宇宙開発事業団技術報告

月・火星探査段階の技術検討

0

0

1995年2月

宇宙開発事業団

于宙開発事業団

11日 /

N A S D A - T M R - 9 5 0 0 0 1

쉽

宇宙開発事業団技術報告

NASDA Technical Memorandum

月・火星探査段階の技術検討

Feasibility study on lunar and Mars exploration

森 英彦	高野 裕	滝沢 悦貞
Mori,Hidehiko	Takano,Yutaka	Takizawa,Yoshisada
川添 豪	金子 豊	名村 栄次郎
Kawazoe, Takeshi	Kaneko, Yutaka	Namura,Eijiro

技術研究本部システム技術研究部未来宇宙システム研究室 Future Space Systems Laboratory, Systems Engineering Department, Office of Research and Development

宇宙開発事業団

National Space Development Agency of Japan

This document is provided by JAXA.

目		

次

本		
	序論 月・火星開発利用を目指した宇宙開発	1
	1. ミッション要求の検討	4
	1.1 月面探查	4
	1.2 火星探查	7
	2. 月面観測構想の検討	10
	2.1 月面観測シナリオ	10
	2.2 月面観測衛星の検討	12
	2.3 電気推進軌道変換実験機の検討	20
	3. 月面着陸機 移動探査機の検討	30
	4. 月サンプル・リターン	42
	5. 火星観測衛星の検討	49
•	 6.火星大気突入・着陸実験機	58
	7. 火星サンプルリターンシステムの検討	64
	8. 月・火星探査のための輸送系	77
	9. 開発計画	79
	9.1 技術開発シナリオ	79
	9.2 開発スケジュール	80
	9.3 開発コスト	80

序論 月・火星開発利用を目指した宇宙開発

本書は、月・火星の無人探査、すなわち月および火星それぞれについての観測、着陸/ 移動探査およびサンブルリターンについて、社内検討の結果をまとめたものである。月・ 惑星探査はこれまで、主として米国、ソビエトにより行われてきた。またISAS、ES A等もそれぞれの貢献をしてきた。その主たる目的は科学探究にあった。月・惑星探査は 科学目的によって行うのであり、利用目的は不要であると言う議論もある。しかしながら 科学といえども、そのほとんどは人類の存在もしくは存続につながる内容を含んでおり、 利用の観点から整理されないものでもない。ことに宇宙開発事業団が、月・惑星探査に取 り組むに当たっては、実利用につながる構想なしには済まされないはずである。ここでは、 われわれが月・火星無人探査計画を検討するに当たって前提とした月・火星開発利用シナ リオの概略について記述する。

月、火星等を人類の活動あるいは生存の場にできないかという検討はすでに種々行われ ている。なかでも、月における³He 取得工場、太陽発電衛星資材工場および火星への中継 基地の建設計画、また火星のテラフォーミング構想などは重要な内容を含んでいる。投資 額が巨大であるため実現性の見当がつかず、これまでは現実的な計画としては浮かび上が ってこなかった。しかしながらスペースステーションの実現が間近となり、ロシアが計画 に加わって国際的な協力関係が整理されつつある現在は、国際協力の下での月・火星開発 利用計画に取り組むべく格好の時期ではないかと考える。

国際スペースステーションは 2015 年までの計画である。その後の計画はまだ決まって いない。後続計画として、一つはステーションの有人機能と軌道上サービスシステムとを 結合した軌道上サービスステーションを建設し、もう一つはスペースステーションの機能 をほぼそのまま月面上に移して有人月面拠点を構成するということを日本が提案してはど うだろうか。月面拠点のミッションは、月資源活用実験である。このような考え方に基づ いて日本としての宇宙開発全体計画のイメージを描くと図1のようになる。以下に各項目 に関して概略を説明する。

1. 有人月面拠点

先ずさし当たっては5人程度の人員が昼間(14日間)のみ滞在することとすると、スペースステーションの有人設備が大きな変更なしに活用できる。また輸送系としても、0

-1-

図1 月・火星開発を前提とした宇宙開発全体計画

			20	2000	2010	10		2020		20	2030
	火显探查	採査			₩ N	R.	サンブル・	1-41		有人	 有人火显探峦拠点
								_			
	月開発	36		月面観測/着陸	<u> </u>	移動探査/回収		有人月面拠点	点		月面逃地
	い道上り	軌道上サービス		拠道上サービ	ビスシステム		軌道上サービス	ビスセンタ		スペースポー	スポート
		************************		1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 1997, 19							
	宇宙実験	火 暾	`	国際スペース	・ステー	ション		-	71).	サトライヤ	
<u></u>	球観測	地球観測/通信		在米型術星				- - - - - - - 	再生型プラ	7174-	ム群
		**********************							******		
		计物	H	-11/H-11派生型	$ \rangle$	部分再使用型口	型ロケット			再创	再使用翅貨物
	그더										
- -	0	有人		スペース・	シャトル	ノ有人ト	/有人HOPE			再使	再使用型有人
4											
啊这1	C	貨物		一位	便い捨て上段	致			再使用型货物	貨物 (EOTV)	T V)
Ж) (1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1			
	>	有人		· .		·. ·'	1 1. 1.		再使用	再使用型有人OTV	V
	<u> </u>	月離渣盥機		校	着陸機	離希险機		-	呼他	再使用型離着陸機	ية ا

This document is provided by JAXA.

- 2 -

TVおよび月面離着陸機だけを開発すれば、LEOまでの輸送系はスペースステーション 時代とほぼ同じでよい。スペースステーションに続き、国際協力を発展させる。 2.軌道上システム

スペースステーションの有人機能と軌道上サービスシステムで開発される無人サービス 機能とを結合して、軌道上サービスセンターを構築する。用途は上記月面拠点への輸送中 継機能および軌道上実験/工場としてのフリーフライヤー群の運用である。中継基地は月 周回軌道上にも必要である。

3.静止軌道プラットフォーム。

軌道上サービスセンターおよび有人OTVができると、静止プラットフォームに対する メンテナンスサービスも行うことができる。したがって在来型の静止軌道上衛星はプラッ トフォーム化し、永続的に使えるようになる。また老朽化したプラットフォームは回収し、 デブリ発生を防止することができる。

4. 輸送系

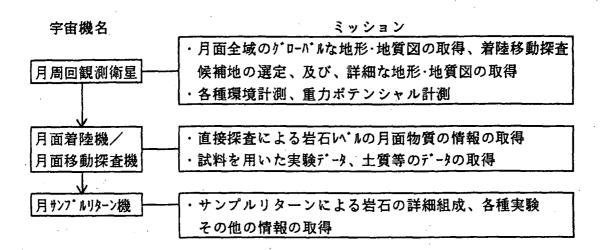
輸送系としては、LEO貨物、LEO有人、OTV貨物、OTV有人および月着陸機の 5種類が必要である。LEO貨物とは地上からLEOまでの輸送機である。月着陸機は再 使用型推進機系であり、有人ケビンあるいは貨物コンテナーに接続して着陸を果たすため に使われる。

5.火星探査

火星サンプルリターンを地上から1回の打上げで行おうとすると、LEO輸送機に非常 に大きな輸送能力が要求される。したがって軌道上サービスセンターを用いて、数回の打 上げ物資を組み立てて火星サンプルリターン機を構築するのが現実的であると思われる。

本書の検討内容は、上記の月・火星開発利用計画の上に立っているが、また逆に検討を 通して月・火星開発利用の手順を固めてきたともいえる。探査計画の性格上、開発利用計 画に変更を生じても有効性が大幅に損なわれるものではない。しかし早い段階に、後続計 画のコンセプトを固めておくことにより、探査計画全体を効率的に立案できることも言を またない。なお有人月面拠点以降の計画、軌道上サービスシステムおよび将来の輸送系に ついても検討する予定であり、まとまり次第別途報告する。

- 3 -


1. ミッション要求の検討

はじめに、月・火星探査それぞれについて、過去の探査機の成果及び現在進行中の計画 をふまえ(添付資料1、2参照)、宇宙機に対するミッション要求を整理する。

1.1月面探查

(1) 資源利用、基地建設のための探査

月資源利用、基地建設等月の開発利用を効率的に行うために、月面探査ミッションとして図1.1-1に示す手順でデータを取得する必要がある。

|図1.1-1| 無人月面探査ミッションの流れ|

月資源利用、基地建設のための、個々の探査宇宙機に対するミッション要求を以下に示す。⁽¹⁾

(a)月周回観測衛星

①月資源利用計画策定、基地建設のための空間分解能10m(地球のリモセンデータと同程度 の分解能)の月面全域の地質・鉱物組成分布図、等高線図の作成

②月資源利用計画策定のための月面全域の元素組成分布図の作成

③月資源利用計画策定、基地建設のために必要なレゴリスの厚さ等の地下構造の調査 ④月面移動探査機の着陸点、探査ルートについて空間分解能1m以上(岩等が識別でき る分解能)のデジタル地形データ及び等高線図の作成

⑤本格的な月面活動の際必要となる放射線、太陽風、磁力、重力場等の環境の計測 (b)電気推進軌道変換実験機

①本格的な月面活動の際必要となる地球-月間の広範な領域の長期にわたる放射線、

太陽風、隕石、磁力、等環境の計測

②重力ポテンシャル計測のための月面観測衛星-地球間のデータリレー

(c)月面着陸機/月面移動探査機

①月資源利用計画策定のための岩石等粒子単位の直接観測による組成観測、資源調査

②月面全域の資源探査のための直接観測データとリモートセンシングデータの対応付け

③月の表側と地質的に異なる、裏側、極地方の探査による上記①②の実施と対比

④月資源利用計画策定のためのレゴリス加熱実験、ヘリウム3抽出実験の実施

⑤基地建設のための月面土質データの取得

⑥本格的な月面活動の際必要となる放射線、太陽風、隕石、温度等の環境の計測 (d)月面サンプルリターン機

①月資源利用計画策定のための詳細調査を要するサンプルの地球への持ち帰り

(2)科学探查

科学探査のための個々の宇宙機に対するミッション要求は多様であるが主要なものを以 下に示す。⁽²⁾

(a)月面観測衛星、電気推進軌道変換実験機

①月の起源を解明するための難揮発性元素の存在度、鉄ーマグネシウム存在量比、金属の 存在度等月の科学組成データ、磁気、コアのデータ取得

②月の地殻・マントル構造とその進化の解明のための月震、重力場、表面物質組成、 月起源の微粒子等の計測

③月のコアを探るための月震計測、重力場計測

④月の熱的歴史を解明するための温度、重力場計測、地形観測

⑤月磁気の起源を探るための磁場計測

(b)月面着陸/移動探査機

①リモートセンシング観測データから結論された事実の確認

②以下の地域での詳細調査

1.水が存在するらしい地域

2. 月のマントルがクレータの底等に現れている地域

3. 地殻の断面が露頭として地表に現れている地域

4.月の最も古い地殻と考えられる地域

5. 地殻形成期の火山

6.現在でも噴気活動を行っている地域

(c)月面サンプルリターン機

①新物質、年代測定を実施するサンプル等科学的興味のある物質の地球への持ち帰り

(3) 開発利用と科学の探査

月探査の第1段階である観測衛星に対するミッション要求、及び、それを達成するため に必要な観測装置を図1.1-2に示す。本図からわかるように共通ミッションも多く、開発 利用のための探査は、月の起源の解明などの科学目的にも多大な貢献をなす。

〔参考文献〕

(1)RESTEC、昭和63年度 宇宙開発事業団委託業務成果報告書「月・惑星開発利用のた

めのリモートセンシングミッションに関する調査」:RESTEC、1989

(2)ISAS、月探査ミッション計画書:ISAS、1987

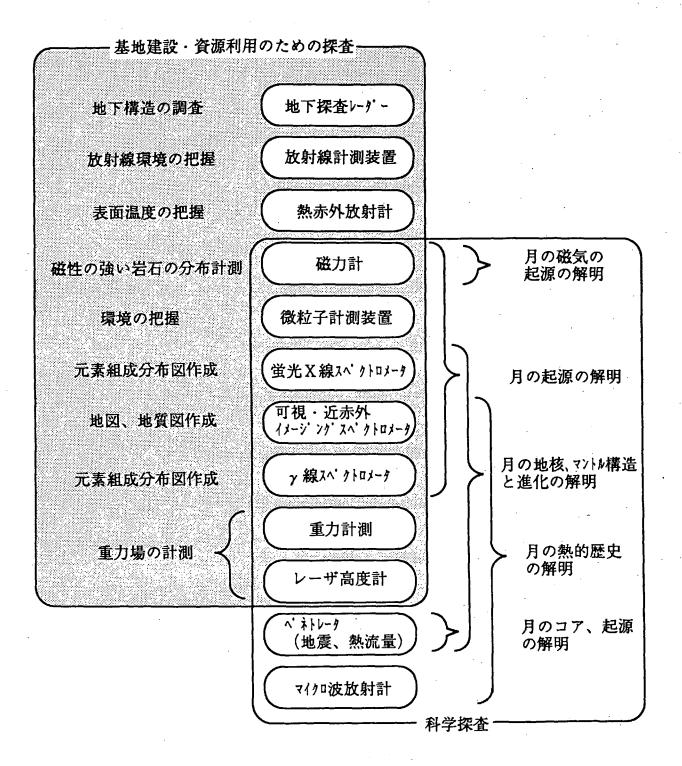


図1.1-2 月のリモートセンシンク 探査項目と必要な観測装置

- 6 -

1.2火星探查

火星の起源,歴史(進化過程),及び現状を調査するための各種科学観測を、探査機に より実施する。

(1) 周回軌道上からの火星観測

火星周回観測機により、火星表面及び大気に関するグローバルな各種科学観測、及び ローバ着陸候補地の地形データ取得を実施する。

①火星表面の地形/表面物質組成観測

- ・火星表面の地質分布、地質学的進化,揮発性物質の存在可能性を調査する ための、火星表面全域にわたる空間分解能 100mの地形図の作成,及び 表面物質組成の観測
- ・極冠の形成時期,及び気候変動への影響を調査するための、極冠の成分, 厚さ,季節変動の観測
- ・気象,火山活動を調査するための、熱赤外放射量の観測
- ②着陸/移動探査候補地に関する、地形及び各種観測
 - ・探査機の軟着陸及び移動の可否を判断するための、候補地周辺(20~40km 四方)に関する、空間分解能1mの地形図の作成。
 - ・候補地選定に必要となる、各候補地の詳細な観測。
- ③火星大気の観測
 - ・火星の気象/気候変動、大気の循環構造、及び揮発性ガス存在量を調査するための、火星大気の組成、気温、気圧、及びそれらの垂直分布の調査、
 (裏及び嵐の観測、水蒸気分布の調査。)
- ④火星周辺の荷電粒子環境の測定
 - ・火星磁場の性質を調査するための、荷電粒子のエネルギ分布の観測

(2)火星着陸/移動探査

火星周回観測衛星のデータを基に選定された探査地域について、火星着陸/移動探査 機を用いた、詳細かつ複雑な観測研究を実施する。

①火星の気象/気候観測

 ・火星気象/気候変化のダイナミックスを調べるために、表面環境(気温, 気圧,大気組成,風向/風速等)を観測。

②火星大気の垂直構造の調査

- ・大気の垂直構造を調べるため、着陸降下中の気温,気圧及び組成の変動を 観測。
- ・大気成分の詳細分析(微量ガス測定)を実施。
- ③火星表面の物質組成観測
 - ・表面物質分布に関する詳細調査のために、着陸地点及び移動経路上の複数
 地点で土壌あるいは岩石の元素/鉱物組成を分析。
 - ・この分析データは、周回観測衛星のデータ校正にも使用。
- ④火星地震の観測
 - ・内部構造の推定及び地震活動の有無を調査するための、地震観測を実施。

⑤火星における生命体の調査

・火星上における有機化学進化の詳細な過程(生成,安定度及び崩壊)を調査するための、有機物の定性/定量分析。

・火星生命体の存在を調査するための、各種生物実験(光合成反応,代謝反応等)の実施。

⑥火星表面画像の取得

・表面地形とその生成過程,気象/気候変化,極冠の生成過程等を観測する
 ための、地表画像データの取得。

(3) 火星サンプルリターン

火星サンプルリターン機によって、サンプルを回収し、地球上で詳細な分析調査を行う。 持ち帰るサンプルの候補としては、次のものが考えられる。

①土壌/岩石サンプル

 ・元素組成及び鉱物組成を詳細分析することにより、火星の地質学的進化, 火星水圏を調査。

・火星起源と言われるSNC隕石(*)と組成比較し、SNC隕石の起源を確認。 ②生命体もしくは生命体の痕跡

・サンプルの詳細分析による、生命体の存在調査

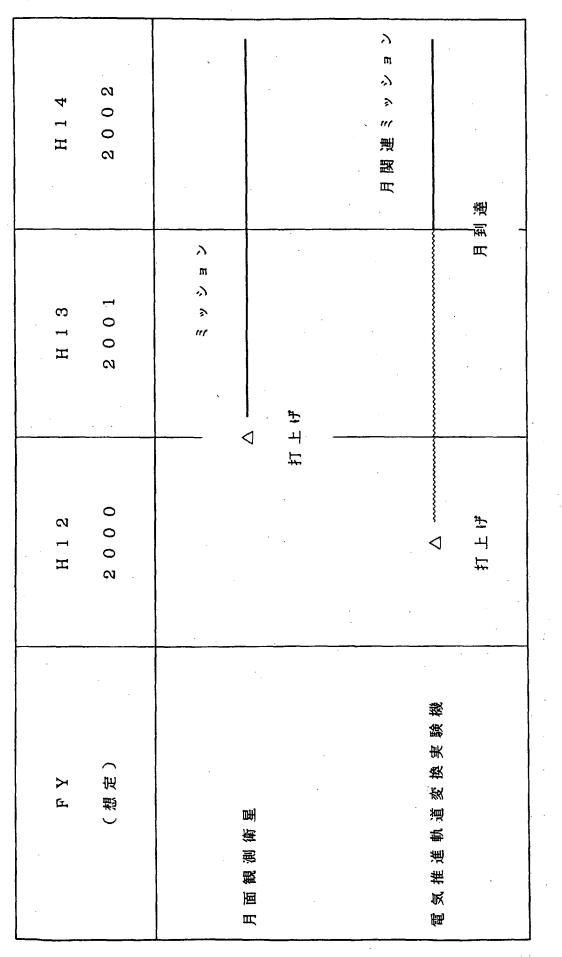
③極冠の氷

・詳細分析による、極冠の生成時期,生成過程の調査。

④火星大気

・詳細分析による、微量ガス成分の定性/定量分析

(*) SNC(シャーゴッティ,ナクラ,カッシニ)隕石:


