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Abstract 
 
In this conspectus paper we present a brief summary of a variety of recent activities in data assimilation 
performed at the Aerodynamics Section of the TU Delft.  We hope to demonstrate a few of the exciting 
possibilities for combining experimental data and numerical models, improving the capability of both.  Our 
activities are bound by a common theme of combining experimental wind-tunnel measurements and CFD 
simulations in order to (i) improve fidelity of experimental data, (ii) obtain estimates of unmeasured quantities, 
(iii) estimate modeling error and parametric uncertainty in simulation.  The methodologies we use depends 
strongly on the application, but all have Bayesian inference at their root with some statistical model representing 
the relation between measurement and simulation.  Bayesian statistics offers a coherent and flexible framework 
for describing solutions of the ill-posed problems that arise in this analysis of data, but new numerical methods 
are needed to find these solutions efficiently. 
 
Key words: Bayesian inference, uncertainty quantification, data assimilation, aerodynamics, CFD, particle 
image velocimetry, model inadequacy, Kriging. 
 
Introduction  
 
This paper is intended primarily as an overview of some recent activities of the data assimilation group at the 
Aerodynamics Section, TU Delft.  For technical details see our papers cited throughout.  All work has a 
foundation Bayesian inference.  In three sections we discuss three distinct methodologies and applications: 
 

1. Reducing uncertainty in aeroelastic flutter boundaries. 
2. Kriging interpolation of stereo-PIV data with a local error estimate. 
3. Navier-Stokes simulation in gappy PIV data. 

 
In addition to the activities described in this document, we are also working on at this time (September 2012): 
 

1. Calibration of RANS turbulence models, with a view to obtaining estimates of model inadequacy. 
2. Multi-level statistical models for estimating structural variability (Dwight et al., 2012). 
3. Kalman smoothing for filling gaps and increasing time resolution of PIV data. 
4. Least-squares FEM solutions to the problem of integrating PIV data and CFD solvers (Dwight, 2010). 
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1. Reducing Uncertainty in Aeroelastic Flutter Boundaries1 
 
In this section we compute the uncertainty in dynamic stability boundaries in an aeroelastic system (flutter) due  
to uncertainties in structural parameters.  For moderate levels of structural uncertainty (±5%) we observe 
extremely high levels of uncertainty in the flutter altitude (±3500 ft) for a model wing.  This is a consequence of 
both high sensitivity of the stability boundary to individual structural parameters, and the cumulative effect of 
many parameters.  We conclude that the predictive capability of our aeroelastic analysis is fundamentally 
limited by our incomplete knowledge of the structure, more so than by discretization error or modeling 
inadequacy.  To address this limitation we assume measurements of the aeroelastic response at sub-critical 
altitudes are available, such data as might be gathered from flight-tests. Using Bayesian inference we deduce 
updated uncertainties for structural parameters and the flutter altitude.  Using very small amounts of data we see 
the introduction of a covariance relationship into the structural parameters and a substantial reduction in flutter 
boundary uncertainty.  In this framework we study the informativeness of sub-critical eigenvalue measurements 
for the flutter altitude with respect to two parameters: measurement accuracy, and proximity of the measurement 
to the flutter altitude. 
 
Motivation and Methodology 
 
Flight flutter tests entail cost and risk, whereas computational methods may not accurately predict the flutter 
boundary (Lind and Brenner, 1997).  As such there is a history in aeroelasticity of combining limited flight-test 
data at sub-critical speeds, with simplified fluid-structure models to predict the flutter envelope, either 
deterministically (Zimmerman and Weissenburger, 1964) or stochastically (Khalil et al., 2010). 
 
Stochastic approaches arise from the acknowledgement that both estimates of structural parameters and 
experimental measurements are imprecise.  Epistemic uncertainty in the former arises from airframe material 
and manufacturing variability, as well as wear over varying service histories of aircraft.  Recent work has shown 
that small uncertainties in a large number of structural parameters can result in dramatic uncertainties in the 
aeroelastic response (Pettit and Beran, 2006; Witteveen et al., 2007) in particular the flutter boundary (Marques 
et al., 2010).  Our goal in this section is to reduce the epistemic uncertainty in both parameters and response 
using experimental observations of stability eigenvalues of the system at non-flutter conditions.  In contrast to 
previous studies of model updating in aeroelasticity, our model is a high-fidelity fluid-structure interaction (FSI) 
solver, with a finite-volume compressible Euler solver for the fluid part - which makes the method applicable to 
the transonic regime.  Furthermore since the stand-alone model (without data) is predictive and accurate, we 
expect the amount of flight-test data required to update the model to be low, and the calibrated model to have 
broad validity.  These benefits justify the extra computational work involved resulting from the high cost of the 
FSI simulation. 
 
