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Abstract

In this article formulation of MI simulation and equations of linearized error dynamics and eigenvalue analysis 
of MI simulation were first explained. Example of MI simulation was presented for a fully developed turbulent 
flow in a square duct. Numerical experiment was performed for MI simulation with a feedback signal from the 
predetermined standard turbulent flow solution. Convergence of MI simulation to the standard solution was 
investigated as a function of feedback gain and spatial and temporal density of feedback signal. Eigenvalue 
analysis was performed to examine the validity of the linearized error dynamics approach in the design of 
feedback signal. 
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Introduction

Recent advances in computational fluid dynamics enable calculation of complex flows including turbulent flows 
appearing in many practical applications with reasonable accuracy. However, an accurate solution usually does 
not mean a solution that reproduces the exact instantaneous structure of the real flow, but rather one having the 
same statistical characteristics as those of the relevant flow. It is quite difficult to obtain the exact turbulent flow 
solution because (1) it is difficult to specify the initial and/or boundary conditions of real turbulent flows 
correctly, and (2) even if these data are available, a very small error in the initial condition will increase 
exponentially in structurally unstable dynamical systems such as turbulent flows [1] (see Fig. 1). 
In spite of the inherent difficulty, reproducing the exact structure of real turbulent flows is a critically important 
issue in many fields, such as weather forecasting or feedback flow control. Extensive studies have been carried 
out to obtain information on real flows, including turbulent flows. Assimilation is a method commonly used in 
numerical weather prediction [2]. In a numerical simulation to calculate future weather states, the initial 
condition is updated at every time interval using the latest computational result and the measurement data 
around the computational grid points. 4 Dimensional variation (4DVAR) is widely used in numerical weather 
forecasting [3-5], but it requires huge computational power to repeatedly solve flow dynamics and its adjoint, 
and, therefore, is not suitable to apply to problems of real-time flow reproduction such as feedback flow control. 

Fig.1 Real flow and simulation. 
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A similar concept, namely, interactive computational-experimental methodology (ICEME), was proposed by 
Humphrey [6] for application to engineering problems, in which the measurement data is supplied to a thermal-
flow simulation to enhance the efficiency of computation. Possible advantages of ICEME as well as further 
necessary studies were discussed in relation to a complex flow related optimization problem seeking the 
arrangement of electrical heat sources to minimize the temperature in a ventilated box under some constraints. 
At that time, however, little was known as to how computational and experimental methods should be integrated 
in general to obtain useful information on the flow. Zeldin and Meade applied Tikhonov regularization method, 
which is common in inverse problems, to obtain an optimum solution to estimate the real flow from the 
numerical and measurement results of the relevant flow [7]. Particle imaging velocimetry has become a mature 
method to obtain velocity vectors in a flow domain. Studies have been made on the application of CFD schemes 
to modify PIV measurement so as to satisfy physical constraints such as the continuity equation [8]. State 
estimator or observer, which is fundamental methodology in modern control theory to estimate the state 
variables from the state equation with the aid of partial measurement data, has been used in flow problems. 
Uchiyama and Hakomori [9] reproduced the unsteady flow field in a pipe using a Kalman filter, which is a 
special observer [10]. Recently, Högberg et al. constructed a Kalman filter to estimate the flow state from the 
information on the wall in a numerical experiment for the optimum control of the subcritical instability of a 
channel flow based on a linearized equation [11]. Kalman filter and observer seek the asymptotic convergence 
to the optimum state requiring only one forward integration from arbitrary initial condition. They are potential 
candidates to solve the problem to reproduce real flows due to much less computational load than the variational 
methods. By comparing Kalman filter and observer, the latter has a simpler structure retaining essential part of 
the state estimation. One of the present authors proposed a measurement-integrated simulation (hereafter 
abbreviated as “MI simulation”), which is a kind of observer using a CFD scheme as the mathematical model of 
a relevant system, and successfully applied it to a turbulent flow in a square duct [12], a Karman vortex street 
behind a square cylinder [13, 14], and blood flow in an aneurismal aorta [15].     
Among these studies intending to reproduce real flows, none has been successful in exactly reproducing 
instantaneous structures of a turbulent flow. From both theoretical and practical points of view, it is interesting 
to examine if any of these methods is capable of exactly reproducing turbulent flows using partial measurement 
data. As mentioned above, 4DVAR may be a sophisticated way to solve the problem but is practically 
inappropriate due to its large computational load. The present paper deals with this problem for MI simulation 
considering a low computational load and an accurate physical model. 

