIRCRAFT CORP. PROPRIETARY

EFD application

- ·Wind tunnel tests (examples)
- ·Flow visualizations by advanced optical measurements
- •Noise source survey at low speed wind tunnel

CFD application

- CFD technology
- ·Simulation for all configurations
- ·Aerodynamic design based on MDO
- Equipment installation design for ADS and ECS
- Investigation for noise generation and propagation

First Engine to Test

May/2011

11/

MR

EFD for MRJ Development : Wind Tunnel Tests

MR

EFD for MRJ Development : Noise prediction

Noise source survey (JAXA/MHI collaborative work)

- · Evaluate aerodynamic properties and noise level simultaneously.
- \cdot Understand where the noise comes from.

Take-off/Landing Configurations

10 million mesh points, 3 cases/day

AITSUBISHI AIRCRAFT CORPORATION

- Apply to aerodynamic designs of wing/engine configuration and winglet
- Optimize aerodynamics (drag, lift) and structure (size, weight) simultaneously under constraints from design requirements.

Ground

MITSUBISHI AIRCRAFT CORP. PROPRIETARY

CFD for MRJ Development : Aerodynamic Design MRJ

Braking with Thrust Reverser 15 million mesh points, 1 case/day

NA231103 NC

17/

This document is provided by JAXA.

JAXA and Tohoku Univ.

- Investigation of noise source and prediction of airframe noise with acoustic analysis for community noise
- Prediction of engine noise propagation into cabin for passenger noise

LES* for Slat Noise (Courtesy of JAXA)

BCM*/LES for Landing Gear Noise (Collaboration with Tohoku Univ.)

LEE* for Fan Noise Propagation to Cabin (Courtesy of JAXA)

*LES: Large Eddy Simulation *BCM: Building-Cube Method *LEE: Linearized Euler Equation

20/

Future prospect on EFD and CFD

Issues to be improved :

EFD

- ·Lead time for test model preparation : design/manufacturing
- Data productivity : per day/per test run
- Accuracy of measurement : drag
- Compensation for the effects due to flow condition differences : Re/facility etc. CFD
- Lead time for calculation model preparation : geometry/grid generation
- Data productivity : hardware, algorithm

Further application :

EFD

- Extension to flight test : optical measurement/noise source survey
- •Unsteady measurement : PSP for buffet

CFD

- Integration of multi-flow field : internal/external flow of equipment
- Unsteady simulation : dynamic stability/noise prediction

MITSUBISHI AIRCRAFT CORPORATION	MITSUBISHI AIRCRAFT CORP. PROPRIETARY

NA231103 NC

21/