The two main components of the statistical analysis are: 1) propagating specified structural parameter 
uncertainty through the FSI simulation to obtain estimates of flutter boundary uncertainty, and 2) using 
experimental data to update estimates of structural uncertainty in the model.  The former is accomplished with 
non-intrusive uncertainty quantification (UQ) techniques (Xiu and Karniadakis, 2002), in particular probabilistic 
collocation (Loeven, 2010).  For the latter we construct a statistical model relating the output of the simulation 
to the experimental observations, and solve it within the Bayesian framework.  There are several benefits to this 
stochastic approach: the inherent ill-posedness of the inverse problem is treated naturally without need for 
regularization terms, noise in the experimental observations can be readily accounted for, as can prior 
information on the structure (Kennedy and O’Hagan, 2001). 
 
Flutter Prediction with an Eigenvalue Solver 
 
The unsteady fluid-structure system consisting of an elastic wing in high-speed flow, is approximated by 
coupling the compressible Euler equations to a structural model for the wing - with surface forces and 
displacements interpolated between the fluid mesh and the structural model.  The flow discretization is based on 
the University of Liverpool's parallel multiblock solver - a cell-centered finite-volume code, operating on 

                                                
1 From: R.P. Dwight, S. Marques, H. Bijl, K.J. Badcock (2011).  Reducing Uncertainty in Aeroelastic Flutter Boundaries using 
Experimental Data.  International Forum on Aeroelasticity and Structural Dynamics, Paris, IFASD-2011-71. 
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curvilinear body-fitted meshes.  The structural discretization uses a finite-element model, analyzed with 
MSC.Nastran.  The coupling approach used is described in Woodgate et al. (2005).  For the Goland wing we 
consider throughout this section the coarse aerodynamic grid, and structural model are depicted in Figure 1. 
 
In order to estimate the stability properties of the aeroelastic system, we could integrate the discrete system 
forward in time for each parameter-set and condition of interest - but this is computationally expensive.  Instead 
we perform a linear stability analysis of the coupled discrete system (Marques et al., 2010) about a stationary 
solution.  This involves a linearization of the full non-linear coupled solver, resulting in a Jacobian matrix 
containing both fluid, structure and cross-terms.  Finding the eigenvalues of this matrix directly is intractable - 
therefore the system is factored using the Schur complement, resulting in a non-linear eigenvalue problem with 
of the size of the number of structural parameters.  By parameterizing the structure using the leading-order 
mode-shapes only, this number is kept small and the eigenvalue problem is solved rapidly with a Newton 
iteration.  A typical result (for the Goland wing) is shown in Figure 2 (left).  Eigenvalues associated with the 
first 4 structural modes are plotted, and it can be seen that at a certain altitude two modes interact, leading to one 
mode going unstable (real-part of eigenvalue greater than zero).  To get a rough estimate of the influence of 
discretization error in the fluid the calculation is repeated on a much finer fluid mesh.  The altitude at which 
flutter occurs is only very slightly changed. 

 
Probabilistic collocation for uncertainty propagation 
 
Now we consider the case in which the wing structure is imperfectly known.  Consulting with aero-structure 
experts, a preliminary best-guess of ±5% variability in any given structural model parameter was made.  In a 
precursory sensitivity analysis with linear aerodynamics, of the 31 structural parameters in the model, only 7 
were identified as having a substantial influence on flutter.  These 7 are treated stochastically (as uniform 
distributions) in the following, and the influence of the remaining parameters is neglected. 
 
Probabilistic collocation (PC), see e.g. Loeven (2010), is a means of computing statistics of the output of a 
computational model, given pdfs on the model's input parameters.  The method uses a polynomial expansion 
based on Lagrange polynomials to approximate the response of the model in the uncertain parameter space.  
Gaussian quadrature weighted by the pdf of the uncertain input is applied to compute the mean, variance, and 
higher moments of the output.  By choosing the support points and Gauss rule appropriately, it is possible to 
achieve decoupling of the equations for different parameter values (collocation), and a higher-order 
approximation of the mean and variance of the output (spectral convergence).  Multidimensional rules are build 
via tensor products of 1d rules - with cost exponential in the dimension.  By Monte-Carlo sampling the 
polynomial response, approximate pdfs of output quantities can also be rapidly obtained. 

Figure 1: Goland wing with coarse aerodynamic grid (left); eigenvalues of four dominant aeroelastic 
modes, for aerodynamics on fine and coarse grids (right). 