この隕石は、元素組成,同位体組成及び年代測定等のデータが一 連のグループをなし、他の隕石と明確に区別できる。隕石中にトラ プされていたガス成分が、バイキングによる火星の成分と地球大気 の成分との混合物として説明でき、さらに構成鉱物の特徴がバイキ ングのデータと類似していることから、火星起源の隕石と推定され ている。(火星に隕石が衝突した時、火星の一部がはじき出された と考えられている) [参考文献]

- (1) RESTEC,昭和62年度宇宙開発事業団委託業務成果報告書「月・惑星資源利用のための リモートセンシング技術の調査」,MRC88-331,1988年3月
- (2) RESTEC,昭和63年度宇宙開発事業団委託業務成果報告書「月・惑星の開発利用のためのリモート・センシング・ミッションに関する調査」,MRC89-437,1989年3月
- (3) RESTEC,平成元年度宇宙開発事業団委託業務成果報告書「月・惑星の開発利用のためのリモートセンシングミッションに関する調査(その2)」,平成2年3月
- (4) RESTEC, 平成元年度宇宙開発事業団委託業務成果報告書「月・惑星の開発利用のためのリモートセンシングミッションに関する調査(その3)」, 平成3年3月
- (5) RESTEC, 平成元年度宇宙開発事業団委託業務成果報告書「月・惑星の開発利用のためのリモートセンシングミッションに関する調査(その4)」, 平成4年3月
- (6) RESTEC, 平成元年度宇宙開発事業団委託業務成果報告書「月・惑星の開発利用のためのリモートセンシングミッションに関する調査(その5)」, 平成5年3月
- (7) 富樫,「火星のGeochemistry」(月·惑星開発利用のための観測分析技術に関する調査 委員会資料), 1994.2.15

2. 月面観測構想の検討

2. 1月面観測シナリオ

月面観測衛星及び電気推進軌道変換実験機の組合せにより、必要十分な観測アータ を取得する(図2.1-1参照)。とくに、電気推進軌道変換実験機は月裏面の重力 ポテンシャルを計測する為のリレイ機能をはたすと共に、地球から月に至る広域かつ 長期な放射線や磁場等の宇宙環境データを取得する。

2.1-1 月 面観測 シナリ

X

 \mathbf{x}

This document is provided by JAXA.

-11-

2.2月面観測衛星の検討

2.2.1目的

月面観測衛星の目的を以下に示す。

①月面全域の資源探査、マッピング

②月の環境データの取得

③月に関する科学データの取得

④月軌道投入技術、月のリモートセンシング技術の修得

2.2.2ミッション構想

2.2.2.1ミッション機器

表2.2.2-1に月面観測衛星のミッション機器(案)を示す。月には大気がないために軌 道高度を低くできセンサの空間分解能を高くできる他、雲等もなく表面を直接観測できる。

2.2.2.2.2観測構想

(1) 軌道

観測軌道は、軌道傾斜角85°、高度100kmの極軌道とする。この値は、月周回軌道が重 カポテンシャルの影響で、100kmの軌道高度に対して±30km程度変動することを考慮して設定し た。この場合、軌道周期は118分である。

(2) ミッション運用

衛星の隣接の軌道間の距離は、赤道付近で約32kmである。

月面観測衛星のミッション機器のうち、空間分解能10mの可視赤外イメージングスペクhロメータは 4096素子のCCDを用いることを考えると刈幅が40kmである。従って、データ受信地球局を 3局とすると常時月が可視となり、最短で、衛星が月を1周する1ヵ月で月全面を観測で きる。地球局が1局の場合は、3~6ヵ月である。全面観測後は、1m分解能で月面着陸/移 動探査機に必要な地域の観測を行う。

刈幅が10kmと最も小さい蛍光X線スペクトロメータは4カ月で月面全域を観測できるが、同一 地域を複数回観測し、観測時間を増やし測定精度を上げる。

また、ミッション後半は約半年間重力ポテンシャル計測を実施する。以上から、ミッション期間は 2年とする。

(3) データ伝送

観測衛星が月の裏側に隠れる時間は最大48分であり、その間の観測データはレコーダに 記録し、可視時間に伝送する。記憶データ量は86.4Gビットである。地上局の性能として NASAのDSNレベルを考えると、直径0.8mのハイゲインアンテナを用い送信出力20 Wでデータレート60Mbpsが送信可能である。回線設計表を添付資料3に示す。

2.2.3システム検討

(1) システム解析

月面観測衛星の飛行プロファイルを図2.2.3-1に示す。表2.2.3-1に飛行シーケンスを示 す。推薬量は各イベントに対して5%のマージンを見込んでいる。H-Iロケット1機で 2トン級の衛星を月周回軌道に投入することができる。 (2) システム検討

図2.2.3-2,3にそれぞれシステム構想図、フェアリング収納図を示す。月周回軌道は太陽同期とできないため、太陽電池パネルを2軸駆動とし、6ヵ月毎にヨーアラウンドを実施する。

表2.2.3-2、3には、それぞれ、システム概要及びサブシステム主要諸元を示す。バス機器は従来の地球観測衛星の技術で開発が可能と考えられる。

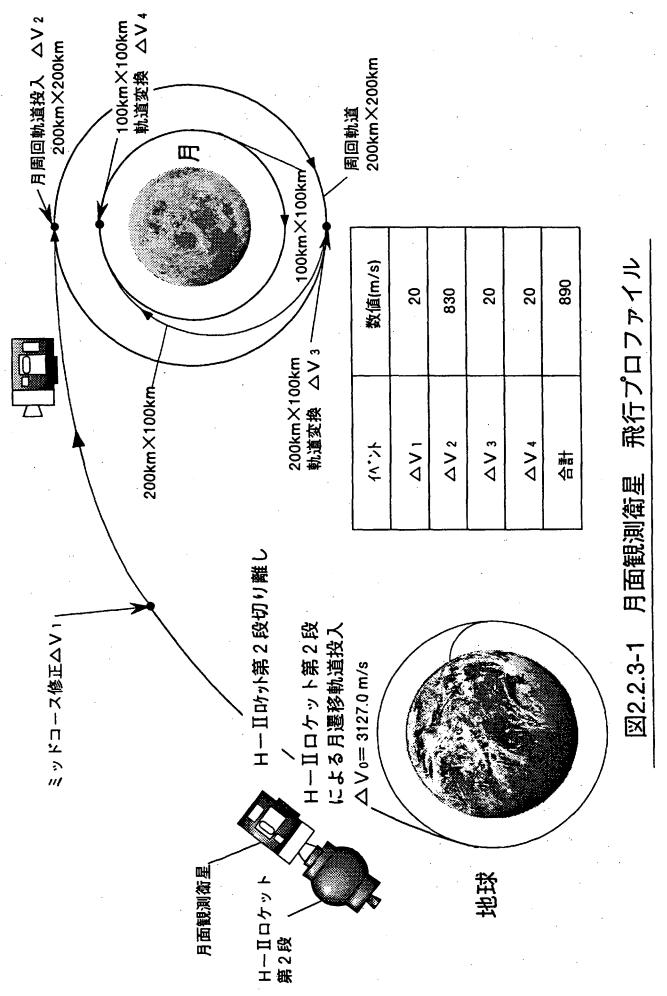
表2.2.3-4に重量・電力推算表を示す。(詳細は添付資料3参照)

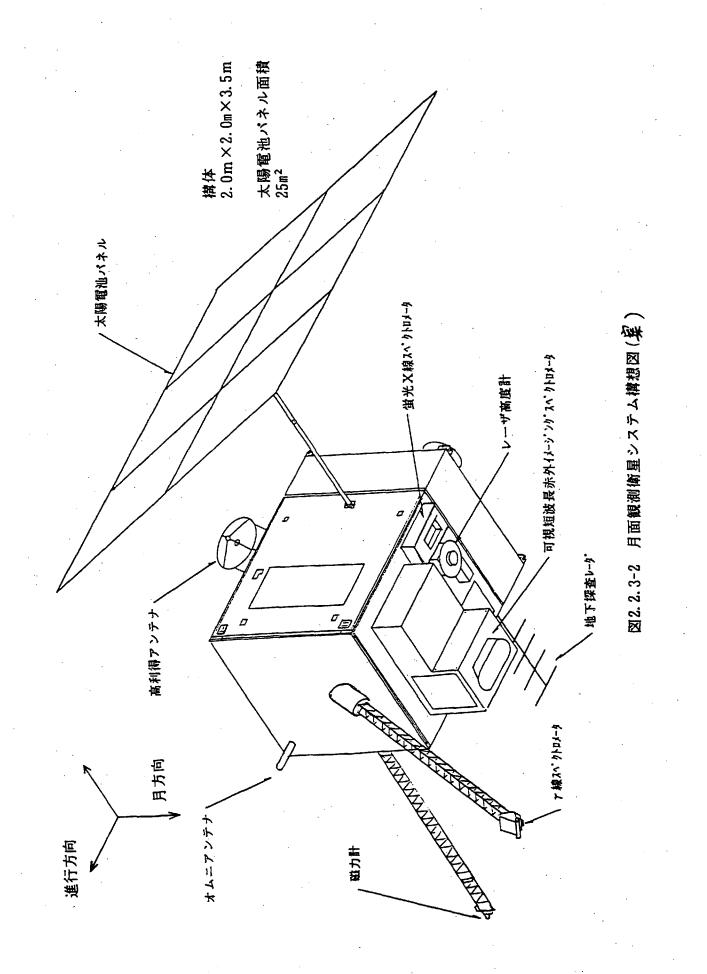
(3) ロケットシステム

H−Ⅱロケットで月遷移軌道に投入する。

イベント	経過時間	⊿V(m/s)	推薬重量(kg)	カレント重量(kg)
H-Ⅱによる月遷移軌道投入	基準	3150	_	2, 800
ミット・コース修正	約13時間	20	20	2, 780
200×200km月周回軌道投入	約90時間	- 830	650	2, 110
200×100km軌道変換	約100時間	20	15	2, 095
100×100km軌道変換	約110時間	20	15	2, 080
軌道保持		100	70	2, 010

表2.2.3-1 月面観測衛星飛行シーケンス


表2.2.3-2 月面観測衛星システム概要


項目	内容
打上げ機	H-Ⅱロケット(フェアリングφ4m)
投入軌道	高度100kmの月周回円軌道(軌道傾斜角85度)
ミッション期間	2年
重量	約2トン
ミッション機器	可視短波長赤外イメージングスペクトロメータ、蛍光X線スベクトロメータ、TEDA ヶ線スペクトロメータ、地下探査レーダ、レーザ高度計他

'	表2.2.2-1	月面観測衛星搭載センサ候補(案)	

	ンサ名	観測目的	主要諸元(案)	重量	電力	データ容量
赤外	見短波長 トイメージング ゙クトロメータ	月面全域の10m、1m 分解能ステレオマッピング、 地質・鉱物組成図作成	低分解能バンド数:8 観測波長:0.4~2.0μm 高分解能バンド:バンウロ	200kg	300W	30Mbps
1	とX線 (*) スペクトロメータ	月面全域の主要元素 組成分布図作成	検出:0.5~10keV 空間分解能10km	15kg	20W	1Kbps
Ƴ親 ⋧		月面全域の放射性 元素組成分布図作成	検出:0.1~3MeV 空間分解能60km	30kg	10₩	2. 5kbps
地形 地下	彡・ 「探査レーダ	極域を含む月面全域 のマッピング、地下構造	周波数Lバンド、VHF他、 空間分解能20m	150kg	500W	30Mbps
	-ザ高度計 ・イダー)	軌道高度の測定 センサの校正	空間分解能10m 高度分解能1m	50kg	150W	2kbps
重力	フポテンシャル 計測	軌道決定による重力 ポテンシャル計測	電気推進月周回機 によるデータリレー			
	放射線 計測装置	月周回軌道上の 放射線環境データ取得	宇宙放射線、太陽風 他の放射線計測	25kg	40W	100bps
TE Da	磁力計	月周回軌道上の 磁力データ取得	計測範囲:256、65536nT	7kg	10₩	20bps
	微粒子 計測装置	月周回軌道上の 微粒子データ取得	微小浮遊物、中性ガス 他の計測	18kg	50W	150bps
		月周回軌道上の 部品劣化データ取得	供試体: メモリ、MPU、太陽電池他	15kg	20W	100bps
A	へのセンサ	マイクロ波放射計、 熱赤外放射計他		40kg		
L		<u>1</u>	合 計	550kg	1100	60Mbps

-14-

This document is provided by JAXA.

- 16 -

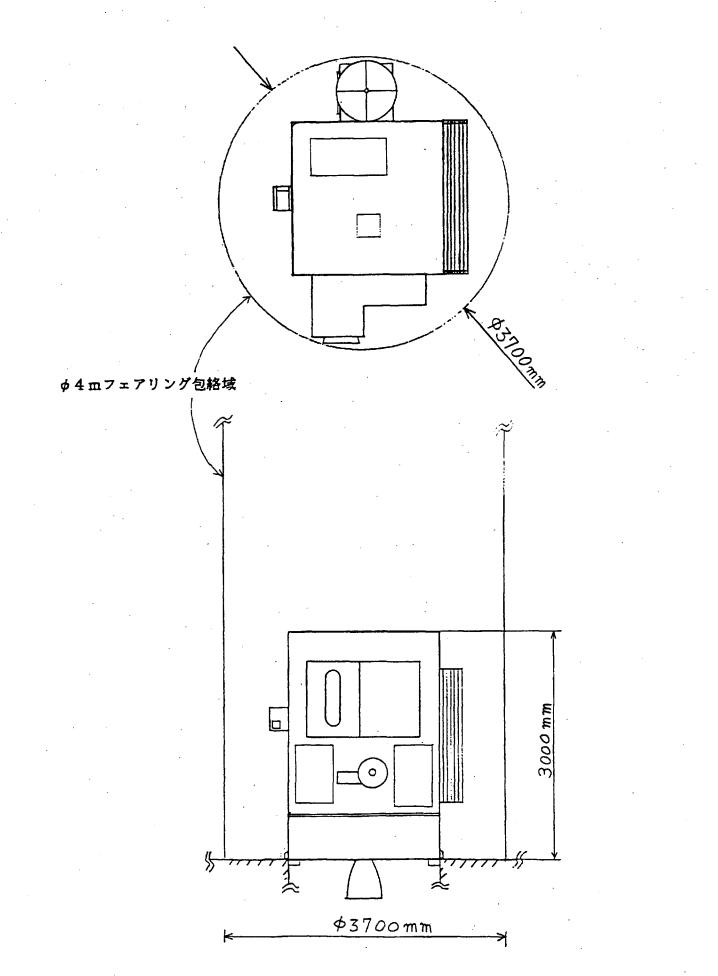


図2.2.3-3 月面観測衛星フェアリング収納図

区分	項目	諸元
構体系	1)構造	パネル支持構造 (CFRPトラス、CFRPハニカムパネル)
熱制御系	1) 方式	受動型と能動型の併用 (サーマルルーバ、サーマルブランケット等)
推進系	1)スラスタ	推力 : 2000N、50N×4、5N×12 推進薬: NTO/N2H4
太陽電池 パドル系	1)パドル	発生電力 : 4kW セル種類 : 高効率Siセル 2軸駆動
電源系	1)電源	50V系非安定バス
	2) バッテリ	Ni-MH 35AH×3台
	1)制御方式	3軸姿勢制御
	2)姿勢センサ	太陽センサ、恒星センサ、IMU
制御系 	3)アクチュエータ	リアクションホイール、スラスタ
	1)アンテナ	Sバンドオムニアンテナ+0.8mφハイゲインアンテナ
処理系	2)データレート	コマンド500bps、テレメトリ1kbps
	1)アンテナ	XバンドO. 8mφパラボラ(s/x共用)
ミッションデータ 処理・伝送系	2)送信出力	20W(送信データレート 60Mbps)

表2.2.3-3 月面観測衛星システム主要諸元(案)

	項	目	重量(kg)	消費電力(W)
月遷移軌道	道投入重	i量	2,800	
衛星			2,030	2,244
	ドライ		1,843	2,244
	3 %	/ ション機器	550	1,130
	バフ	、機器	1, 293	1,114
		構体系	300	-
		熱制御系	80	200
		推進系	180	280
		太陽電池パドル系	143	40
		電源系	127	18
		航法·誘導制御系	87	150
		通信・データ処理系	83	125
	· (ミッションデータ処理系	159	314
		ミッションデータ伝送系	54	267
		計装系	80	-
	マ-	-ジン	187	-
1	隹進薬		770	-