Table 1 Comparison among observer-based methods.

  Model     Feedback design 
Observer Linear ordinary differential equation Pole placement 
Kalman filter Linear ordinary  differential equation Optimum design 
MI simulation CFD model Trial and error 

Fig.2 Block diagram of observer.
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As mentioned above, MI simulation is a kind of observer. In the following we give a general explanation of 
observers and show the differences between the MI simulation and other existing observers, including the 
Kalman filter. An observer is a common tool in control theory to estimate the real state from a mathematical 
model and partial measurement [13]. As shown in the block diagram in Fig. 2, the real system (“Plant” in the 
figure) is modeled as a differential equation (“Model”). Real time computation is performed parallel to the 
measurement, and the difference between the outputs of the computation and measurement, or the estimation 
error, is fed back to the model through the feedback law. This feedback signal modifies the dynamical structure 
of the model system and the properly designed feedback law results in an asymptotic reduction of the estimation 
error. In observable linear systems, convergence of the output signal guarantees coincidence of all state 
variables [16]. In design of the observer, determination of the mathematical model and that of the feedback law 
are the key (see Table 1). For finite dimensional linear dynamical systems satisfying observability condition, the 
observer of an arbitrary exponential convergence property can be designed by the standard pole placement 
technique [16]. A Kalman filter is also a kind of observer in which the feedback gain is determined to minimize 
the cost function in consideration of the statistical behavior of the measurement in stochastic dynamical systems 
[10]. Extension of the observer for application to nonlinear systems has been studied extensively for finite 
dimensional cases [17]. For infinite dimensional linear systems, the state observer is designed in the same 
manner as in finite dimensional cases and implemented after finite-dimensional approximation [18]. However, a 
general theory of the observer applicable to infinite dimensional and nonlinear dynamical systems such as flows 
has not yet been established [19]. As a methodology to reproduce real flows, the authors have proposed an MI 
simulation. The main feature of the MI simulation, which distinguishes it from other existing observers, is usage 
of CFD scheme as a mathematical model of the physical flow. A large dimensional nonlinear CFD model makes 
it difficult to design the feedback law in a theoretical manner; therefore, it has been determined by a trial and 
error method based on physical considerations. However, it makes it possible to accurately reproduce real flows 
once the feedback law is properly designed. 
In this article formulation of MI simulation and equations of linearized error dynamics and eigenvalue analysis 
of MI simulation are explained [20]. Example of MI simulation is presented for a fully developed turbulent flow 
in a square duct. Numerical experiment is performed for MI simulation with a feedback signal from the 
predetermined standard turbulent flow solution [21]. Convergence of MI simulation to the standard solution is 
investigated as a function of feedback gain and spatial and temporal density of feedback signal. Eigenvalue 
analysis is performed to examine the validity of the linearized error dynamics approach in the design of 
feedback signal [20].  

Measurement Integrated Simulation

In this section formulation of MI simulation and equations of linearized error dynamics and eigenvalue analysis 
of MI simulation are explained [20]. 

Formulation 
This paper deals with incompressible and viscous fluid flow. The dynamic behavior of the flow field is 
governed by the Navier-Stokes equation: 

  p
t


      


u u u u f

       (1) 
and the equation of mass continuity: 

0 u           (2) 
as well as by the initial and the boundary conditions. In the Navier-Stokes equation (1), f denotes the external 
force term as the feedback signal in the MI simulation, f denotes the body force, and p denotes pressure 
divided by density. The pressure equation is derived from Eqs. (1) and (2) as 

  divp    u u f
        (3) 

We use Eqs. (1) and (3) as the fundamental equations. In the following, Eqs. (1) and (3) are simplified as Eqs. 
(4). 
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where 

   

    divq

     


   

g u u u u

u u u
        (5) 

The basic equation of the numerical simulation is represented as a spatially discretized form of governing 
equations (4): 

 

 

N
N N N N N

T
N N N N N N

d
dt


  