Aerodynamic model 

Structural model 
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We apply PC with a quadratic approximation in each of the 7 uncertain directions (i.e. PC(2)), requiring 37 = 
2187 evaluations of the simulation code.  This is feasible thanks to the low cost of the Schur-eigenvalue code. 
The output for PC(2) is plotted in Figure 2 (right).  The main subfigure shows the real part of the eigenvalue of 
the first aeroelastic mode (responsible for flutter), plotted as a function of altitude, as in Figure 2 (left).  The 
multiple lines of varying thickness represent the uncertainty in this value caused by the specified structural 
uncertainty.  The "truth" has a probability of 1/2 of lying to the right of the P = 1/2 line, a probability of 1/3 of 
lying to the right of the P = 1/3 line, etc.  The histogram to the right approximates the pdf of the real eigenvalue 
at the red vertical line in the main subfigure (not the marginal pdf over altitude!).  Similarly the histogram below 
approximate the pdf of the flutter altitude (i.e. the pdf of Re(λ) = 0), from which the probability of flutter can be 
quickly evaluated.  Flutter is certain for an altitude < 6,000 ft, and guaranteed not to occur for an altitude > 
14,000 ft, under the assumption that structural uncertainty is the dominant source.  Clearly the predictive 
capability of the analysis is primarily limited by structural uncertainty and not discretization error.  The 
conclusion that (under the relatively mild uncertainties on the structure) it is not possible to state the flutter 
altitude within 8000 ft is dismaying - this result is so broad as to be useless.  Further this will remain true no 
matter how good the numerical code, and can only be reduced by experimental measurements of the structure, 
or some other aspect of the system. 

 
Bayesian updating of structural uncertainty 
 
Flight tests are one source of information commonly used to determine flutter altitude.  Let us assume that an 
experiment has been performed using a Goland wing, and eigenvalues of the system at pre-flutter conditions are 
measured with a certain accuracy σd.  Measurements at- or beyond flutter conditions are to be avoided lest the 
model be damaged (or the aircraft in a real flight-test).  No experimental eigenvalue data currently exists for the 
Goland wing test-case, therefore to demonstrate the method artificial data is generated using simulation with 
added noise (a ``twin problem'' in the terminology of inverse problems).   
 
Updating parameters in the presence of measurement data is known variously as model parameter estimation, 
model calibration, and system identification, and is accomplished in a stochastic setting using Bayes' theorem.  
Two good introductory books on the subject are Tarantola (2004) and Gelman et al. (2004). The first step is to 

Figure 2: Eigenvalues of four dominant aeroelastic modes, for aerodynamics on fine and coarse grids (left); 
uncertainty in single unstable eigenvalue due to structural uncertainty (right).  The lower pdf displays the 

probability of flutter boundary occurring at a given altitude. 

Discretization error Parametric uncertainty 
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define a prior: a probability distribution on the structural parameters encoding all information which is known 
about the parameters prior to observing the data, with pdf ρ0(α).   
 
The second step is to describe the relationship between the model and the data, this is the statistical model.  Let 
the vector of observed quantities be denoted d (the data).  Let H(w, α) be an observation operator, which takes a 
model state w and parameter vector α, and returns the model's approximation of the observed quantities d.  The 
model state w(α) satisfies the model equation: 
 

! !,! =   0. 
 
Under the assumptions: (i) that the noise in the measurements d is known and described by the random variable 
ε, and (ii) that there is no modeling error (for the correct choice of α), then the model and data are related as: 
 

! = ! !,! +   !        s.t.        ! !,! = 0. 
 
Given which the probability of observing data d given parameters α (the likelihood) is 
 

! ! ! ∶=   !! ! − ! !,! , 
 
where ρε(.) is the pdf of ε.  For a prior and a likelihood, Bayes' theorem gives an explicit expression for the 
posterior, the probability of parameters given the observed data: 
 

! ! ! ∝   ! ! ! !! ! , 
 
where the constant of proportionality (independent of α) is not usually of interest.  In the Bayesian framework 
this posterior is regarded as the answer to the question: What is known about α?, and is therefore the updated 
estimate of the parameters.  If we require a deterministic estimate of α - rather than the probabilistic posterior -
then a reasonable choice is the most-likely value of α, the maximum a posteriori estimate (MAP estimate): 
 

!!"# ∶=   argmax
!

! ! ! . 
 
Reducing uncertainty for the Goland wing 
 
The procedure of the previous subsection is applied to the Goland wing test-case.  We assume measurement data 
at 5 different accuracies, and at 5 distances from the "true" flutter point.  This is intended to simulate flight-tests 
with differing measurement capabilities, and that are allowed only to approach flutter at different distances.  In 
each case only a single complex eigenvalue is measured.  In reality more data would be available, though we 
can only exploit that data which our model predicts.  Once updated distributions on the structural parameters are 
estimated, those distributions can be propagated through the Schur-eigenvalue code to obtain updated (and 
hopefully narrower) distributions on the flutter altitude. 
 
The posterior distributions on flutter altitude for calibrations using each of the 25 pieces of data are plotted in 
Figure 3.  The prior is the same ±5% uniform distributions on each parameter used in the UQ study.  
Immediately clear is that, in many cases, the level of uncertainty in flutter is reduced over the level present in 
the pure UQ study summarized in Figure 2 (right).  Furthermore as the accuracy of the measurements increases, 
and the proximity to the flutter point decreases, more specific information about the true flutter altitude is 
identified.  This is expected, but this study gives us quantitative information on how much we know about the 
flutter altitude given the data.  For example at σd = 0.002 and a distance from flutter of 3400 ft, the posterior 
distribution looks almost identical to the prior, with a likely range of flutter altitude between 6000 and 13000 ft, 
indicating that data of that quality says very little about flutter.  At the other extreme, with an accuracy of σd = 
0.0001 and a distance from flutter of 600 ft, the true flutter altitude is identified in a very narrow band of less 
than 150 ft. 
 