表2.2.3-4 月面観測衛星 重量電力推算表

2.3 電気推進軌道変換実験機の検討

2.3.1目的

電気推進軌道変換実験機の目的を以下に示す。

①低推力飛行のため約2年を要する月周回までの飛行時間を生かし、本格的な 月面活動の際必要となる長期・広域にわたる宇宙環境データを取得する。

②月周回観測衛星のレンジングデータを中継し、月重力ポテンシャルを測定する。

③大量物資の輸送を必要とする月面基地建設等の月面開発・利用に際し、効率 的、経済的輸送手段として必須となる電気推進OTVの基礎技術の確立を図る。

2.3.2ミッション構想

TEDA (Technical Data Acquisition Equipment)の各機器を搭載し、初期投入軌道 ^(*1)から最終軌道^(*2) までの軌道変換期間を通じて測定する。機器の詳細は表2. 3.2-1に示す。データ伝送については、地球局から可視域で得られたミッショ ンデータは直接伝送するものとし、不可視域でのデータは、データレコーダに記録 し、可視域で再生・伝送するものとする。伝送量はミッション系のリアルデータレ ートが320bpsで、再生データをあわせると1.6kbpsとなる。バス系データは可 視時にデータの取得・伝送を行うものとし、伝送量は512bpsとなる。これから、 伝送レートを3kbpsとし、USBによりTACSに伝送する。回線設計の詳細は添付資料 4に示す。

また、月心6000km、軌道傾斜角90度の円軌道を3カ月にわたり飛行し、月 観測衛星のレンジングデータを中継することにより、ほほ月全面の重力ポテンシャ ル計測が可能である。

(*1) 軌道高度200km、軌道傾斜角30度、周期1.5時間の地球周回軌道

(*2)軌道高度100km、軌道傾斜角90度、周期1.4時間の月周回軌道

2.3.3システム検討

(1) システム解析

飛行シーケンスを表2.3.3-1に、飛行プロファイルを図2.3.3-1 に示す。

電気推進軌道変換実験機はH-II相乗りにより打ち上げられ、地球周回低軌 道に投入される。その後、イオンエンジンを用い、螺旋状に軌道変換を行い軌道 高度を上昇し、月の重力キャプチャーを利用して月周回軌道に入る。飛行日数は 約2年である。 (2) システム検討

図2.3.3-2、-3に実験機構想図を、図2.3.3-4にフェアリング 収納図を示す。

表2.3.3-2に実験機システム概要を示す。

表2.3.3-3に実験機サブシステム仕様を示す。

表2.3.3-4に実験機重量・電力推算を示す。詳細は添付資料4に示す。

(3) ロケットシステム

・HーⅡロケット相乗り

低軌道(高度200km)への投入重量・・・実験機全備重量の1.3 t

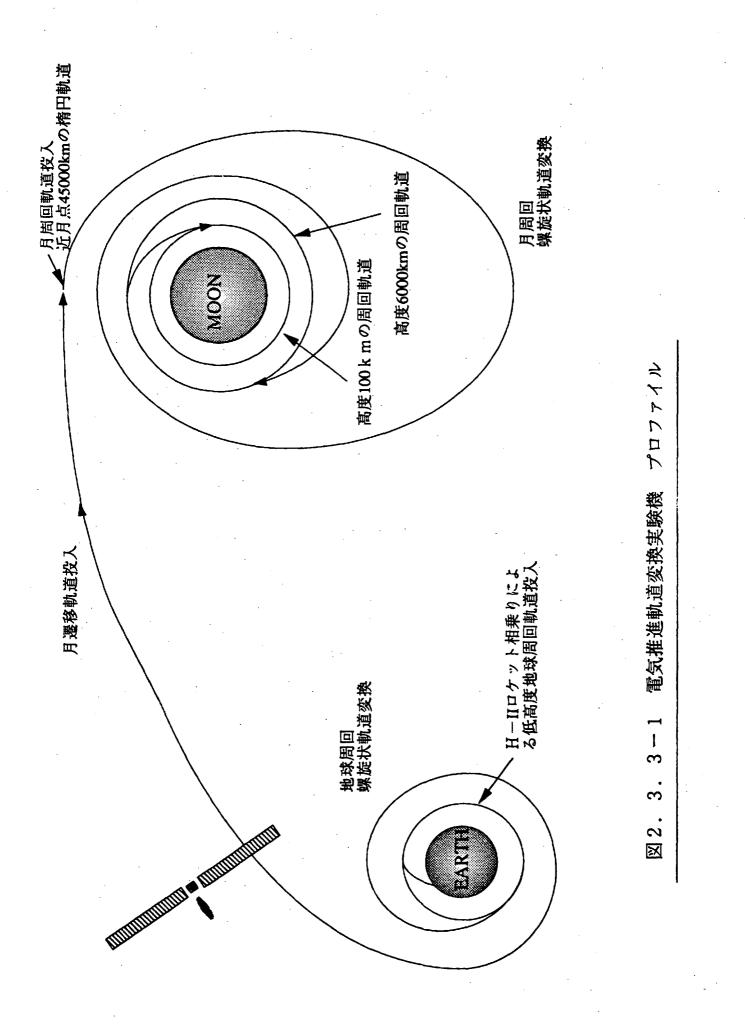
表2.3.2-1 電気推進軌道変換実験機ミッション一覧

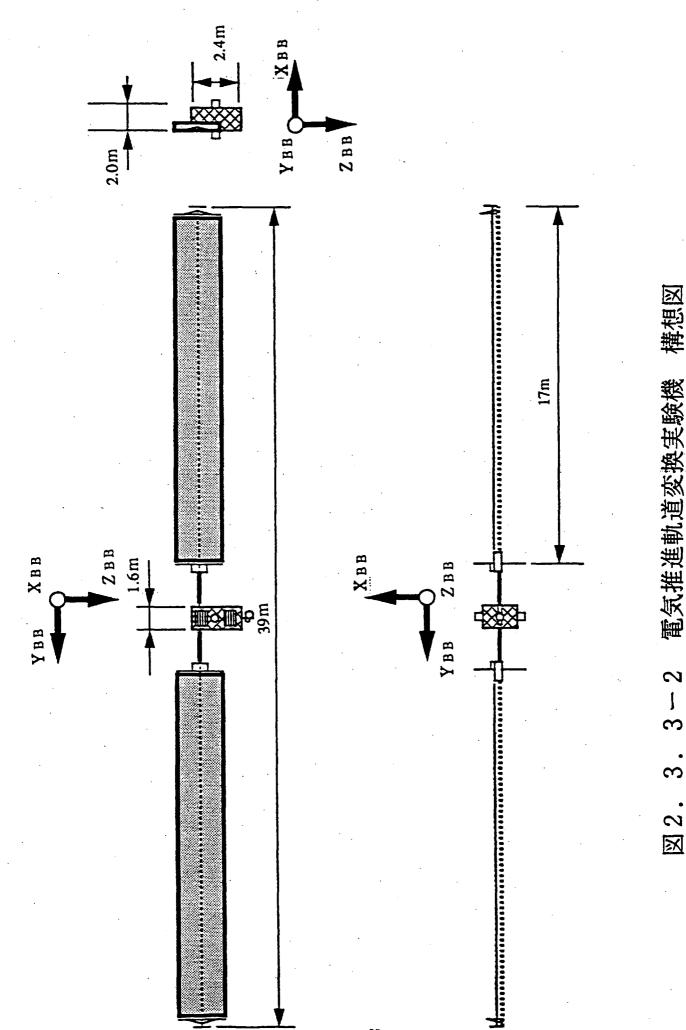
ミッション名	装置名	目的	主要諸元	伝送 レート (bps)	重量(kg)
		半導体の放射線吸収量の 計測	検出器:シリコン半導体検出器 カウント数:103カウント/秒 以下	16	5
	重イオン観測 装置	重イオンの種類、エネル ギ、核質量、強度、方向 分布を測定	検出器:位置検出器、PIN型半導 体、Liドリフト型半導体	80	15
TEDA	部品・材料劣 化装置	部品・材料の劣化装置	供試体:メモリ、ゲートアレー、 太陽電池等	100	15
	磁力計	磁場強度の計測	検出器:フラックゲート型 分解能:0.125nT	20	2
	帯電電位モニ タ	実験機表面材料の帯電電 位計測及びリーク電流計 測	計測項目:電位・・・音叉変調型、 電流・・・エレクトロメータ 計測精度:±5%以内	100	3
総計		· · · · · · · · · · · · · · · · · · ·		316	40

This document is provided by JAXA.

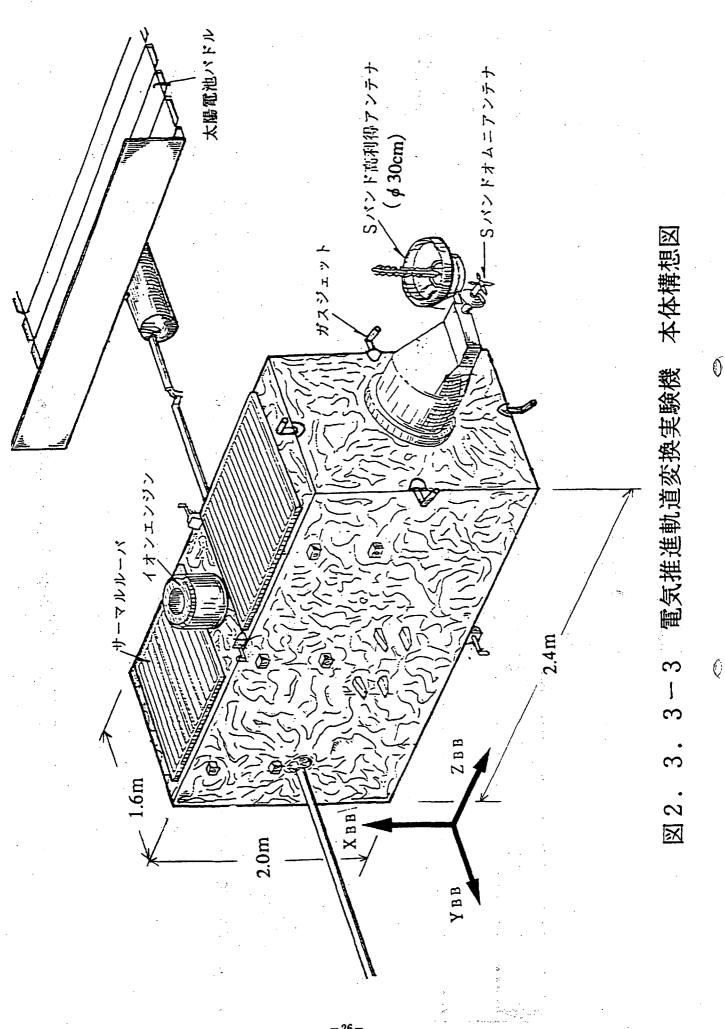
()

Ċ

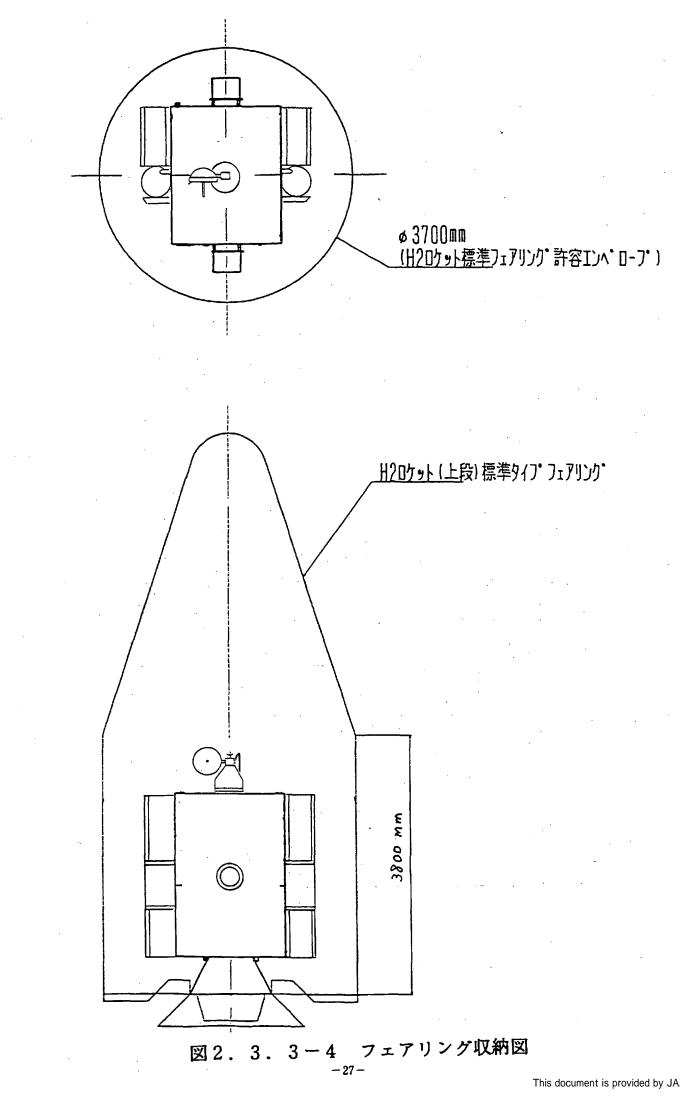

-22-


表2.3.3-1電気推進月飛行実験機ミッション・シーケンス

イベント	軌道高度	必要∆V	(注) 飛行時間	ミッシ	ョン	備考
		(m/s)	(day)	TEDA	月重力ポテン シャル計測	
打ち上げ						
地球周回軌道投入	200km					初期投入重量1.3 t
地球周回螺旋軌道変換	200km ~地心15万km	6,473	475			初期軌道変換(200km~ 350km)は大気抵抗が大 きく、軌道変換には RCSを用いる。この際 のΔV(170m/s)も含め ている。
月墨移軌道投入	地心15万km ~地心25万km	860	50			·.
月遷移	地心25万km ~月心4.5万km	0	12 (537)			月重力キャプチャー飛 行により、月軌道に遷 移。
月周回軌道投入	月心4.5万km ~月心2万km					
月周回螺旋軌道変換#1	月心2万km ~月心6000km	474	50 (587)			
重力ポテンシャル計測 ミッション	月心-6000km	0	90 (677)			月観測衛星のレンジ データを3カ月間中継 する。
月周回螺旋軌道変換#2	月心6000km ~100km	1050	40			
総計		7,333	717			


(注)括弧内は打上げから各イベント終了までの経過時間を示す。

-23-



-25-

This document is provided by JAXA.

-26-

項目	内容		
打ち上げロケット	H-Ⅱロケット相乗り(ファアリング:¢4m デュアル)		
ミッション期間	約2年(軌道変換+3カ月の重力ポテンシャ ル計測ミッション)		
全備重量	1.3 t		
ミッション機器	放射線吸収量モニタ、重イオン観測装置、部 品・材料劣化装置、磁力計、帯電電位モニタ		

表2.3.3-2 システム概要

表2.3.3-3 サブシステム仕様

構体系		約2.0×1.6×2.4 m 箱型	
熱制御系	· .	受動制御+能動制御(ヒータ+サーマルーバ)	
推進系	RCS系	INスラスタ。ホイールのアンローデイン 及び初期軌道変換に使用。	
	イオン エン ジン系	推力200mN、Isp3500の主推進システム	
誘導制御	系	三軸姿勢制御ゼロモーメンタム方式	
通信デー	タ処理系	伝送方式USB、アンテナ∮30cmのハイゲイ ン+オムニ	
電力系	太陽電池	BSFRタイプ フレキシブルパドル2.4×17m 2翼	
	パッテリ	Ni-MH。電力量約1500wh	

表2.4.3-4 電気推進実験機 重量・電力推算

項目	·····	重量(kg)	電力(w)	備考
	放射線吸収線量モニタ	5	12	
	重イオン観測装置	15	18	
ミッション機器	部品・材料劣化装置	15	20	
	磁力計	2	· 4	
	帯電電位モニタ	3		
<u> </u>	小計	40	62	
	構体系	80	-	
実験機バス機器	熱制御系	50	100	推進系のヒータ電力は
	RCS系	26		熱制御系に含める
	イオン・エンジン系	150	5300	
	誘導制御系	76	149	
	通信・データ処理系	50	85	
	電力系	380	30	
· · ·	小計	812	5623/323	イオンエンジン作動時の最大電力 /非作動時の最大電力
実験機ドライ重量		858		
	イオン・エンジン	274		
推薬重量	RCS	82		
	小計	356	_	
設計マージン	······	86		
総計	·	1300	5685/385	イオンエンジ ン作動時の最大電力 /非作動時の最大電力

-29-

3.月面着陸機/移動探査機の検討

3.1目的

月面移動探査機の目的を以下に示す。

①月面の無人着陸資源探査

②月面上の環境データの取得

③月面上での各種実験の実施

④月に関する科学データの取得

⑤月・火星の着陸/移動探査技術の修得

3.2ミッション構想

月面移動探査機のシステムは、月面上観測・実験のみを行うケースと、サンプル収集を 合わせて行い、サンプルリターン機に受け渡すケースの2種類がある。以下には、月面上 観測・実験のみを行うケースについて示す。サンプル採集も行うケースについては、添付 資料5参照。

3.2.1ミッション機器

表3.2-1に月面移動探査機1号機のミッション機器候補(案)を示す。ミッション機器 重量は50kgである。

3.2.2観測構想

(1)移動探査機ルート

月は表側と裏側で地殻の厚さや地質構造が異なるため、月面移動探査機の探査候補地が 広範にわたり、複数の探査機が必要と考える。1号機の探査ルートとして、生成年代の最 も新しいコペルニクスクレータ及び古い時代に形成された雨の海の縁を一度に探査でき、着陸場所 は既知でありリスクが少ないという理由から、図3.2-1に示すアペニン山脈からコペルニ クスを候補(案)とする。2号機は1号機と異なる地域(裏側、もしくは極地方)を探査 することが有意義であるが、今後検討を実施する。

(2) ミッション運用

月面着陸機は移動探査機を月面に展開するまでがミッションであり、月面観測等は考えない。 月面移動探査機は、月面上では日中平均速度1km/h、最高速度4km/hで1日に5km程度走 行(運用:数時間/1日)し、1年間で約1,000km移動することを想定する。観測及び実 験は、リモセンデータから決定された観測点と、画像データを見て重要と判断される点の合わせて 100地点程度で行う。

(3)データ伝送

移動探査機は月の表側を移動するため常に地球から可視となる。従って、ミッションデ ータレコーダは必要ない。データレートは最大21Mbpsであり、地上局にNASAのDSN 級を考えると直径0.6mのハイゲインアンテナを用い送信出力5Wで回線を確保できる。回線 設計表を添付資料5に示す。2号機で裏側を移動探査する場合、月周回データ中継衛星が必

This document is provided by JAXA.

