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Abstract 
 
In this paper, computational efforts in designing experiment for a series of wind tunnel tests of high-lift airframe 
noise measurement and the importance are shown. This paper describes computational evaluations of the design 
of wind tunnel testing model, the model sizing and mounting in wind tunnel, and influences of shear layer and 
mounted plate on the sound propagation in open-cart test section. It is shown that preliminary CFD investigation 
of the wind tunnel tests can decrease unknowns and improve the accuracy of the wind tunnel test. 
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Introduction  
 
With recent interest in the environmental problems, regulations for aircraft noise around airports have tightened. 
Due to successive efforts for noise reduction from aircraft engines, airframe noise is getting prominent for the 
overall noise level, especially during approach where engines are throttled down. Therefore, noise reduction 
technologies for the airframe noise are getting important for developments of future commercial aircraft. The 
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Fig. 2  Example of narrow-band spectra of far-field SPL of OTOMO model [11] 

 
The research model shown in Fig. 1 employed a rectangular wing planform and omitted the sweep angle, taper, 
and dihedral angle. Toward further improvements to predict and reduce the airframe noise from actual aircrafts, 
the influences of the omitted parameters on the noise generation mechanisms and the effectiveness of devices 
and concepts to reduce noise should be investigated well. For example, in several wind tunnel test results such 
as two-dimensional wind tunnel test results and test results using JAXA’s rectangular high-lift wing model [11], 
Multiple Tonal Peaks (MTPs) generated from slat are observed as shown in Fig. 2. On the other hand, it has 
been said that MTPs are not necessarily observed in flight test results. In addition, noise sources are often 
identified around detail parts such as slat tracks and cavities in flight test results of actual aircrafts, which are 
specific in the actual aircrafts and not modeled or simplified in the wind tunnel testing model. The influences of 
such detail parts in actual aircrafts should be also clarified for further improvements to predict and reduce the 
airframe noise from actual aircrafts. 
 
To investigate the influences, a half-span three-element high-lift wing model with taper and sweep angle were 
designed and fabricated for the purpose of high-lift device noise research. A series of wind tunnel tests have 
been conducted since 2011. In this paper, the computational efforts in designing experiment for the wind tunnel 
tests and its importance are shown. For successful wind tunnel tests of high-lift device noise research, 
preliminary CFD investigation of the wind tunnel tests can decrease unknowns and improve the accuracy of the 
wind tunnel test. The preliminary CFD results help to appropriately and efficiently locate steady/unsteady 
pressure sensors to be measured. The model has to be appropriately designed to simulate expected flowfields 
and conditions in the wind tunnels. The model sizing and mounting method should be carefully selected to avoid 
strong wind tunnel interference at high-lift conditions. In the case of open-cart test to evaluate far-field noise, 
careful consideration is required. If the model generates unexpected extra noise, it is difficult to distinguish the 
influence from the measured spectra. In addition, in the case of open-cart test, generated shear-layers largely 
deflect due to high-lift. The deflected flow has to be in the collector without generating extra noise at the 
required conditions. For the purpose of high-lift device noise research, not only the wind tunnel data correction 
for aerodynamic forces, but also the influence on the sound propagation through the deflected shear-layers and 
sound reflection on the mounted plate should be evaluated.  
 
 
 
Designed Wind Tunnel Testing Model for High-lift Device Noise Research, 
OTOMO2 
 
The model is designed to have a leading-edge slat and a trailing-edge single-slotted flap assuming an outer wing 
with sweep angle of a 100-passenger-class civil jet aircraft. The designed model configuration, OTOMO2, is 
shown in Fig. 3.  
 
Noise sources around slat are mainly derived from unsteadiness of the shear layers from the cusp and the slat 
trailing edge. Three noise components have been observed up to now [11]. The first component is the low 
frequency broadband component. The second component is the multiple tonal peaks (MTP) superimposed on 
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dB
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Fig. 2  Example of narrow-band spectra of far-field SPL of OTOMO model [11]
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Fig. 16 Computational set-up to evaluate the sound reflection on the floor and structure to support the floor
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Fig. 19 Computational set-up to evaluate influence on the sound propagation through the deflected shear-layers
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shown that preliminary CFD investigation of the wind tunnel tests can decrease unknowns and risks and 
improve the accuracy of the wind tunnel test. In the investigation, computations of a lot of configurations at 
many flow conditions had conducted with a limited schedule to design and fabricate the model, while 
improvement of the turnaround time of CFD would contribute to improve the wind tunnel test further. The 
continuing improvement and combination of CFD and EFD will be important for high-lift device noise research. 
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