However in all cases, given the high-dimensional input parameter space (the 7 structural parameters) and the 
small quantity of added data (a single complex number), true values of individual structural parameters are only 
broadly identified. Nevertheless, thanks to the fact that the stability eigenvalue data is closely related to the 
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quantity of interest (the flutter altitude), the latter can be identified narrowly by the procedure, and the large 
uncertainty present in the original analysis is substantially reduced. 
 
 

 
 
 
 
 

Figure 3: Dependence of posterior pdf of flutter altitude on distance of eigenvalue measurement from the 
flutter point (decreasing left-to-right), and accuracy of the measurement (increasing top-to-bottom).  

Vertical red line is the "truth". 
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2. Kriging Regression of PIV Data using a Local Error Estimate2 
 
Postprocessing Particle-Image Velocimetry (PIV) data is a challenging task.  We introduce a method based on a 
interpolation method with origins in Bayesian statistics.  Thanks to its stochastic heritage Kriging is able to 
incorporate estimates of noise in the data, and beliefs about the smoothness of the response.  We apply Kriging 
to two purposes: interpolation of low-resolution data (from multiple planes), and improved estimates of velocity 
fields from poor quality images.  In both cases Kriging is seen to provide substantial advantages over the best 
existing methods. 
 
Gaussian Process Regression using Local Error Estimates 
 
Usually, the post-processing of PIV data includes several steps, such as outlier detection, outlier replacement, 
smoothing, and in some cases interpolation to a finer grid. Each of these steps can involve different techniques, 
for example one might replace outliers by linear interpolation and increase the resolution with cubic spline 
interpolation. The Kriging predictor enables a different approach, it can provide a single-step prediction of the 
flow field at any (existing or new) set of grid-points and generally acts as a regressor - although in most cases 
the Kriging predictor is set to act as an exact interpolator. 
 
Given the data !!"# = (!!"# , !!"#), the Kriging predictor for the flow field ! is given by (Wikle and Berliner, 
2007): 
 

! ! !!"# = ! + !!! ! + !"!! !! !!"# − !" ,     (2.1) 
 
where the observation matrix ! selects the PIV data locations !!"# =   !" from the complete set of locations !. 
For large domains we can reduce the computational cost by generating a sparse covariance matrix !, through 
approximation of the commenly used Gaussian covariance function with a spline. 
 
The mean ! and variance !! of the flow are estimated from the statistical mean and standard deviation of the 
PIV data. The correlation range can be found from a Maximum Likelihood Estimate (Mardia et al., 1989) 
optimization, however in the following we use a Frequency-domain Sample Variogram optimization to reduce 
computational cost (de Baar et al., 2011; de Baar et al., 2012).  In (2.1) usually ! = 0, such that Kriging is an 
exact interpolator, although a small !   =   !" might be implemented for reasons of numerical stability, with !  of 
the order of the square-root of machine precision. 
 
From a Bayesian perspective, we can introduce some amount of regression by choosing (Wikle and Berliner, 
2007): 
 

!   =    !!!!,  
 
where !! is an estimate of the observation error, which is assumed to be globally constant, and ! is the error 
matrix. This can be interpreted as smoothing of the data, however from the Bayesian perspective the objective is 
not to smooth the data but to arrive at the most optimal prediction of the true flow. For Kriging with global error 
prediction presented here (Kriging GE), we use 32-fold random cross validation to estimate which value of !! 
gives an optimal interpolation (Witten et al., 2011). 
 
However in many cases we have an estimate of the velocity error per interrogation window (i.e. local).  The 
same Bayesian perspective allows us to choose (Wikle and Berliner, 2007): 
 

!   =   diag !!! ,  
 
where we now interpret !! as a vector of local observation errors. Substituting this expression for ! into (2.1) 
results in a Kriging predictor with local error estimate (Kriging LE). 
 

                                                
2 From: J.H.S. de Baar, M. Percin, R.P. Dwight, B.W. van Oudheusden, H. Bijl, "Kriging regression of PIV data using a local error 
estimate", Experiments in Fluids (in preparation). 
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The question remains how to estimate the local observation error !!.  This is a fundamental and long-standing 
problem in PIV, and a variety of rough estimates have been developed and are used, that are accurate to 
differing degrees depending on the source of the error.  Ultimately, the user providing the PIV data might also 
quantify the accuracy of that data.  Fortunately the Kriging predictor is fairly robust to inaccurate estimates of 
noise levels.  In the  we use the following simple model to estimate velocity error: 
 

!!     =   
!