   

u g u p f

p q u f
,        (6) 

where uN and pN are computational results for the 3N-dimensional velocity vector and the N-dimensional 
pressure vector, respectively, N denotes the number of grid points, and ∇N and ΔN are matrices which express 
the discrete form of operators ∇ and Δ. It is noted that effects of the boundary conditions are included in the 
functions gN and qN.
We define the operator ( )N D  to generate the N-dimensional vector consisting of the values of a scalar field 
sampled at N grid points. Definition of DN is naturally extended to the case when the variable is a velocity vector 
field as TT T T

1 2 3( ) ( ) ( ) ( )N N N Nu u u   D u D D D . Applying the operator to the Navier Stokes equation and the 

pressure equation, we obtain the sampling of these equations at N grid points as,  

      

    

N N N

N N

d g p
dt

p q

   

  

D u D u D

D D u
.        (7) 

We assume that there is no external force (   0N D f ) in the real flow. On the other hand, we apply external 
force denoted by a function of real flow and numerical simulation in MI simulation. In this study, we consider 
the case in which external force fN is denoted by a linear function of the difference of velocity and pressure 
between real flow and numerical simulation: 

       N N N N N p      u u u u p p p pf K C u C D u ε K C p C D ε
    (8) 

where Ku denotes the 3N-by-3N feedback gain matrix of velocity, Kp denotes the 3N-by-N feedback gain matrix 
of pressure, Cu and Cp denote the 3N-by-3N and N-by-N diagonal matrices consisting of diagonal elements of 1 
for measurable points or 0 for immeasurable points, and 3N-dimensional vector εu and N-dimensional vector εp
mean measurement error. By introducing Eq. (8) into Eq. (6), we derive the general formulation of MI 
simulation: 

         
         

N
N N N N N N N N

T T
N N N N N N N N N N

d p
dt

p


       


       

u u u p p p

u u u p p p

u g u p K C u D u ε K C p D ε

p q u K C u D u ε K C p D ε
   (9) 

Linearized error dynamics  
We derive the linearized error dynamics of MI simulation. Disregarding the second order and higher order terms 
in Taylor expansion for the difference between real flow as Eq. (7) and the basic equation of MI simulation as 
Eq. (9) with respect to uN-DN(u) and pN-DN(p), we can derive the linearized error dynamics: 

JAXA Special Publication  JAXA-SP-13-001E194

This document is provided by JAXA.



5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) 
3-5 October 2012 
JAXA Chofu Aerospace Center, Tokyo, Japan 

5

          

           
N

N
N N N N N N N

N

N N N N N N

dd p
dt d

p p

 
        
 
 

      

u u p p
u

u u u

gu D u K C u D u K C p D
u

g D u D g u D D K C ε
    (10) 

and complementary static equation for pressure error: 
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where the underlined terms are caused by the model error including that in the boundary conditions and the 
double-underlined terms are caused by measurement error. 
Here, we derive the basic equation of eigenvalue analysis for the linearized error dynamics which are formulated 
as Eqs. (10) and (11) in previous section. In this paper, we consider the case of no model error including that in 
the boundary conditions, no measurement error, and feedback with only velocity components (Kp=0). In this 
case, Eq. (10) is written as 

N
d
dt

 u
u p

e Ae e
         (12) 

where eu , ep and A are the difference in velocity and pressure between the MI simulation and the real flow and 
the 3N-by-3N matrix defined as  

   , ,
N

N
N N N N

N

dgp
d

     u p u u
u

e u D u e p D A K C
u      (13) 

Next we reduce the dimension of the velocity error vector eu based on the Weyl decomposition. In Weyl 
decomposition, any vector field w can be uniquely decomposed into the orthogonal vector fields v and grad  as, 

grad
div 0 and 0, V

 
   

w v
v v n x        (14) 

where n denotes the unit vector normal to the boundary. In the present analysis, the velocity error eu consists 
only of v component in Weyl decomposition since it satisfies the divergence-free condition and it vanishes on 
the boundary due to the above mentioned assumption of no model error. This enables us to reduce the dimension 
of eu corresponding to that of the component of grad.
Referring to Fig. 3, we define B as the range of N in Eq. (12), 

 Range N B
          (15) 

and 3N-by-2N matrix B  consisting of 1 2 2, , , N  b b b    the orthonomal basis of B , the orthogonal complementary 
space of B. 