要となる。

3.3システム検討

(1) システム解析

月面着陸機/移動探査機の飛行プロファイルを図3.3-1に示す。

月面着陸機の推進系は、貯蔵性推進薬を用いた2,000Nスラスタ(ETS-M搭載LAPS相当品) を5基クラスタ化し、うち1基について40%程度のスロットリングを実施するシステムと した。

表3.3-1に飛行シーケンスを示す。H-Ⅱロケット1機で、着陸機の推進系に貯蔵性推 進薬を用いた場合、500kgの移動探査機を月面に輸送することができる。

(2) システム検討

図3.3-2にシステム構想図、図3.3-3にはフェアリング収納図を示す。 表3.3-2、3にはシステム概要及びサブシステム主要諸元を示す。 表3.3-4に重量・電力推算表を示す。また、添付資料5に詳細を示す。

(3) ロケットシステム

H-Ⅱロケットで月遷移軌道に投入する。

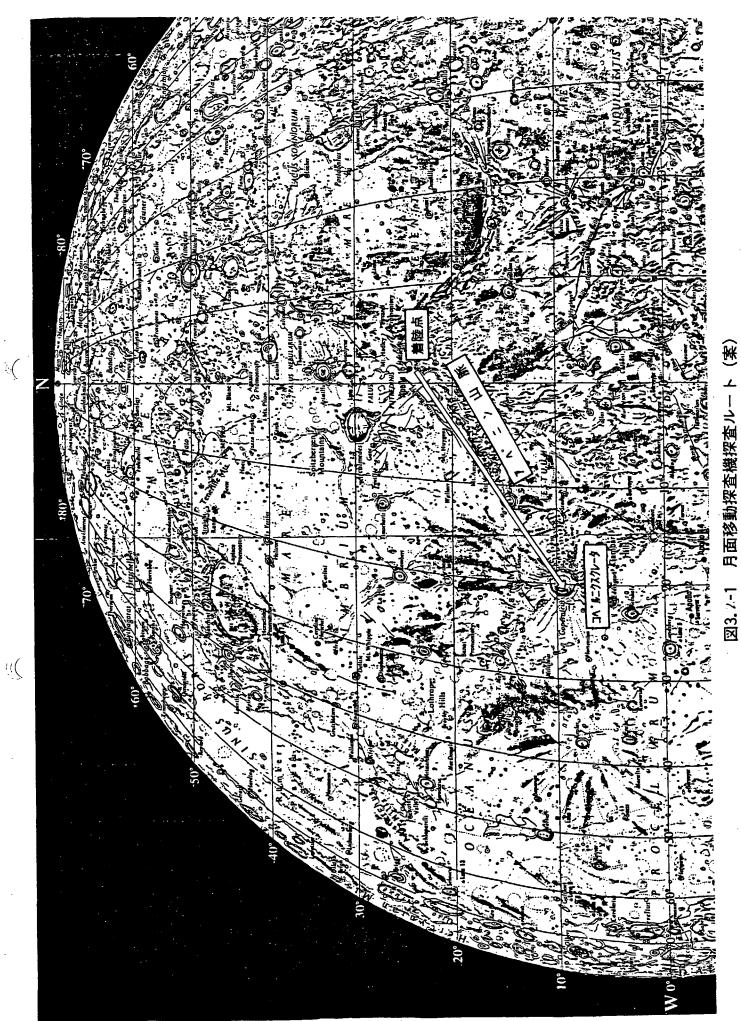
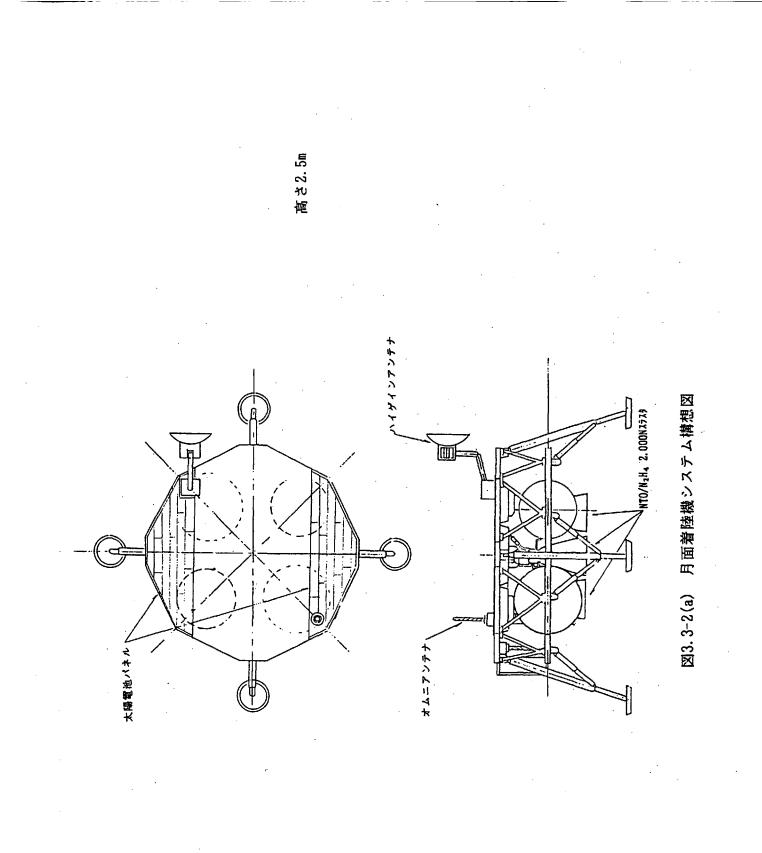

イベント	経過時間	⊿V(m/s)	推薬重量(kg)	カレント重量(kg)
H−Ⅱによる月遷移軌道投入	基準	3150	-	2,800
ミッドコース修正	約13時間	20	20	2, 780
100×100km月周回軌道投入	約90時間	860	695	2,085
100×15km軌道変換	約100時間	20	15	2, 070
軌道決定、機器チェックアウト	約100時間		_	2, 070
最終着陸	約110時間	1,890	950	1,120
姿勢制御、マージン	-	150	50	1,070
月面移動探査機分離	約120時間	-	-	570+500*

表3.3-1 月面着陸機/移動探査機飛行シーケンス

*月面着陸機重量(570kg)+月面移動探査機重量(500kg)

候補センサ名	観測目的	主要諸元
リモート2次イオン 質量分析器(リモートSIMS)	月面物質の化学組成、特に微量元素 組成を分析する。	測定質量範囲: M=1~210 amu
r線 スペクトロメータ	元素組成の分析、岩石の概略区分を 行う。	測定エネルギ範囲: 0.1~10 MeV
蛍光X線 スペクトロメータ	元素組成を分析する。	測定エネルギ範囲: 0.5~10 keV
クローズアップカメラ	月面物質を拡大観察し、鉱物種を 推定する。	倍率:100倍(TBD) 画素:512×512
レゴリス(月面表土) 加熱実験器	表土を加熱し、揮発成分の抽出実験 を行う。また、溶融/固化による 資源利用実験を行う。	分析はリモートSIMS と兼用。

表3.2-1 月面移動探査機ミッション機器候補


This document is provided by JAXA.

Ø

Q

- 34 -

. - 35 -

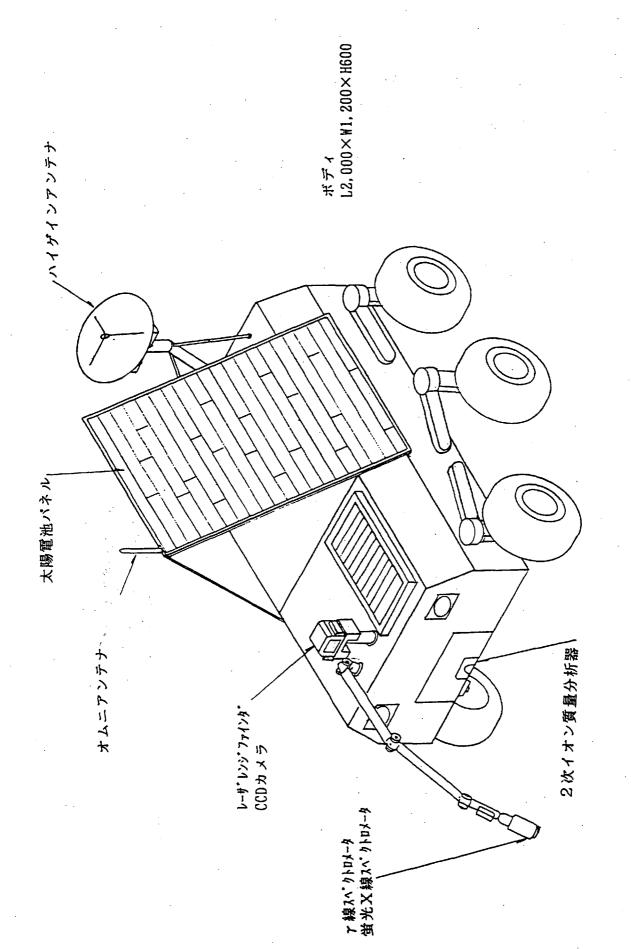


図3.3-2(b) 月面移動探査機システム構想図

- 36 -

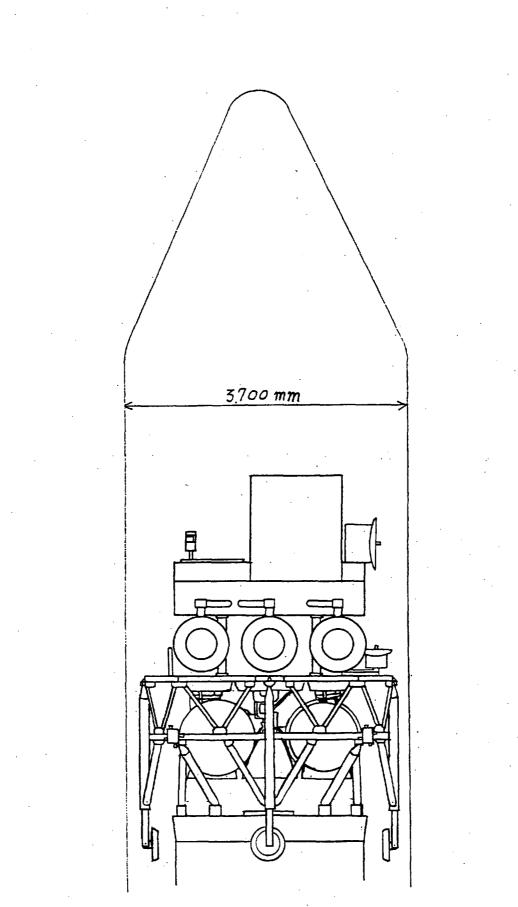


図3.3-3 月面着陸/移動探査機フェアリング収納図

項目	内容
打上げ機	H-Ⅱロケット(フェアリングφ4m)
着陸点	アポロ15号の着陸点(雨の海の西の縁)付近
ミッション期間	着陸後月面移動探査機分離後まで
重量	570kg

表3.3-2(a) 月面着陸機システム概要

表3.3-2(b) 月面移動探査機システム概要

項目	内容
打上げ機	H-Ⅱロケット(フェアリングφ4m)
活動場所	アペニン山脈〜コペルニクス(約1,000km)(図3.2-1参照)
ミッション期間	1年
重量	約500kg(ミッション機器50kg)
ミッション機器	リモート質量分析器、蛍光X線スペクトロメータ、r線スペクトロメータ レゴリス加熱実験装置、クローズアップカメラ
走破性能	最大登坂角度30°、最大安定傾斜角35°、登坂可能段差30cm 走行速度1km/h(平均)

表3.3-3(a)	月面着陸機サブシステム主要諸元	(案)

サブシステム	項目	諸元
神生女	構造	トラス+パネル構造
構体系	着陸時の衝撃吸収	アルミハニカムの塑性変形
熱制御系	方式	能動型と受動型の併用
+# *# -7	主推進エンジン	推力2,000N NTO/N2H4エンジン(LAPS相当) ×5基 うち1基は40%スロットリングを実施
推進系	スラスタ	50N×8,1N×16
金組文	太陽電池	発生電力:200W セル種類:高効率S i
電源系	バッテリ	容量:800Wh 種類:Ag-Znー次電池
	姿勢制御方式	3軸姿勢制御
航法·誘導制御系	着陸方法	画像データより障害物を避け半自律的に着陸
	搭載センサ	太陽センサ、恒星センサ、IMU、 着陸用レーダ、ビデオカメラ
	周波数	テレメトリ・コマンド:USB 画像データ:Xバンド
通信·データ処理 ミッションデータ処理系	データレート	テレメトリ:1,024bps、コマンド:500bps 画像データ:4.6MHz(送信出力5W)
	アンテナ	オムニアンテナ:USB ¢30cm高利得アンテナ:X/Sバンド

表3.3-3(b) 月面移動探査機サブシステム主要諸元(案)

· · · · · · · · · · · · · · · · · · ·	[]	·······
サブシステム	項目	諸 元
構体型	様式	フレーム+パネル構造
熱制御系	方式	サーマルルーバ+受動型熱制御材
	夜間保温方式	ヒータ+水潜熱利用
走破系	車輪	ワイヤメッシュ
	操舵	方式:前輪2輪操舵
	駆動方式	ブラシレスDCモータ+ハーモニックドライブ方式減速機
電力系	太陽電池バネル	発生電力:200W(MAX) セル種類:高効率Si
	バッテリ	種類 Ni-MH 容量 1,400Wh
操縦系	航法	慣性航法+地形認識航法
	制御	遠隔制御+危険回避自律制御
	搭載センサ	CCDカメラ、レーザレンジファインダ、車輪回転計 太陽センサ、傾斜計、接触センサ
通信·データ処理、 ミッションテ゚ータ伝送系	周波数	テレメトリ、コマンド:USB ミッションデータ:Xバンド(送信出力5W)
	データレート	テレメトリ:1,024bps コマント、:500bps ミッションテ、ータ:21Mbps
	アンテナ	オムニアンテナ:USB φ60cm高利得アンテナ:X/Sバンド

表3.3-4	月面着陸機/	′移動探査機	重量電力推算表

	項		重量(kg)	消費電力(W)
月遷移軌道	投入重	i量	2,800	
月面着	陸機		2, 300	700
기	ライ		570	662
	バフ	機器	512	662
		構体系	114	-
		熱制御系	20	30
· · .		推進系	200	360
		電源系	49	15
		航法·誘導制御系	61	140
		通信・データ処理系	48	117
		計装系	20	-
	7-	-ジン	58	38
推	進薬		1,720	-
月面移	動探査	£機	500	800
	Ĩ .	, ション機器	56	100
	バフ	×機器	407	658
		構体系	66	-
		熱制御系	94	50
		走破系	48	279
		電力系	67	16
		操縦系	52	108
		通信・データ処理系	35	45
		ミッションデータ処理・伝送系	35	160
		計装系	10	_
	7-	ージン	37	42

-41-

- 4.月サンプルリターン
- 4.1 目的

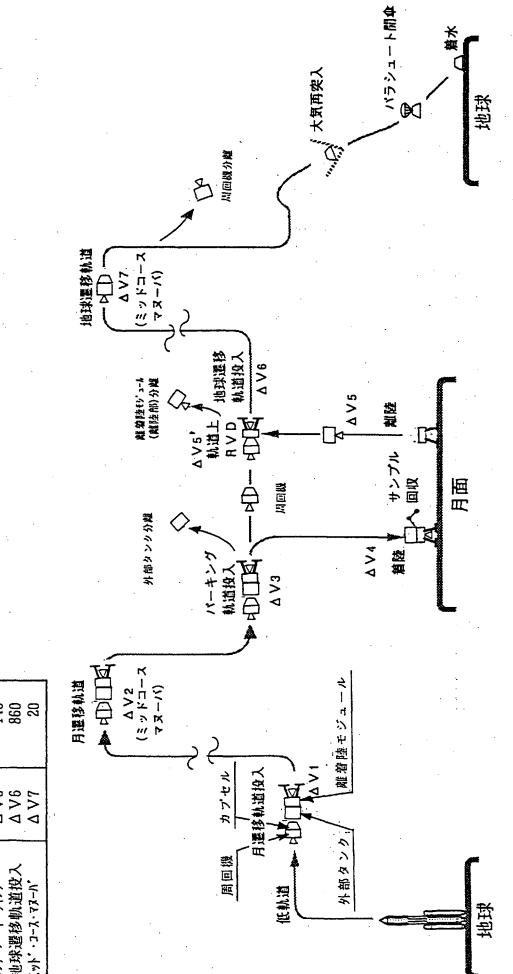
月面サンプルリターンの目的を以下に示す。

- (1)月面物質の詳細分析
- (2) 周回機によるリモートセンシングデータの検証
- (3)月住復技術の取得
- (4)火星サンプルリターン技術の開発
- 4.2 サンプル回収の方法