!"!! −   !"#!"#
  

 
where !"!! is the signal-to-noise ratio in the interrogation window !, and where the choice of !"#!"# results 
from the expertise of the PIV experimenter.  We use 32-fold random cross-validation to estimate which value of 
! gives the optimal interpolation. 
 
Study of the Method for Synthetic Data 
 
In this section we simulate PIV processing of synthetic images, interpolate the results to a finer grid using both 
conventional and new methods, and finally we perform a parametric investigation of the effect of bad seeding 
and reflections on the accuracy of the interpolation.  This approach enables us to quantify the improved 
accuracy of an interpolation technique that employs a local error estimate of the PIV data.  We consider the two 
dimensional incompressible flow (which we regard as "truth") given by: 
 

!(!, !)   =   sin(2!")  cos(2!"),  
! !, ! =   −cos(2!")  sin(2!"),  

 
on the domain !   =    [0,1] and !   =    [0,1], which is visible on the right in Figure 4.  From this flow we create 
synthetic image pairs with random seeding, Gaussian noise, reflection, 256x256 pixels, and 256 greyscale color-
depth. A typical image is shown on the left in Figure 4. 

 
We apply the Matlab PIV Toolbox MPIV (Mori, 2009) to reconstruct the flow field, using a recursive 
correlation algorithm with a final interrogation window size of 16x16 pixels and three point subpixel fitting.  
Black arrows in Figure 4 show a typical reconstruction of the flow field. In this process we deliberately 
introduce several sources of error - such as noise, reflection, low image resolution, and low PIV data resolution - 
as a result of which we find a local offset of the PIV data with respect to the true flow, an example of which is 
visible in Figure 4.  MPIV provides two different signal-to-noise ratio, of which we use the Peak-to-Mean ratio - 
that the ratio of the correlation peak height to the average correlation value in the fitting domain. 
 
The next step is to interpolate the PIV data to a finer grid of 10! random grid-points. We compare the Root 
Mean Squared Error (RMSE) accuracy of three interpolation methods. For cubic spline interpolation the data is 
passed through the MPIV median filter, while both Kriging methods use the raw data directly.  We perform a 

Figure 4: Synthetic PIV image with seeding, noise, and reflection (left), reconstruction of the 
synthetic flow-field with PIV (right). 
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parametric study to quantify the effect of poor image quality on the accuracy of the interpolation. The first 
parameter we change is the seeding. Figure 5 (left) illustrates the effect of poor seeding on the RMSE accuracy 
of the three different interpolation methods. For underseeding we observe a dramatic increase of the cubic spline 
interpolation error. For Kriging GE this effect is less dramatic, while for Kriging LE we see only a very minor 
effect on the accuracy.  This result is seen to be insensitive to the particular error estimate used. 

 
The second parameter we increase is the intensity of the reflection. This leads to a region of poor image quality, 
resulting in a low SNR and therefore a high value of the local error estimate. This region of high estimated error 
roughly corresponds to the region where we observe a large offset of the PIV data with respect to the true flow.  
The resulting interpolation accuracies are given in Figure 5 (right). Again, we see a dramatic increase of the 
cubic spline interpolation error, while the Kriging LE interpolation error remains much smaller. The reason for 
this is that in poor images the local offset is correlated with the local SNR. This relation is modeled by Kriging 
LE which results in an improved accuracy, as is illustrated by Figure 5 (right). 
 
Application: Interpolation of Stereo PIV Data of the DelFly II MAV 
 
In this section, we implement the Kriging interpolation technique using local error estimate in the interpolation 
of the experimental data acquired via Stereoscopic Particle  Image Velocimetry (Stereo-PIV) technique. The 
time-resolved PIV measurements were performed in the wake of the flapping-wing Micro Air Vehicle (MAV) 
`DelFly' II (Figure 6 (left)) in forward flight configuration, the experimental setup is shown in Figure 6 (right). 
Three-component velocity fields were obtained at several spanwise planes in the wake of the flapping wings and 
at a high framing rate to allow a reconstruction of the three-dimensional wake structure throughout the flapping 
cycle. The wake reconstruction was performed by interpolating between the measurement planes. 
 
Experiments were performed for a large variety of parameters, i.e. flapping frequency, free-stream velocity, 
angle of attack and tail configuration. However, as the matter of interest is the performance of Kriging 
interpolation technique using local error estimate based on the Signal to Noise Ratio (SNR) of the PIV data, 
only some representative cases are represented and discussed in this paper. Before starting the discussion of the 
results, it is necessary to underline some important points regarding to interpretation of the results. First, it 
should be noted that only one half of the wake is visualized (the wake, however, is assumed to be nominally 
symmetrical) and that the region in the vicinity of the tail masked during PIV processing due to intensive 
reflection underneath and lack of illumination above the tail.  
 
Results are shown in Figure 7, in which isocontours of the z-component of the vorticity are plotted.  Accuracy of 
derivatives such as vorticity are naturally more sensitive to the quality of interpolation.  Two prominent counter-
rotating vortices are visible in Figure 7, corresponding to tip vortices from the upper and lower wing 
respectively.  We compare the effectiveness of cubic-spline interpolation and Kriging GE (results for Kriging 
LE are currently being worked on, and are expected to be even better).  There is no longer any "truth" velocity 
field, so the methods must be evaluated by reference to possible and plausible physical behaviour.  In the cubic 

Figure 5: RMS error in predicted velocity field for three different interpolation techniques.  As a function 
of seeding density (left), as a function of reflection intensity (right). 
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spline reconstruction (top left), as well as the two main vortices we see a large quantity of spurious vorticity 
packets that are apparently non-physical and a result of (i) the large distance between measurement planes with 
respect to the in-plane resolution, (ii) the mismatch of fluctuations in the planes (which were measured at the 
same flapping phase but at different times), and (iii) the cubic spline not accounting for noise in the velocity 
vectors.  In contrast in the Kriging interpolation (bottom left), the reconstruction is substantially smoother and 
spurious oscillations are reduced, such that we might examine the remaining vorticity blobs more closely, with a 
stronger belief that they may represent true flow features.  The iso-plot (left) shows the complete flow domain. 
 
By the robustness of its interpolation, and the ability to handle completely unstructured (point-cloud) data, error 
estimates, and derivative information natively, Kriging has provided a flexible means of analyzing the DelFly II 
data set that was possible only in a limited fashion before.  

 

Figure 7: Vorticity fields. Top left: cubic spline interpolation, plan view.  Bottom left: Kriging GE 
interpolation. Right: Kriging GE interpolation, perspective view with example velocity plane. 

Figure 6: DelFly II in flight (left), the stereo PIV setup, open-jet nozzle visible on the extreme right 
(right). 
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3. Navier-Stokes Simulation in Gappy PIV Data3 
 
PIV measurements are often affected by gaps, i.e. regions where no information regarding the velocity field is 
obtained. The gaps occur in areas where the particle image displacement cannot be evaluated. There are a wide 
variety of reasons for this: 1) absence of seeding particles due to inhomogeneous tracer dispersion or due to the 
centrifugal forces acting in vortices and wakes of high-speed flows (Schrijer and Walpot, 2010, Bitter et al., 
2010); in this case the gaps occur irregularly in space and time; 2) laser light reflections from the surface of 
objects, which lead to corrupted tracer particle images; 3) shadows due to the presence of objects in the light 
path; 4) inaccessible regions for the imaging system. 
 
The treatment of gaps in PIV data has received little attention. Generally considered as a byproduct of the vector 
validation problem, (detection and replacement of false vectors, see Westerweel, 1994 for instance) several data 
refill procedures have been proposed by practitioners. In essence, data refill procedures are nothing more than 
spatial interpolation or regression of neighbouring vectors. Several choices for the basis function are proposed, 
the lowest-order being bilinear interpolation of the known values at the boundary of the gaps. Gunes and Rist 
(2008) proposed to employ the Kriging method for stereoscopic data reconstruction. Ventura and Karniadakis 
(2004) investigated the possibility of using proper orthogonal decomposition (POD) for reconstructing flow 
fields from gappy data. The aforementioned methods can only reconstruct a monotonic velocity field or at most 
a field with a single peak inside the gap (a half wave). 
 
The main idea behind the present method is to use the full governing equations of the flow to predict the 
velocity distribution inside the gap, in order to reduce the error associated with the data refill procedure. We 
employ a numerical solution of the 2d incompressible Navier-Stokes equations to estimate the velocity field 
within the gap, using a staggered-grid finite volume solver, with time-varying Dirichlet boundary conditions 
imposed using the velocity provided by the PIV data. Unusually for data assimilation problems the PDE is 
well-posed with these boundary conditions; in particular, boundary conditions on the pressure are not required.  
Therefore assuming complete knowledge of BCs and belief in high accuracy of the experimental data, no 
stochastic approach is necessary - and we proceed deterministically with a standard NS solve.  The initial 
condition on the velocity in the gap is unknown, but has a diminishing effect on the solution over time provided 
that information is convected out of the gap; therefore it is sufficient to specify any initial condition consistent 
with the boundary conditions at time zero, and integrate sufficiently far forward in time. 
 