①サンプルの収集は、別途打ち上げられる月面移動探査機により行われるものとする。 ②回収するサンプルは50kgとする。

- 4.3 システム検討
- 4.3.1 検討のケース

本章で述べる月サンプル・リターン・システムの構成は、 カプセル,離着陸モジュール,月周回機,及び外部タンクからなり、各部の役割は次の通りとする。


: サンプルを積み込んだカプセルを地球遷移軌道へ投入す ・月周回機 る。本モジュールは、本体の月面着陸前に分離し、離着陸 モジュールがサンプルを積み込んでいる期間は。月周回軌 道に待機する。推進剤として、storableを用いる。 ・離着陸モジュール: 月面に着陸し、サンプルを収集後、月面を離陸する。収 集したサンプルは軌道上で月周回機に積み替えられ、離着 陸モジュールのミッションは終了する。本モジュールの推進系は月 周回軌道投入、月面着陸/離陸に用いられる。推進剤は storableである。 なお、離陸する際に、着陸脚,着陸用センサ,サンプル 積込み装置等は、月面上に残すものとする。 : 月周回軌道投入の際に、離着陸モジュールの推進系を使 ・外部タンク 用する。この外部タンクは投入に必要な推進剤を貯蔵し、 離着陸モジュールに供給するものである。 : 月周回軌道上でサンプルを受取り、地球大気圏に突入し、 ・カプセル 回収される。

なお、他のケースとの比較検討を「添付資料6」に示す。

4.3.2 システム検討

(1) システム解析

飛行プロファイルを図4.3-1に、飛行シーケンスを表4.3-1に示す。

イベント	뤈 끦	增速量 m/s
月遷移軌道投入	Δ V1	3, 127
341 - J-X.77-N°	$\Delta V2$	20
月周回軌道投入	Δ V3	860
圄	$\Delta V4$	2,050
圄	Δ V5	1,910
ランデ・フ・・ト・ッキング	Δ V5	140
地球還移軌道投入	Δ V 6	860
ミット・・3-ス・73-N	Δ V 7	20

-43-

表4.3-1 月サンプル・リターンの飛行シーケンス

		•			
	飛行時間	増速量 m/s	推薬重量kg	加沙重量kg	備考
①月遷移軌道投入	打上げ日	1	1	7001	20t級H-T派生型による軌道投入
デードマイン ういい	→	20	49		
③月周回軌道投入(100km×100km)	4.5日後	860	1832	0 4 7	
④周回部分離	→	1			周回部(含. カブ セル) 重量: 1, 538 kg
⑤外部タンク分離	→		1	- c 3 c	外部9沙重量(含.残推進藥): 414 kg
⑥月面着陸(ホバリングを含む)	5 日後	2050	1840		
のサンプル積込み	5-10日後	1			収集サンプル重量(ボーツス込み): 70 kg
⑧離着陸モジュール(着陸部)分離	10 日後	. 1	1		着陸部重量(含.残推進薬): 747 kg
③月面離陸,月周回軌道投入(100×100㎞)		1910	602	- V - C	
@周回部とのランデブ		140	31	010	
の周回部とのドッキング	→	J	1		周回部(含. カブ セル)重量: 1,538 kg
回カプセルへのサンプル移送	 _→	J	4	N C	
⑩離着陸モジュール(離陸部)分離	→]			離陸部重量(含.残推進薬): 617 kg
硇地球遷移軌道投入	10.5日後	860	385		
いしょう ド・コース・マヌーバ		20	8	V +	
⑥周回機分離	15日後	1	1	0121	周回機重量(含.残推進薬): 445 kg
砂大気圈突入	->	1	1	-	
	(推)	(推薬重量計)	4747		

比推力 (NTO/N₂H₂エンジン) : 320

- 44

(2) システム検討

月遷移軌道上のコンフィギュレーションを、図4.3-2に示す。また、全体システムの主 要諸元、サブシステム構成,及び重量推算を、それぞれ表4.3-2~-4に示す。

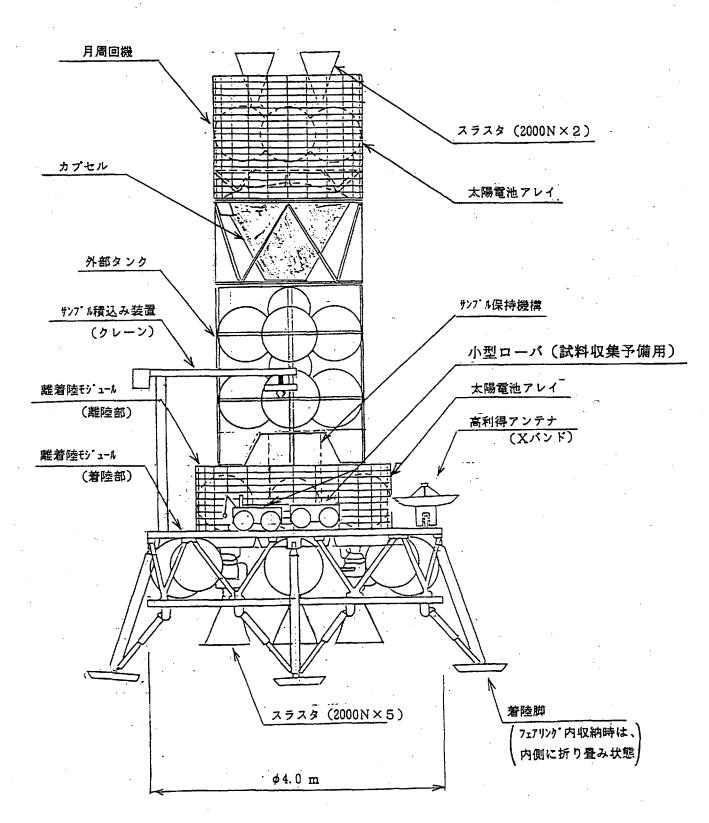


図4.3-2 月遷移軌道上のコンフィギュレーション

項目	内容
打上げロケット	H~Ⅱロケット派生型(20t級)
ミッション期間	15日間(月住復10日間,月面滞在5日間)
主要サイズ	全長 カプセル : 最大径1.6m/長さ1.1m 周回機 : 外径1.6m/ 長さ2m 離着陸モジュール: 最大径4.0m/長さ4m 外部タンク : 外径1.6m/ 長さ3.5m
全備重量 (サンブルを除く)	7.691 kg カプセル : 700 kg 周回機 : 838 kg 離着陸モジュール : 3.837 kg 外部タンク : 2.316 kg
回収サンプル重量	50 kg
冗長構成	原則として、二重系,待機冗長とする。 搭載計算機のCPUは、シングルイベント を考慮し、1FO(三重)とする。
地上局	・追跡管制はNASDA局(勝浦等)及び ISAS局(日田)支援を想定する。

表4.3-2 月サンプルリターン機の主要諸元

表4.3-3 各モジュール毎のシステム構成

	カプセル	月周回機	離着陸モジュール
構造系	・アポロ形状のカプセル。 ・アプレータによる断熱構造(底面, 側面) ・カパー開閉機構(サンプ4収納時用) ・周回機とのデータ通信及び電力用コキクタ	 ・円筒構造 ・上部に分離機構を介して、 カプセルと結合 ・デー9通信,電力供給用コキクタ (対カプセル) 	・円筒(離陸部)+トラス(着陸部)構造 ・離陸時には、着陸部を分離
誘導制御系	計算機, IMU, GPS受信機, RVtンサ(ターゲット近接系), パルプ駆動装置	恒星センサ, RVDセンサ(ターゲット遠方系) (IMU等はカブセルを使用)	障害物検知システム(着陸部) RVDtンサ(チェイサー),計算機,IMU
通信系	CU-RIU、オムニアンテナ、 トランスポンダ、データレコーダ	RIU (2式) (CU等はカブセ4搭載品を使用)	· CU-RIU (4式)
電力系	[帰還モジュール分離〜回収] 搭載パッテリによる電力供給 [上記以外] 月周回機からの電力供給	太陽電池とバッテリによる電力供給 (太陽電池は外板張付)	太陽電池とパッラリによる電力供給 (太陽電池は外板張付)
推進系	姿勢制御用RCS	主推進系:2.000N(x2)のNTO/N2H4 RCS :50N(×4).4N(×12)	主推進系:2.000N(x5)のNTO/N ₂ H ₄ RCS:50N(×4),1N(×12)
ミッション 系	50kgのサンプル保持機構		サンブ 4積込み用グレーン: 1式 サンブ 4保持機構: 1式 監視カメラ (クレーン先端): 1式 (作業全体監視): 1式 小型ローパ: 1式 サンブ 4・* サクス(予備): 1式
熱制御系	ヒートパイプ,ラジエータ及びヒータ	、 により、カブセル排熱及び保温を行	

Í

Ø

			離著防エ	ジュール	外部
· ·	カプセル	周回機	着陸時	離陸時	クト部 タンク
構造系 誘導制御系 通信・データ処理系 電力系 推進系 熱制御系 ミッション系 回収系	268 66 41 35 38 40 30 120	$ \begin{array}{r} 1 & 3 & 0 \\ 2 & 8 \\ 1 & 9 \\ 4 & 9 \\ 1 & 3 & 1 \\ 2 & 5 \\ 0 \\ 0 \\ 0 \end{array} $	305 138 83 55 292 75 191 0	$ \begin{array}{r} 1 & 6 & 5 \\ 1 & 2 & 7 \\ 4 & 1 \\ 5 & 5 \\ 8 & 1 \\ 4 & 5 \\ 1 & 0 \\ 0 \\ \end{array} $	130 0 0 128 10 0
(マージン)	49	3 8	121	66	32
ドライ重量	687	420	1260	590	300
推進薬重量 GHe 収集サンプル重量 サンブル・ボ ッ クス	1 3 0.1 5 0 2 0	416 2 0 0	2568 9 0 0	657 3 50 20	2008 (8 0 0
全備重量 (サンプル込み)	7 0 0 (770)	838 (-)	3837 (-)	1 2 5 0 (1320)	2316 (-)

表4.3-4 各モジュールの重量推算

4.4 ロケットシステム

月サンプル・リターン・システムは、H-Ⅱ派生型ロケット(20t級)を用いて打 ち上げられるものとする。なお、輸送系の比較検討については、「添付資料6」を参照 のこと。

- 5. 火星観測衛星の検討
- 5.1目的
- ①火星に関する広域な観測データの取得

火星に関する広域な観測を実施し、次に続く火星大気突入/着陸ミッション、火 星サンプルリターンミッションの基礎データを取得する。

具体的ミッションは以下の通り。

a) 火星表面の地形/表面物質組成観測

- ・火星表面の地質分布、地質学的進化、揮発性物質の存在可能性を調査するた めの、火星表面全域にわたる空間分解能100mの地形図の作成、及び表面物 質組成の観測
- ・極冠の形成時期、及び気候変動への影響を調査するための、極冠の成分、厚 さ、季節変動の観測
- ・気象、火山活動を調査するための熱赤外放射量の観測
- b)着陸候補地に関する地形、及び各種観測
 - ・探査機の軟着陸、及び移動の可否を判断するための、候補地周辺(20~40km四 方)に関する空間分解能1mの地図の作成
 - ・候補地選定に必要な、各候補地の詳細な観測
- c) 火星大気の観測
 - ・火星の気象/気候変動、大気の循環構造、及び揮発性ガス存在量を調査する
 ための、火星大気の組成、気温、気圧、及びそれらの垂直分布の調査、雲及び
 嵐の観測、水蒸気分布の調査
- d) 火星周辺の荷電粒子環境の測定

・火星磁場の性質を調査するための荷電粒子のエネルギ分布の観測

②惑星探査技術の確立

遷移軌道投入技術、追跡管制及び運用技術の確立。

5.2ミッション構想

表5.2-1にミッション機器を示す。大気による軌道高度低減、観測分解能等 を考慮して軌道高度は400kmとする。太陽同期の条件から、軌道傾斜角は92 度となり、回帰周期は79日となる。赤道上で隣接する軌跡の間隔は24kmで、 分解能が100mの可視近赤外放射系では、300素子のCCDを用い、刈幅を3 0kmとし観測する。地球一火星間の距離が7.48×10^rkm以下の時(79 日間)は、可視近赤外放射計、撮像カメラ及び可視熱赤外放射計は日照時データを リアルタイムで、また他のセンサは常時観測を行い、データ・レコーダに記録した 火星の裏側とリアルタイム・データと同時に送信する。この時のデータ・レートは 85kbpsである(添付資料7参照)。距離が7.48×10^rkm以上では、 リアル・タイム・データとデータ・レコーダ・データを効率的に組み合わせ、距離 に応じた低伝送レートで送る。

5.3システム検討

(1) システム解析

飛行シーケンスを表5.3-1に、飛行プロファイルを図5.3-1に示す。

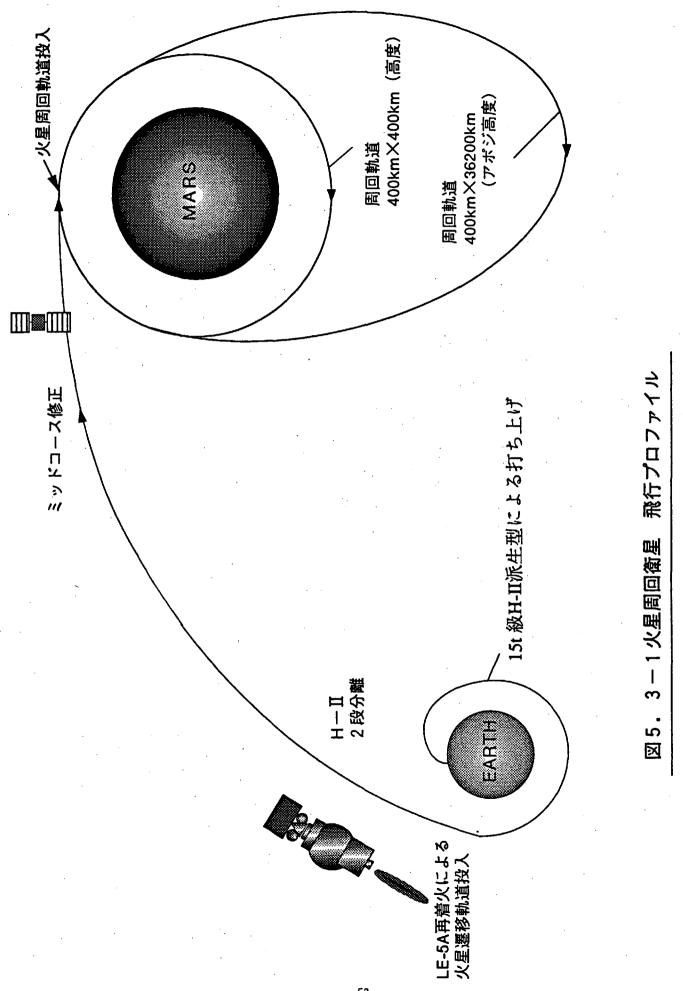
15 t 級H-Ⅱ派生型により地球周回低軌道投入後LE-5Aの再着火により火 星遷移軌道に投入する。遷移軌道投入後H-Ⅱ2段は切り離し、衛星搭載の推進系 (LAPS相当)によりミッドコースマヌーバ及び火星周回軌道投入を行う。

(2) システム検討

図5.3-2に構想図、図5.3-3にフェアリング収容図を示す。 表5.3-2にシステム概要、表5.3-3にサブシステム仕様を示す。 表5.3-4に重量・電力推算を示す。詳細は添付資料3に示す。

(3) ロケットシステム

15 t 級H – Ⅱ派生型


表5.2-1 火星周回衛星ミッション機器一覧

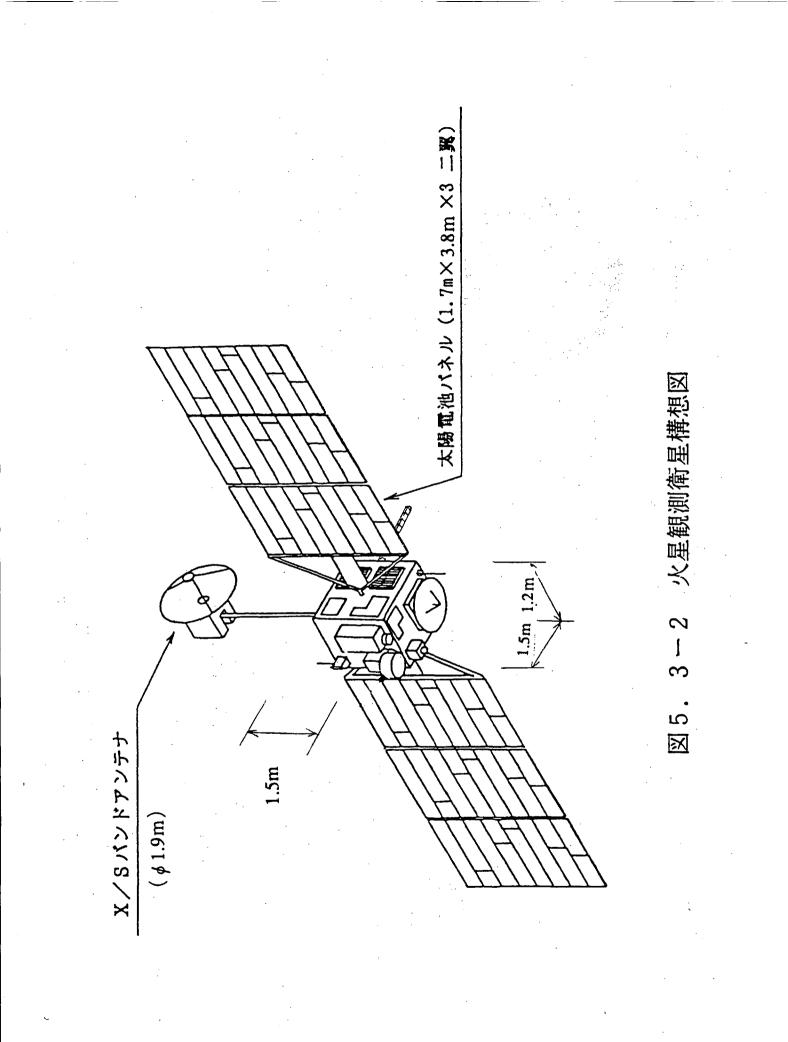

センサ名	目的	主要諸元	伝送 レート (kbps)	重量 (kg)
可視近赤外放 射計	表面の状況及び地形、岩石、鉱物資源 の分布調査。立体視観測による地形 図の作成。	観測波長:0.4~0.91µm、4パンド 1パンドステレオ視 走査幅:30km 分解能:100m	43.0	73
レーダ局度計	報の補正、形状・重力ポテンシャルの	周波数:13.8GHz ビーム幅:1.6° 高度精度:±数m アンテナ: ø lmパラボラ	1.0	25
y 線スペクト ロメータ	表土の元素組成の調査。	検出器:ゲルマニウム半導体 観測パンド:0.05~10MeV エネルギ分解能:約2keV 視野:60km×60km	2.5	30
撮像カメラ	局所的詳細撮像。	分解能:1m以下	10.0	15
可視熱赤外放 射計	雲の分布と大気の循環、地表の温度分 布、上層水蒸気の調査。	観測波長:0.5~12.5µm, 4パンド 観測幅:約320km	5.0	30
マイクロ波放 射計	大気中の水蒸気量の調査、極冠の調 査。	観測周波数:23GHz帯、31GHz帯	0.1	50
紫外スペクト ロメータ	大気の組成、邊度の測定。	TBD	8.0	20
放射線モニタ	火星周辺及び遷移軌道上での宇宙線 強度の時間的、空間的変化の測定。	TBD	2.0	5
総計			71.6	248

表5.3-1 火星周回衛星ミッション・シーケンス

`

1~21	軌道	必要∆V (m/s)	重量(kg)	経過時間 (day)	偏考
打ち上げ					15t級HーⅡ派生型による打 上げ
火星遷移軌道投入	ホーマン軌道	3,700	6,541	、 (基準)	LE-5A再着火により投入 比推力 : 452 s
H-Ⅱ2段分離			3,690		
ミッドコースマヌーバ		200			以下のフェーズは二液式の エンジン 比推力 : 320 s 構造効率: 0.85 を想定
火星周回軌道投入	軌道高度400kmの円軌道	2,500	1,560	240~280	以下の2段階で投入する。 楕円軌道投入(^ リジ高度 400km、フボジ高度36,200km) 円軌道投入(軌道高度400km)

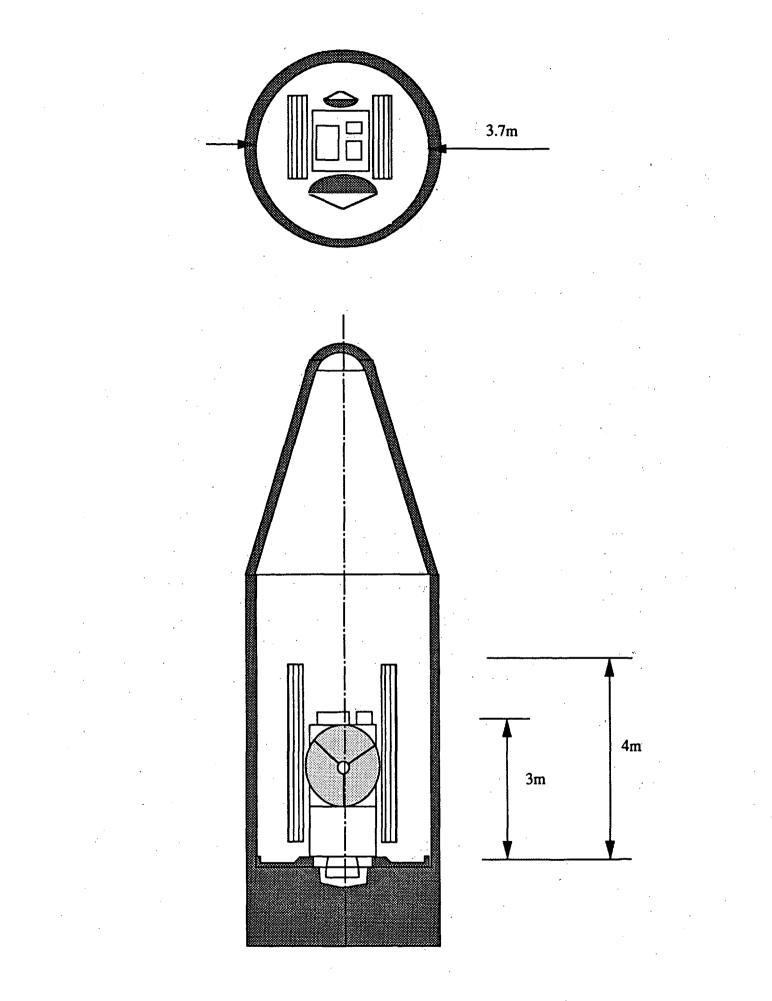


図5.3-3 フェアリング収容図(4mフェアリング)

項目	内容
打ち上げロケット	15t級H-Ⅱ派生型 LE-5A再着火により火星遷移軌道に投入
ミッション軌道	火星周回太陽同期軌道、軌道高度400km、軌道傾斜角92.9度
ミッション期間	火星周回軌道上で約2年
全備重量	1560kg(ミッション機器重量248kg)
ミッション機器	可視近赤外放射計、レーダ高度計、γ線スペクトロメータ、撮像カメ ラ、可視熱赤外放射計、マイクロ波放射計、紫外スペクトロメータ、 放射線モニタ

表5.3.-2 火星観測衛星 システム概要

表5.3.ー3 火星観測衛星 サブシステム仕様

構体系 		フレーム+パネル方式、サイズ1.5m(W)×1.2m(D)×1.5m(H)			
		受動制御+能動制御(コンダクタンス・ヒートパイプ+サーマル ルーパ+ヒータ)			
推進系	LAPS系	N2H4/NTO 二液式、推力2000N、Isp 320s。			
	RCS系	ヒドラジンー液式、1Nスラスタ。制御量は200m/s。			
電源系	太陽電池	セミリジットBSFRタイプ(1.7m×3.8m×3 2翼)			
	パッテリ	Ni-MH 35Ah×2			
姿勢軌道制御系		三軸姿勢制御ゼロモーメンタム方式			
通信・データ処理系	· · · · · · · · · · · · · · · · · · ·	テレメータ・・・伝送方式USB、送信出力20w、∮1.9mアンテナ伝送量 は距離に応じ、可変とする。 ミッションデータ・・・Xバンド、送信電力は40w、Sバンドと共用の∮ 1.9mアンテナ、伝送量は距離に応じて切り替える。			

表5.3-4 火星観測衛星重量及び電力推算

۰ ۲				重量(kg)	電力(W)
<u> </u>	可視近赤外放射計			73	130
	レーダ高度計			25	35
	y線スペクトロメー	<i>Я</i>	<u> </u>	30	20
ミッション機器	ション機器 撮像カメラ		15	20	
	可視熱赤外放射計			30	45
•	マイクロ波放射計			50	60
	紫外スペクトロメー	9		- 20	15
	放射線モニタ	 放射線モニタ			5
	小計			248	330
	構体系			90	
- ·	熱制御系			35	91
	推進系		LAPS系	200	
バス機器			RCS系	40	
	 太陽電池パドル系			203	30
	電源系			142	18
	誘導制御系			91	119
• ·	通信データ処理系	通信データ処理系			111
	ミッションデータ処	ミッションデータ処理・伝送系			581
	計装系		- 	90	3
•• • •					953
 衛星ドライ重量				1348	3
推薬重量					5
マージン		·		97	7 17
総計				1560) 1300

-57-

6.火星大気突入·着陸実験機

6.1目的

火星大気突入・着陸実験機は、火星大気によるエアロブレーキおよび再突入を行い火星表面に着陸し、 次に続く火星サンプルリターンミッションのための技術的基礎データを取得するとともに火星表面の環境 データの取得等を行う。以下に目的を列挙する。

(1)火星大気エアロブレーキ技術の修得

(2) 火星大気再突入技術の修得

(3) 火星大気の観測

(4) 火星表面の環境データの取得

(5)火星土壌の分析

6. 2ミッション構想

6.2.1ミッション機器

表6.2-1にミッション機器候補案を示す。

6.2.2観測構想

(1) 着陸地点

火星の着陸地点としては、水(氷)の存在する可能性のある極、植生の可能性がある暗緑色の模様をな す地域、かつて川、湖、海であったと考えられる渓谷、洲等の地域が考えられる。表6.2-2に着陸候 補地を示す。

(2) データ伝送

観測データ等は、地球に直接伝送する。地球と火星の距離は70Mkmから400Mkmまで変化するので、 距離に応じてデータ伝送レートも変化する。地上局にNASAのDSN(アンテナ直径70m)を考えた時、送 信出力10W、周波数帯Sバンドで、最接近時128bps、距離380Mkmの時2bpsが送信可能である。ただし、 本ミッション期間内(3か月)では、最大10bps程度しか送信されない。

6.3システム検討

(1)システム解析

火星大気突入・着陸実験機のミッションプロファイルを図6.3-1に示す。

また、シーケンス・オブ・イベントを表6.3-1に示す。推進薬重量は、各イベントに対して5%の マージンを見込んでいる。

(2)システム検討

図6.3-2にシステム構想図を示す。主目的が火星大気突入技術の修得であるので、エアロシェル形状は、火星サンプルリターンエアロシェル形状と相似形をしており、空力加熱率が火星サンプルリターン 機と同等となるように、スケール比は0.42とした。

表6.3-2、3にシステム概要およびサブシステム主要諸元を示す。

表6.3-4に重量・電力推算表を示す。

(3) ロケットシステム

H-IIロケットを前提とする。

- 58 -

ミッション機器	観測目的	重量	電力	データ容量
大気観測機器 (圧力、温度、加速度)	火星大気構造観測	1.5kg	6.2W	65bps
地表環境観測機器 (圧力、温度、風速)	火星地表環境観測	1kg	0.1W	10kbits/day
地震計	火星の地震観測	1.5kg	2W	10Mbits/day
α-P-Xスペクトロメータ	主要な元素組成分析	1kg	0.5W	100kbits
熱分析器/ガス分析器	火星土壌成分と含ま れるガスの分析	2kg	12W	3Mbits
カメラ(着陸時)	上空からの地形観測	0.5kg	4W	12Mbits/12画像
カメラ(着陸後)	火星地表面観測	1.5kg	21W	25Mbits/1回転

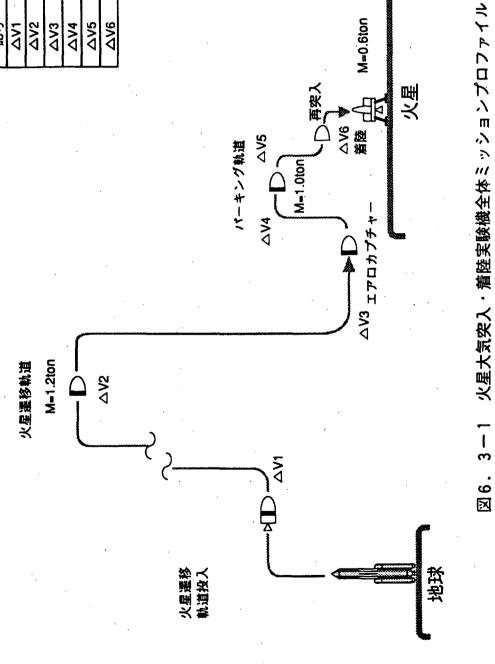

表6.2-1火星大気突入・着陸実験機ミッション機器候補案

表6.2-2着陸地点候補

着陸地点名称	位置	特徵
北極冠	北極	極域の気象の調査。
Cydonia Mensae	緯度30-43 [°] 経度0-20 [°]	暗緑色に見える地域で植生の可能性がある。 Viking2の着陸第1候補地点であった。
Valles Marineras	緯度-18-1 [•] 経度24-113 [•]	かつての川と考えられる渓谷であり、生物の 化石が発見される可能性がある。
Terra Meridiani	緯度-15-0 [•] 経度341-17 [•]	暗緑色に見える地域で植生の可能性がある。 Viking1,2の着陸予備地点であった。
Isidis Platinia	緯度4-20 [°] 経度255-279 [°]	湾状に見える場所であり、暗緑色の切れ目に あたる。Viking2の着陸第2 候補地点であった。
Margaritifer Terra	緯度-27-2 [•] 経度12-45 [•]	暗緑色に見える地域で植生の可能性がある。 Viking1,2の着陸予備地点であった。
Terra Sabaea	緯度-20-0 [•] 経度348-3 [•]	暗緑色に見える地域で植生の可能性がある。

中国国会会

谓述反丧水	增速度(m/s)	3614	200	20	100	200	270	
252	武묵		ΔV2	ΔV3	ΔV4	ΔV5	ΔV6	

-60

イベント	経過時間	增速度 (m/s)	推進薬 重量(kg)	カレント 重量(kg)	備考
(1)火星遷移軌道投入		3614		1170	H-II第2段再着火
(2)ミッドコース修正		200	76	1094	ISP=320sec
(3)火星大気突入	約300日	20	. 7	1087	ISP=320sec
(4)近火点上昇マヌーバ		100	36	1051	ISP=320sec
(5)軌道離脱		200	68	983	ISP=320sec
(6)パラシュート開傘		-	. –	983	
(7)エアロシェル分離		-	-	723	
(8)パラシュート分離		-	-	683	
(9)着陸動力飛行		270	59	624	ISP=320sec
(10)タッチダウン		-	-	624	

表6. 3-1シーケンス・オブ・イベント

表6.3-2システム概要

項目	内容
打上げロケット	H-IIロケット
着陸地点	候補地は表6.2-2に示したとおり
ミッション期間	火星地表面で3ヵ月
全備重量	1.2ton
ミッション機器	火星大気/地表環境観測機器、地震計、カメラ、 α-P-Xスペクトロメータ、熱分析器/ガス分析器

サブシステム	諸元
構造系	主構造は、トラス十パネル構造
	エアロシェルはアブレータ十アルミハニカム構造
熱制御系	受動型と能動型の併用
誘導制御系	3軸姿勢制御ゼロモーメンタム方式
通信系	Sバンドオムニアンテナ
推進系	主推進系:推力2000N、推進薬NTO/N2H4
	RCS:4NX16基、推進薬N2H4
電力系	太陽電池:BSFRタイプSiセル、発生電力200w
	バッテリ:Ni-H2、容量2200w h
減速系	パラシュート開口面積:4000m2(直径70m)