Numerical solution method 
 
Considering a measurement domain with a gap Ω where no velocity is measured, the velocity field in Ω is 
computed by solving the unsteady Navier-Stokes equations, which in non-dimensional form read:  
 
Conservation of mass:   0⋅ =V∇ ;     (3.1) 

Conservation of momentum:  p
t

∂
+ =

∂

V R∇ ,     (3.2) 

 
where the following units are chosen: velocity: Vref; length: L; density ρref, pressure: ρrefVref

2. The vector R = [Ru 
Rv]T contains the contributions of advection and diffusion and is given by:  
 

( )T1
Re

⎡ ⎤= ⋅ − ⊗ + +⎢ ⎥⎣ ⎦
R V V V V∇ ∇ ∇ ,   (3.3) 

  
with Re = ρrefVrefL/µ the Reynolds number, and µ the coefficient of dynamic viscosity.  To solve the Navier-
Stokes equations in Ω, a finite volume method is employed using a Cartesian staggered grid (Welch et al., 
1966).  Following the approach by Veldman (1990), the continuity and momentum equations are combined to 
reformulate the problem as a Poisson equation for pressure, which in the discrete form reads: 
 

                                                
3 From: A. Sciacchitano, R.P. Dwight, F. Scarano, "Navier-Stokes Simulations in Gappy PIV Data", Experiments in Fluids, DOI: 
10.1007/s00348-012-1366-5. 
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n 1 n n n+1
h h h h h h h

1 1D G p D D
t t

Ω Ω Ω

δ δ
+ ∂⎛ ⎞= + +⎜ ⎟

⎝ ⎠
V R V ,  (3.4) 

 
where h represents the mesh spacing, hDΩ  and hD Ω∂  are the discrete divergence operators at the points of the 
volume mesh and boundary mesh respectively, Gh is the discrete gradient operator, δt is the temporal step and n 
indexes the time level. Finally Vh, p and Rh are discrete quantities corresponding to V, p and R. Employing a 
central discretization for both convective and diffusive terms, equation (3.4) written out in full reads: 
 

n 1 n 1 n 1 n 1 n 1 n 1 n n n n
i 1, j i , j i 1, j i , j 1 i , j i , j 1 i 1 / 2, j i 1 / 2, j i , j 1 / 2 i , j 1 / 2

2 2
x y x y

n n n n
i 1 / 2, j i 1 / 2, j i , j 1 / 2 i , j 1 / 2

x y

p 2 p p p 2 p p u u v v1
h h t h h

Ru Ru Rv Rv
h h

δ

+ + + + + +
+ − + − + − + −

+ − + −

⎛ ⎞− + − + − −
+ = + +⎜ ⎟⎜ ⎟

⎝ ⎠

− −
+ +

, (3.5) 

 
with i and j representing the position of a generic cell inside the domain and u and v the horizontal and vertical 
velocity components respectively.  Finally the update is made via: 
 
    n+1 n n n 1

h h h ht tG pδ δ += + −V V R ,    (3.6)  
 
The pressure values computed from equation (3.5) guarantee that the velocity components obtained by solving 
(3.6) satisfy the incompressibility constraint (3.1).   
 
Critically for this approach, (3.4) and (3.6) can be solved imposing boundary conditions only on the velocity and 
not on the pressure (Ferziger and Peric, 2002). The boundary conditions on V are provided at discrete time 
instants by the PIV measurements and are imposed as Dirichlet conditions. In order for the numerical scheme to 
be stable, the spacing h of the computational mesh and the time step δt are selected according to the conditions 
proposed by Ferziger and Peric (2002) for the linear convection-diffusion equation. To fulfill those conditions, 
δt often needs to be smaller than the time interval Δt between PIV recordings. Therefore, the velocity boundary 
conditions at intermediate time instants are computed through interpolation in time of the PIV velocity data.  
The time interpolation for the boundary conditions is based on the advection model proposed by Scarano and 
Moore (2011). 
 
Application: Treatment of Shadow Regions 
 
The technique is applied to an experiment in air of a rod-airfoil configuration. A cylindrical rod of 6 mm 
diameter is mounted 10.2 cm upstream of a NACA 0012 airfoil, having a chord of 10 cm and placed at zero 
angle of attack. The airfoil is made out of Plexiglas in order to be transparent to the laser light. The nominal 
free-stream velocity is set to 15 m/s, yielding Reynolds numbers of 6,000 and 100,000 with respect to the rod 
diameter and the airfoil chord respectively. The temporal separation between laser pulses is 50 µs, while the 
acquisition frequency is 2,700 Hz. The field of view size is 164×83 mm, imaged by 1939×1024 pixels. A 
thorough description of the experiment is reported in Lorenzoni et al., 2009.  
The illumination is directed from the bottom of the field of view upwards, tilted clockwise by 11 degrees. 
According to Snell’s law (Born and Wolf, 1999), when a light ray passes from air (refractive index n1 = 1.000) 
to Plexiglas (refractive index n2 = 1.488), it undergoes a deflection that depends on the angle between the 
incident ray and the normal to the interface. The deflection is negligible in the central part of the airfoil, where 
the incident and refracted rays are roughly parallel to the normal to the interface. In contrast, where the airfoil 
curvature is larger, i.e. at the leading and trailing edges, the refraction becomes so strong that non-illuminated 
regions are generated above the airfoil, see Figure 8. 
 