表6.3-3 サブシステム主要諸

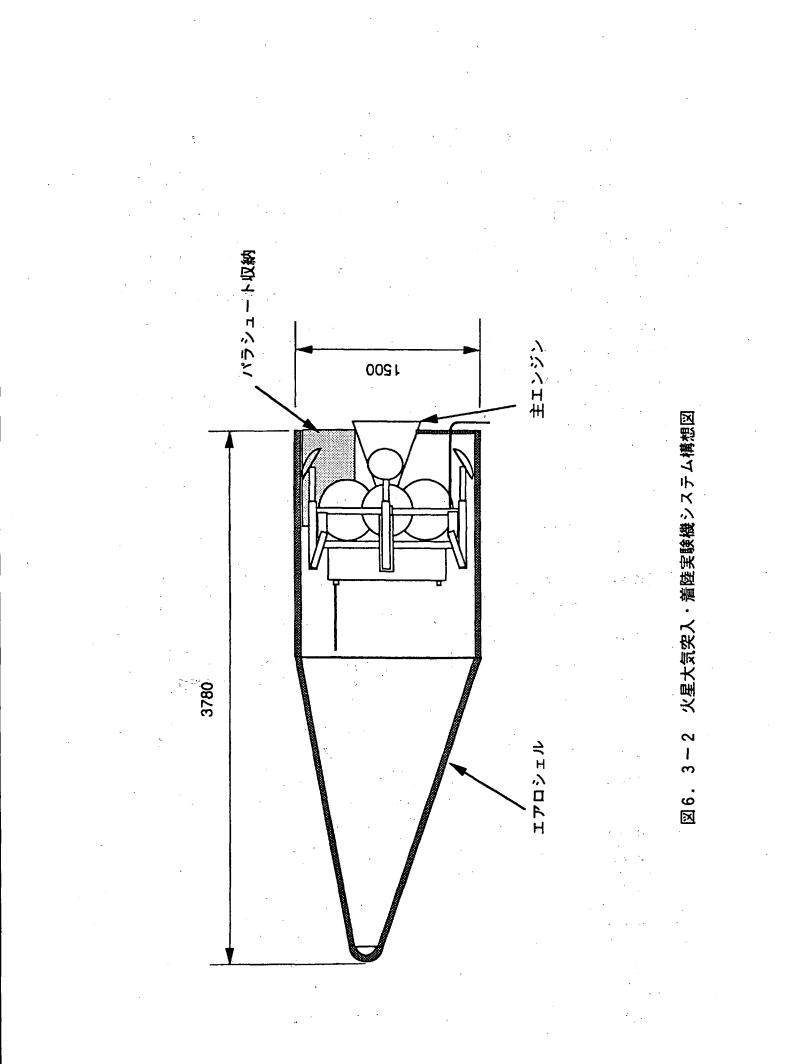


表6.3-4 重量電力推算

	項目	重量(kg)	消費電力(w)
	大気観測機器	1.5	6.2
	地表環境観測装置	1	0.1
	α-P-Xスペクトロメータ	1	0.5
	熱分析/ガス分析器	2	12
ミッション機器	地震計	1.5	2
	カメラ(着陸時)	0.5	4
	カメラ(着陸後)	1.5	21
	備品	2	-
	小計	11	46
	誘導制御系	91	73
	通信系	66	⁻ 29
	推進系	90	100
	電力系	149	77
バス機器	熱制御系	50	10
	構造系	80	. —
	エアロシェル	260	
	パラシュート	40	
	小計	826	289
ドライ重量		837	-
推進薬	NTO/N2H4	246	_
	GHe	1	-
マージン		86	-
	合 計	1170	335

-63-

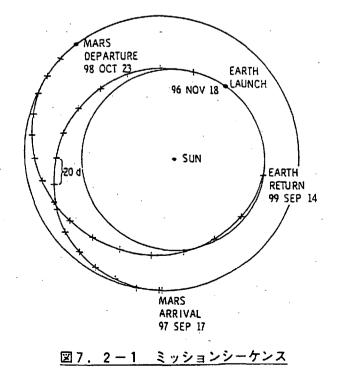
7.火星サンプルリターンシステムの検討

7.1 まえがき

火星サンプルリターンミッションについて、主としてミッションプロファイルを検討するとともに、地 球近傍における輸送系への要求を明らかにした。火星サンプルリターンミッションについては、すでに諸 外国において数多く検討されており、ここでは、NASA検討の"A MARS SAMPLE RETURN MISSION USING A ROVER FOR SAMPLE ACQUISITION" (AAS 84-159)のミッションプロファイルを参考にして 検討した。

7.2検討の範囲

7.2.1検討の前提


JPL, JSC, SAIの共同研究をまとめたJ.P de Vries and H.N.Norton著AAS84-159" A MARS SAMPLE RETURN MISSION USING A ROVER FOR SAMPLE ACQUISITION"に基づき、以下を前提とした。

・回収サンプル重量:5kg

・火星ローバ(重量400kg)が、火星表面で in-situ分析を行い、価値のあるサンプルを選別・収集する。 ・火星軌道への投入はエアロキャプチャーによるものとする。

・ミッションシーケンス(図7.2-1参照、年月日は例である。)

		1 C	
フェーズ	出発日	到着日	期間
地球→火星	11/18/1996	9/17/1997	303日
火星滞在			401日
火星→地球	10/23/1998	9/14/1999	326日
	1030日		

7.3 検討結果

7. 3. 1ミッションプロファイル

(1)全体プロファイル

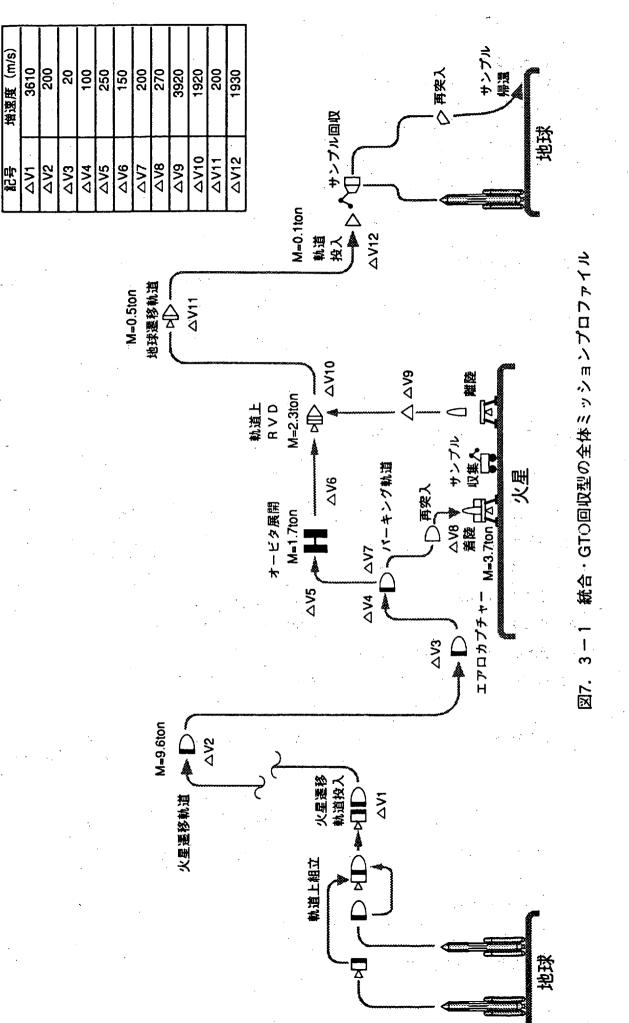
図7.3-1に全体のミッションプロファイルを示す。

火星サンプルリターンのミッションプロファイルは、地球出発時の形態、地球帰遠時のサンプル回収形 態、火星エアロカプチャービークル形状等により各種考えられるが、ここでは代表的なレファレンス案に ついて記述した。(各種形態の検討は添付資料8に示す。)

(2) GTO回収機プロファイル

図7.3-2にGTOにサンプルを取りにいく回収機のミッションプロファイルを示す。

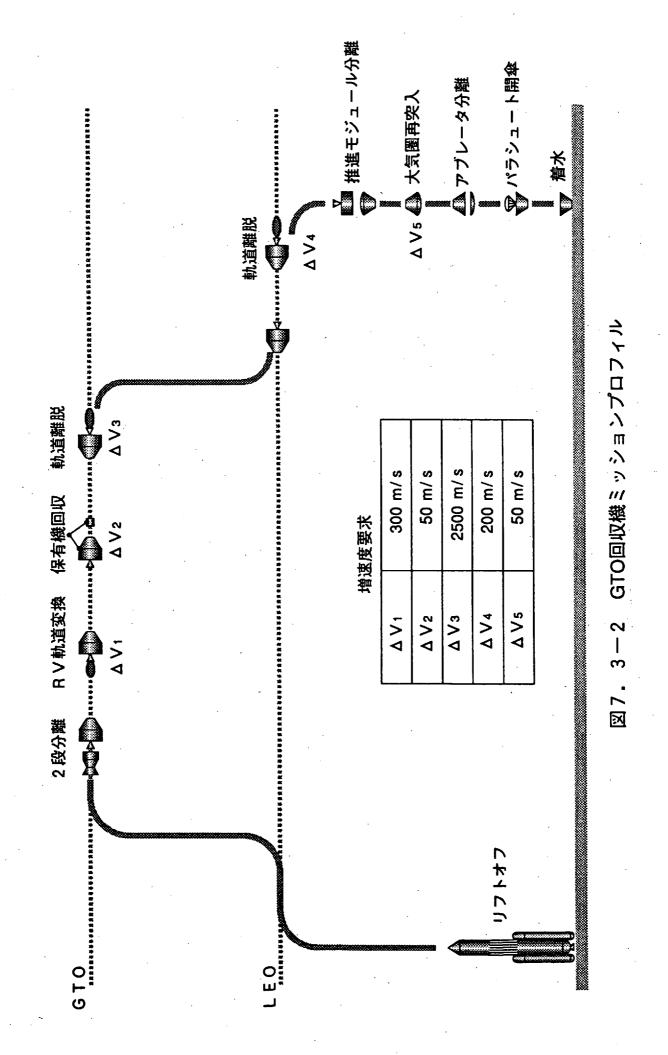
7.3.2 增速度要求


ミッション遂行システム(火星遷移以後、地球GTOにサンプルの輸送を行う全システム)の要求増速 度を表7.3-1に、GTO回収機の要求増速度を表7.3-2に示す。

イベント	記号	增速度 (m/sec)	経過時間	備考
(1)火星遷移軌道投入	ΔV1	3610		h=500km,i=28.5から投入
(2)ミッドコースマヌーバ	∆V2	200		
(3)火星エアロキャプチャー	∆ V3	20	約300日	推進系による場合1900m/s
(4)近火点上昇マヌーバ	∆V4	100		560km×2000km
(5)火星円軌道投入	ΔV5	250		560km円軌道,M=1.7ton
(6)軌道上姿勢制御	∆V6	150		
(7)火星楕円軌道離脱	ΔV7	200	~	
(8)火星着陸マヌーバ	∆ V8	270		M=3.7ton
(9)火星離陸-火星円軌道投入	ΔV9	3920		3段式
(10)地球遷移軌道投入	ΔV10	1920	約700日	M=0.5ton
(11)ミッドコースマヌーバ	ΔV11	200		
(12)地球待機軌道投入	∆V12	1930	約1000日	280×40200km楕円軌道 LEO投入の場合3700m/s,M=0.1ton

表7.3-1 ミッション遂行システム要求増速度

イベント	記号	增速度(m/sec)	備考		
(1)RV軌道変換	ΔV1	300			
(2)接近・バーシング	ΔV2	50			
(3)GTO軌道離脱/LEO投入	Δ٧3	2500	280×40200km楕円軌道		
(4)LEO軌道離脱	∆ [.] V4	200			
(5)再突入時の姿勢制御	ΔV5	50			


表7.3-2 GTO回収機要求增速度

増速度要求

This document is provided by JAXA.

-66-

-67-

7.3.3システム検討

(1) ミッション遂行システム

地球低軌道から出発して、火星にてサンプルを収集し、GTO において回収される本ケースのシステム 構成および重量を表7.3-3に示す。

図7.3-3にミッション遂行システムの構想図を示す。

(2) GTO回収システム

本回収機は、H-IIロケットによりGTOに投入され、GTO上の火星からのサンプルを回収し、地上に戻す 輸送システムである。また、本回収機は低コストかつ実現容易なカプセル型回収機としている。

表7.3-4にGTO回収機の重量構成を示す。

GTO回収機の構想図を図7.3-4にGTO回収機の構想図を示す。

なお、詳細なGTO回収システムの検討結果を添付資料8の別添資料3に示す。

7.3.4ロケットシステム

(1) ミッション遂行システムの打ち上げ

LEO20トン級ロケット(火星遷移軌道投入OTV用)およびH-IIロケット(ミッション遂行システム用) を1 機ずつ打ち上げ、軌道上で組み立てる。

ミッション遂行システムおよび火星遷移軌道投入OTVのロケットフェアリング収納図を図7.3-5、 6に示す。

(2) GTO回収システムの打ち上げ

HIIロケットによる。HIIロケットフェアリング収納図を図7.3-7に示す。

(3) 火星遷移軌道投入用OTV

推力:12.5トン、比推力:452秒、全備重量:18880 kg、 推進薬重量:16048kg、構造効率:0.85 推進薬重量が、ほぼH-IIロケット第2段ステージと同じであるので、火星遷移軌道投入用OTVとして、 H-IIロケット第2段ステージをそのまま使用する。ただし、軌道上組立のためのRVD機構の付加等、小改 修は必要である。

							重量(kg)	備考	
			<u> </u>	<u> </u>		sc	サンプル	5	
		火星				A	ケース	15	·····
		轨道			地球	ハ -	- K	118	添付資料8の別添資料2参照
		待機	ļ	地球	帰還	推進	上来		NTO/N2H4,ISP=320sec
		&	火星		檓	小書		255	
		地球	軌道 待機	軌道 上機	ハー	ĸ		208	
		かえ		⊥133 	推進到	R R		541	 固体,ISP=280
	ミッ	テム	H) I		小計			1004	
				<u>ハ</u> -	۲			592	· · · · · · · · · · · · · · · · · · ·
				推進到				1133	NTO/N2H4,ISP=320sec
	シ			小計				2729	
	ョン		火星	定入エ	アロシ	ェル	·	617	
	ン 遂			小計				3346	
	行	アダフ	プタ					177	· ·
出	シ			離陸	ハー	۲		690	
発	ス			檓	推進薬			1242	固体,ISP=280
時	テ ム		火星 ラン ダー		小計			1932	
				ブー	ハード			250	
				スタ	推進薬			551	固体,ISP=280
•		火星		· .	小計			801	
		離着				400			
	陸シ ステ ム		ハー	ハード			617	·	
				推進	推進薬			NTO/N2H4,ISP=320sec	
		Д.		小計				4089	· · · · · · · · · · · · · · · · · · ·
			1	I7	ロシェ	ル		890	
				パラ	<u>シュ-</u>	٢		327	:
		エントリー格	エン	<u></u>	٢			272	
				推進			.,	368	NTO/N2H4,ISP=320sec
			184	小計				1857	
			バイ	オシー	オシールド			148	
		L	小 計				6094		
	小計				<u> </u>	9617			
	アダプタ						276	· · · · · · · · · · · · · · · · · · ·	
	ОТ <u>//- К</u>							構造効率0.85	
	♥. 推進楽						16048	LOX/LH2,ISP=452sec	
	小計						18880		
							28773		
帰還	時回	収機打	「上げ					4254	添付資料8の別添資料3参照

表7.3-3 システム構成および重量

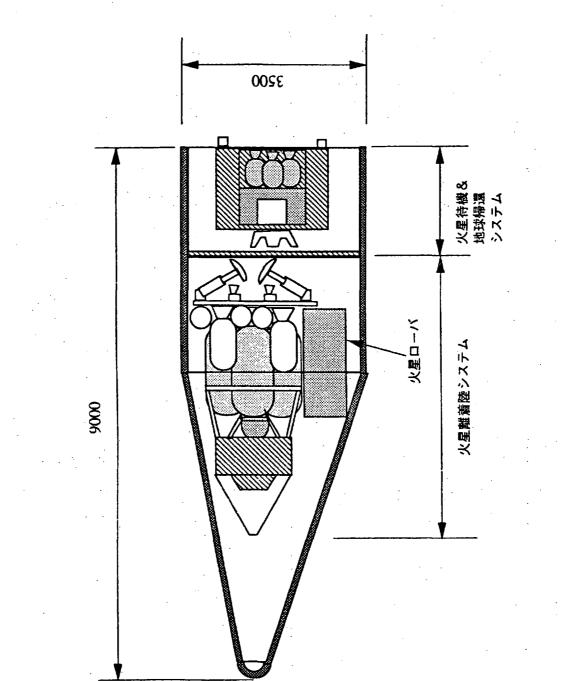
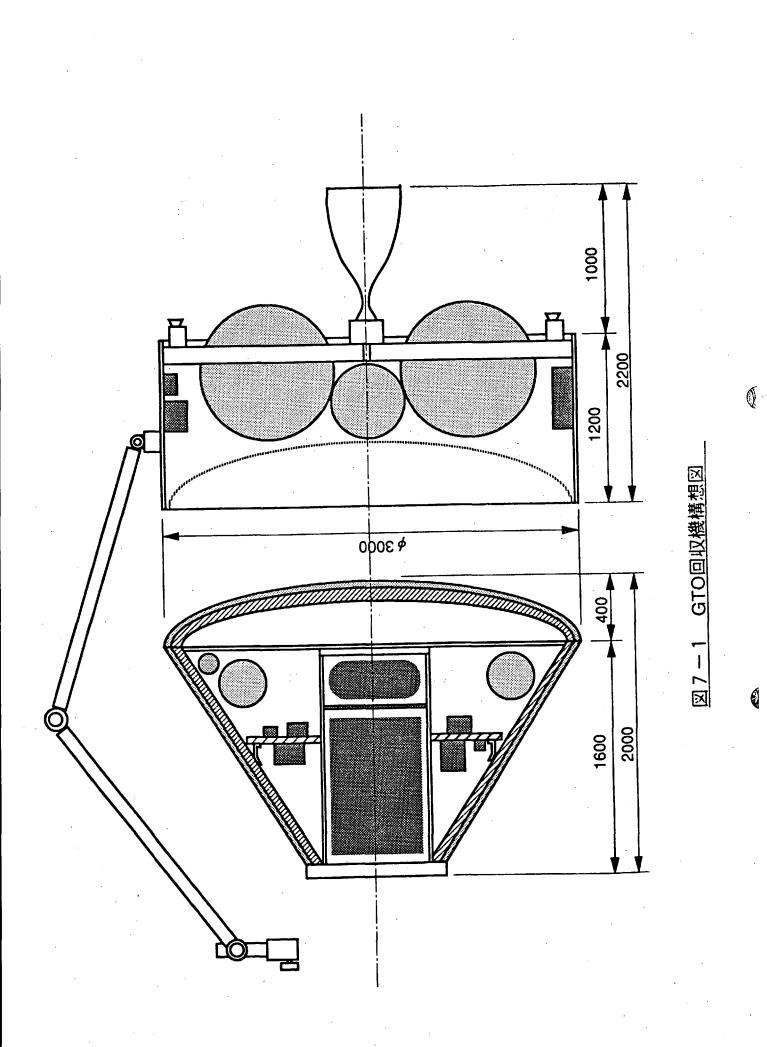
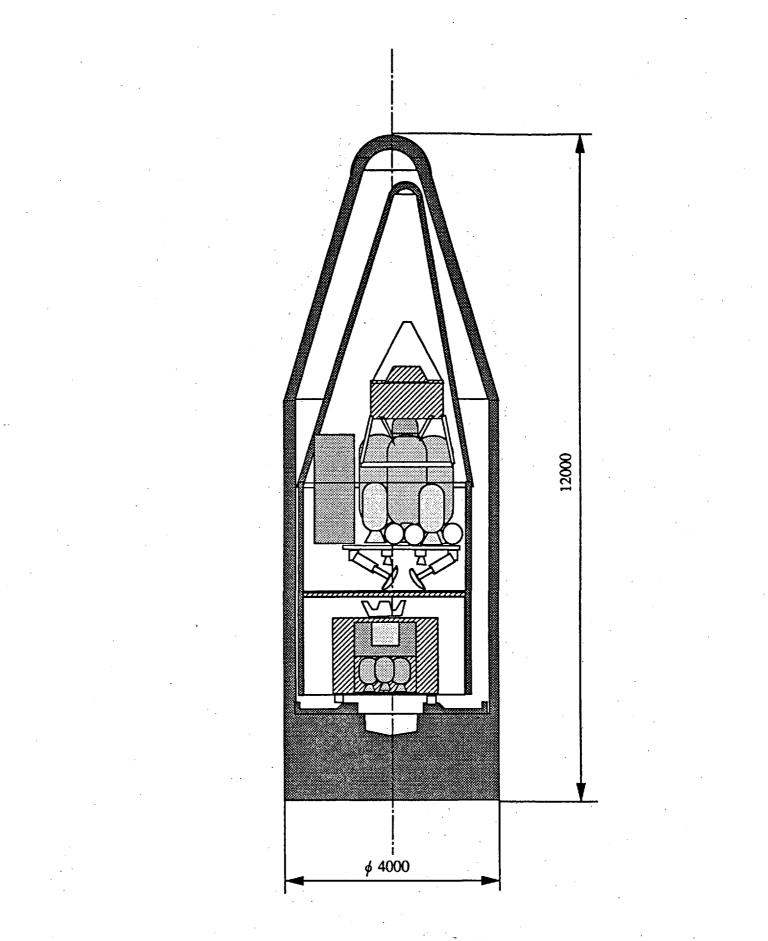