For both the shadow regions A and B, above the leading and the trailing edge respectively, the numerical 
simulation is conducted in rectangular domains, indicated by the dashed lines in Figure 9.  The first region, ΩA 
is composed by 112×88 cells, corresponding to 56×44 PIV grid nodes, while ΩB is composed by 62×100 cells, 
which correspond to 31×50 PIV grid nodes. The region containing measurement data inside the numerical 
domains serves as the buffer region B.  Both numerical domains ΩA and ΩB exhibit a central region where no 
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PIV data is present and two lateral regions where particle image velocimetry vectors have been measured; the 
numerical solution is calculated in the entirety of the rectangular domains, but it is retained only in the central 
regions. At the unknown boundaries, the boundary conditions are computed as a linear interpolation of the 
measured PIV velocity data. Figure 9 shows an example of reconstructed instantaneous velocity fields. In both 
the shadow regions, the velocity components computed with the Navier-Stokes solver exhibit good agreement 
with the surrounding experimental data.   
 

 

 
Figure 9: Instantaneous reconstructed velocity fields. Left: horizontal velocity component; right: vertical 
velocity component. 

The added value of the present technique with respect to interpolation approaches is evident when small flow 
structures need to be reconstructed in the shadow region. In Figure 10, the motion of two vortices a and b is 
illustrated. At time t = 0, vortex a has a single core while vortex b has two distinct cores; both the vortices are 
on the left of the shadow region. The two vortices are adverted downstream by the flow and pass through the 
shadow region, where the velocity is calculated via the numerical simulation. The proposed filling approach 
allows tracking the vortices within the shadow region and estimating the distance between them within 5% 
accuracy. However, modulation effects are noticed which have two main consequences: reducing the peak 
vorticity up to 50% of the original value and merging the two cores of vortex b in a single-core vortex (see 
Figure 10). Downstream of the shadow region, the vorticity is measured from PIV data: the peak vorticity is 
recovered and the two cores of vortex b become distinct again. 
 
 
 

Figure 8: Double-frame recording of particle images on a transparent NACA 0012 airfoil (laser light 
directed from below) in the wake of a rod (outside the field of view). 

Figure 9: Instantaneous reconstructed velocity fields. Left: horizontal velocity component; right: vertical
velocity component.
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Figure 10: Vorticity contours showing the convection of two vortices a and b through the shadow region. 
Left: reconstruction through the Navier-Stokes solver; right: reconstruction through a bicubic 

interpolation of the velocity boundary values.  
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Conclusions and Further Work 
 
In all engineering tasks use is made of both experimental data and simulation.   We have shown how these may be 
combined in a variety of situations with Bayesian inference, assisted with appropriate numerical algorithms, to 
give results that are more complete and/or accurate than either simulation or experiment alone.  The existence of  
Bayes  as  a  unifying  framework  allows  sharing  of  methods  and  implementations  across  widely  varying 
application domains.  We are firm believers in the use of Bayesian statistics for exploiting modern high-fidelity 
CFD solvers and rich data provided by modern experimental methods. 
 
In each of the applications discussed work is ongoing, in order: 
 
1. The main limitation of the current study was the use of manufactured data, which allowed us to assume that 
model  inadequacy  was negligible,  and gave  us exact  knowledge  of the experimental  noise.   Next  steps  are 
application to aeroelastic wind-tunnel tests, where a more complete statistical model will be necessary. 
 
2. There are a number of directions in which Kriging PIV interpolation can be developed.   Algorithms used to 
identify window displacements in PIV are usually iterative, with an initial low-quality velocity field being used to 
inform window distortion in a second step.  Kriging is ideal for reconstructing this initial velocity field from noisy 
velocity vectors, and could help improve the efficiency and stability of these algorithms.   We would also like to 
incorporate physical information  into the interpolation  via the covariance structure - this will allow the 
imposition  of known properties  like zero divergence  or conservation,  and improve the quality of results with 
bigger gaps (Dwight, 2010). 
 
3. The gappy PIV technique relies on velocities being measured at all boundaries of a gap - which is an unusual 
situation, not even satisfied by our rod-aerofoil test-case.  Compensating with interpolation at the boundary will 
not always be feasible, or give acceptable results.   Similarly the velocity data must be accurate everywhere on 
the boundary.  The method also relies on the assumption of incompressibility,  without which velocity-only BCs 
lead to an ill-posed problem.   Even worse if we desire to increase time resolution with this method, there is no 
way to match the numerical solution to measured data after a given time.   All these issues can be resolved by 
also treating  this problem  stochastically.   In this case a non-linear  Kalman  filter is an appropriate  stochastic 
method, which may be derived from Bayesian statistics, Wickle and Berliner (2007).  We are investigating the 
Ensemble Kalman Filter (EnKF) and Ensemble Optimal Interpolation  (EnOI), Evensen (2003).   Uncertainities in 
ICs, BCs and the model will be reflected in the solution. 
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