図7. 3-3 ミッション遂行システム構想図

モジュール	システム	重量 (kg)
カプセル 部	ドライ重量	1163
· .	推進薬	27
	GHe	0.1
	小計	1190
推進モジュール	ドライ重量	737
	推進薬	2319
	GHe	8
• •	小計	3064
		4254

表7.3-4 GTO回収機重量構成

図7.3-5ミッション遂行システムフェアリング収納図

-73-

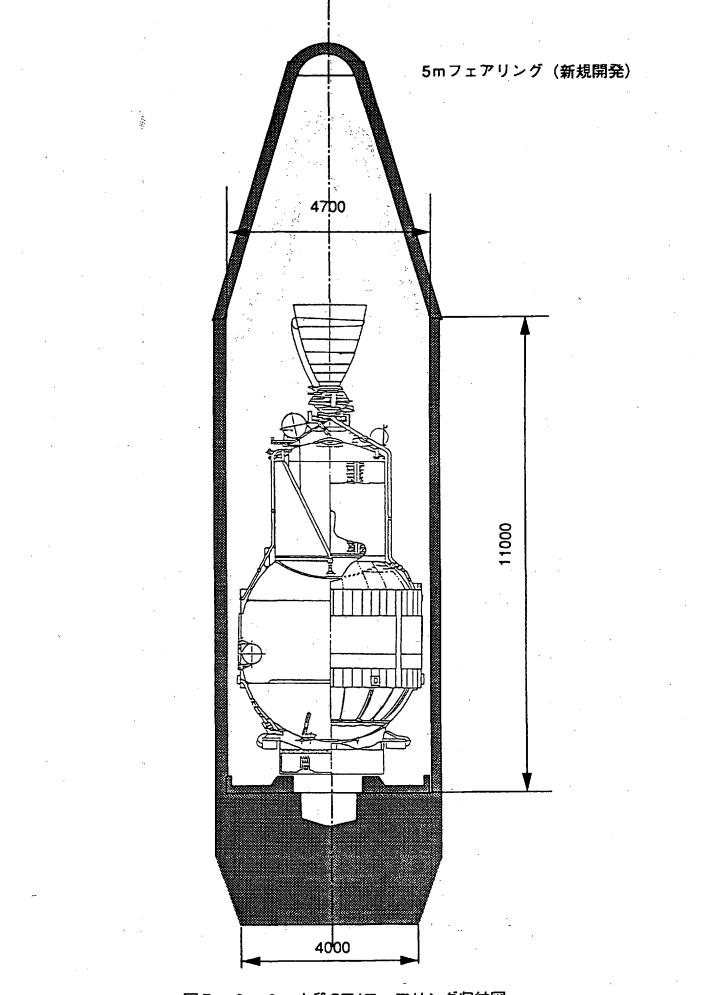
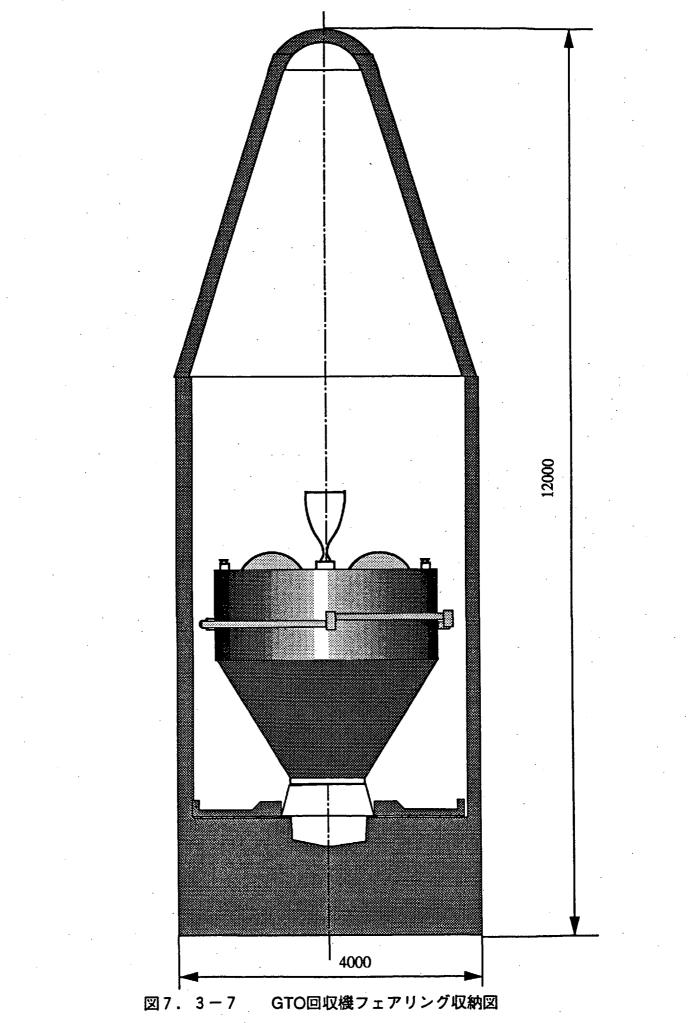



図7.3-6 上段OTVフェアリング収納図

7.3.5 信頼度の検討

本システムのの信頼度について、概略一次検討を行ったので以下に検討結果を示す。

ミッション遂行システム	:0.	357
GTO回収システム	:0.	855
全体システム	:0.	31

全体システムとしては、極めて低い信頼度となった。これは、本サンプルリターンシステムが数多くの 宇宙機から構成されていることに起因する。本検討は、初歩的な検討であり今後さらに詳細につめる必要 はあるものの、このような複雑なシステムの信頼度の目安を与えるものと考える。

検討の詳細を、添付資料8に示す。

(参考文献)

1) J.P.de Vries, H.N.Norton "A MARS SAMPLE RETURN MISSION USING A ROVER FOR SAMPLE AQUISITION" (AAS 84-159)

2) GLENN E.CUNNINGHAM, DONALD G.REA, DONNA PIVIROTTO, JOHNNY KWOK, MARK
K.CRAIG, MICHAEL H.CARR "MARS ROVER SAMPLE RETURN MISSIONS" (IAF-88-398)
3) James E.Pavlosky, Leslie G.St.Leger "APOLLO EXPERIENCE REPORT - THERMAL PROTECTION SUBSYSTEM" (NASA-TN-D-7564)

4) 森英彦、新田慶治、山中龍夫"ジェミニ型カプセル回収体の概念検討"、1981年5月

8.月・火星探査のための輸送系

8. 1まえがき

7章まで検討した月・惑星探査ミッションを遂行するには、我国が現在有するロケットで最大のH-IIロ ケット以上の能力を有するロケットを必要とするケースもある。ここでは、現在考えられているH-II派生 型ロケットを用いることとし、それ以上の能力を要求される場合には、上段OTVを用いることとした。 ここで言う上段OTVとは、ミッション遂行システムを低軌道から月あるいは火星遷移軌道に投入する使 い捨ての輸送機のことである。

8.2各ミッションの要求

表8.2-1に各月・惑星探査ミッションの遷移軌道投入重量要求を示す。

ミッション	遷移軌道投入重量(ton)
(1)月面観測衛星	2.8
(2)電気推進軌道変換実験機	1.3
(3)月面着陸/移動探査機	2.8
(4)月面サンプルリターン	7.7
(5)火星観測衛星	3.7
(6)火星大気突入・着陸実験機	1.2
(7)火星サンプルリターン	9.6

表8.2-1 遷移軌道投入重量

8. 3打上げロケット能力

表8.3-1に現在考えられているロケットの打ち上げ能力を示す。

月遷移軌道投入能力および火星遷移軌道投入能力は、第2段ステージの再着火により得られる能力である。

ロケット名称	LEO打上げ能力	月遷移軌道 投入能力	火星遷移軌道 投入能力
H-IIロケット	10.5ton	3.0ton	2.0ton
15ton級H-II派生型ロケット	15ton	5.6ton	3.7ton
20ton級H-II派生型ロケット	20ton	7.7ton	5.3ton

- 表8. 3-1ロケット打上げ能力

8. 4各ミッションの候補輸送系

表8.4-1に各ミッションの候補輸送系を示す。

ミッション	打上げロケット	遷移軌道投入形態
(1)月面観測衛星	H-IIロケット1機	第2段再着火
(2)電気推進軌道変換実験機	H-IIロケット1機	イオンエンジン
(3)月面着陸/移動探査機	H-IIロケット1機	第2段再着火
(4)月面サンプルリターン	20ton級H-II派生型ロケット1機	第2段再着火
(5)火星観測衛星	15ton級H-II派生型ロケット1機	第2段再着火
(6)火星大気突入・着陸実験機	H-IIロケット1 機	第2段再着火
(7)火星サンプルリターン	H-IIロケット1機(ミッション用) 20ton級H-II派生型ロケット1機 (上段OTV用)	上段OTV(H-II第2段ステージ)

表8. 4-1各ミッションの輸送系候補

9. 開発計画

月・火星開発利用計画の第1期プログラムとして、月面・火星無人探査を行うとした ときの開発計画を技術的見地より検討した。

9.1 技術開発シナリオ

9.1.1 開発課題

(1)月面観測衛星

·月遷移 · 周回軌道投入

- ・追跡管制/運用
- ・ミッション機器
- (2) 電気推進軌道変換実験機
 - ・低推力/重力キャプチャによる月遷移・周回軌道投入
 - ・追跡管制/運用
 - ・大型イオンエンジン
 - ・ミッション機器
- (3)月面着陸/移動探査機

①月面着陸機

- ・ホバリングを含む着陸時の航法・誘導・制御。
- ・着陸時の障害物回避
- ・スロッタブル・エンジン -

②月面移動探査機

・夜間(14日間)の熱制御技術

- ・月面走破機構と軸受・減速機等の駆動系
- ・時間遅れのある遠隔操縦と部分自律操縦
- ・ミッション機器
- (4) 月面サンプルリターン
 - ·月離陸 · 地球帰還軌道投入
 - ・カプセル設計
 - ・アブレータ
 - ・着水及び回収システム
- (5)火星観測衛星

火星遷移
 ・周回軌道投入

・追跡管制/運用

・ミッション機器

- (6) 火星大気突入·着陸実験機
 - ・火星大気エアロ・プレーキ
 - 火星大気突入
 着陸

・ミッション機器

- (7) 火星サンプル・リターン
 - ・地球周回軌道上アッセンブリ
 - ・高自律度ローバ
 - ・火星離陸機、軌道周回機の測位
 - ・火星軌道上高自律度ランデブ・ドッキング
 - ·火星離陸 · 地球帰還帰還軌道投入
 - ・ミッション機器
 - ・大型打上げロケット
 - 9.1.2 開発ステップ
 - (1)月面探査、火星探査とも以下に示すように、ステップ・バイ・ステップで、 着実に開発を進める。
 - ・月面探査のステップ
 - 月面観測衛星→月面着陸/移動探査機→月サンプルリターン
 - ・火星探査のステップ
 - ・火星大気エアロ・ブレーキ及び大気再突入・着陸の技術開発のため
 大気突入・着陸実験を行う。
 - ・火星観測衛星→火星大気突入・着陸技術実験機→火星サンプル・リ
 ターン
 - (2) 火星探査は月面探査の技術成果を反映する。
 - ·月面観測衛星→火星観測衛星
 - ・月面移動探査機→火星移動探査機
 - ・月サンプル・リターン→火星サンプル・リターン
 - (3)高自律度ランデブ・ドッキングは軌道上サービス・システムでの開発技術を 踏まえる。
- 9.2開発スケジュール

以下の考え方で全体スケジュールを検討した結果を表9-1に示す。本スケジュー ルは、開発ステップにしめすプロジェクトを各々実施する場合を技術的にまとめた もので、政策的視点にたった検討も合わせ、総合的な計画を立案すべきである。

①前段階のプロジェクトの成果は遅くともCDRに反映する。
 ②平成7年度に月面観測衛星の開発に着手(基本設計を開始)する。
 ③火星探査のプロジェクト開始を平成8年度初頭とする。これにより、月面サンプル・リターンの成果を火星サンプル・リターンに反映できる。

④地球・火星間遷移のウインドは約2年毎とする。

9.3開発コスト

技術資料RS-S94007「月・火星探査の開発コストの検討」に示す。

平成 (FY) 西曆 (FY)	6 94		10	5000	15	05	20	10	25	15
月面探査 (1)月面観測衛星		\mathbb{A} \mathbb{A} \mathbb{S} \mathbb{R} \mathbb{P} \mathbb{D} \mathbb{P}	Δ Δ Δ DR	∆ Lo EoM	×					•••••
(2)電気推進軌道変換実験機		Δ Δ Δ srr pdr	⊲ä	∠ ∠ ∠ Loi eqm	M					••••
(3)月面着陸/移動探査機 ・1号機			\mathbb{SRR}	₽₽₽	Δ Δ LO EOM	MC				
·2号機				$\stackrel{ extsf{srr}}{=} \stackrel{ extsf{srr}}{=} extsf{s$		$\Delta \Delta$ LO EOM			· · · · · · · · · · · · · · · · · · ·	
(4)月面サンプル・リターン 水早桦杏				≜ ≜ SRR PDR	QB					
へ生かせ (1)火星観測衛星		SRR PI	DR CDR	Q NO LO MO LO	EQM				· · · · · · · · · · · · · · · · · · ·	
(2)火星大気突入 · 着陸実験機	· .		\mathbb{SRR}	PDR		Z V LO LO				
(3)火星サンプル・リターン				SRR	PDR	CD		$\Delta \Delta \Delta \Delta$ LO MLMLOER	ER	
表9-	1	月面	• 火星	火星探査全体スケジュールの検討	スケジュ	0 J(- 1	り検討			
注) 略語 LO: Lift Off ML: Mars Landing MI	ΫÖ	EOM: End Of Mission MLO: Mars Lift Off	sion)ff	LOI: Lunar Orbit Insertion ER: Earth Return	bit Insertion rn		MOI: Ma	MOI: Martian Orbit Insertion	nsertion	

-81-

宇宙開発事業団技術報告 NASDA-TMR-950001

発行日 1995年2月28日

C

C

編集・発行 宇宙開発事業団 〒105-60 東京都港区浜松町2丁目4番1号 世界貿易センタービル22階 TEL 03-5470-4111(代表)

©1995 NASDA 無断複写、転載を禁ずる

<本資料に関するお問い合わせ先> 宇宙開発事業団調査国際部技術情報課 TEL 03-5470-4276 ~ 4279