Fig. 3 Schematic Diagram for projection of vector field.
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1 2 2N
    B b b b   

         (16) 
The projection of Eq. (12) onto B  results in the following relation. 

'd
dt

u ue A'e '
,         (17) 

where the 2N dimensional vector eu’ and A’ are given as 
'u ue Be , TA' B AB           (18) 

We can analyze the linearized error dynamics from the eigenvalues of the 2N-by-2N system matrix A’.

Numerical Experiment for Turbulent Flow in Square Duct  
In this section example of MI simulation are presented for a fully developed turbulent flow in a square duct. 
Numerical experiment is performed for MI simulation with a feedback signal from the predetermined standard 
turbulent flow solution [21]. Convergence of MI simulation to the standard solution is investigated as a function 
of feedback gain and spatial and temporal density of feedback signal. Next, eigenvalue analysis is performed to 
examine the validity of the linearized error dynamics approach in the design of feedback signal [20].    

Reproduction of turbulent flow 
A numerical experiment was performed to examine whether a turbulent flow structure is exactly reproduced by 
an MI simulation using partial information on the real flow. We consider a fully developed turbulent flow in a 
pipe with a square cross section, which is a typical flow case [22, 23]. In our former attempt of MI simulation 
for this flow, a real turbulent flow was modeled by a pre-calculated standard solution, and an ad-hoc feedback 
law using a limited number of data of the standard solution was derived based on a physical consideration; a 
pressure difference proportional to the difference in the axial flow velocity component on a specified cross 
section normal to the pipe axis was added to the pressure boundary condition [12]. By choosing a feedback gain, 
the estimation error was reduced by a factor of 0.6, but it was far from an exact reproduction of the standard 
solution. In the present paper, we intend to reproduce the standard solution exactly with a more general feedback 
law using as much information on the standard solution as available and then investigate the possibility of 
reducing the number of data. 
In the followings, a numerical experiment is performed for a relevant flow. After validation of the numerical 
solution procedure, a standard turbulent flow solution is obtained as a model of a physical flow. The MI 
simulation is performed for the cases in which (1) all velocity components of the standard solution are available 
at all grid points, (2) partial velocity components are available at all grid points, and (3) all velocity components 
are available at partial grid points. We investigate the convergence of the MI simulation to the standard solution 
for these cases.  
The computational scheme used in this study is the same as that of our previous study [23]. A brief explanation 
of the numerical scheme is presented here.  The discretized representations of the Navier-Stokes equation (1) 
and the pressure equation (3) are obtained by the finite volume method on a three-dimensional orthogonal 

Fig. 4 Domain and coordinate system.
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equidistant staggered grid system. Convection terms are discretized by the reformulated QUICK scheme, which 
assures the continuity of the momentum flux on the control volume boundaries in the iteration process [25]. A 
two-time level implicit scheme is used for time dependent terms [26]. The resultant set of finite difference 
equations is solved using the iterative procedure based on the SIMPLER method of Patankar [27]. 
The geometry and the coordinate system treated in this study are shown in Fig. 4. As to the boundary condition, 
the periodical velocity condition and the constant pressure difference, p is assumed between the upstream and 
downstream boundaries, and a non-slip condition is assumed on the walls. In this paper all the values are 
expressed in dimensionless form using the side length of the square cross section b , the density of fluid   and 
the mean axial velocity 0mu  given by 

0 2 /( )m pu b L      ,         (19) 
where the coefficient of resistance is given by the Blasius' formula [24] 

1/ 4
00.316 eR  .         (20) 

A constant pressure difference p = 2
0/( )p mu    corresponding to a specified Reynolds number 0 0 /e mR u b     is 

assumed between the upstream and downstream boundaries for the duct of the periodical length L.

The calculations were carried out on the SGI ORIGIN 2000 and Altix 3700 Bx2 at the Institute of Fluid Science, 
Tohoku University. An ordinary numerical simulation was first carried out to obtain two solutions: the one 
solution was used as the model of a real flow (hereafter we call it ‘‘standard solution’’), and the other solution 
was obtained from the initial condition different from that of the standard solution (hereafter we call the solution 
as ‘‘ordinary simulation’’). Then MI simulation was performed from the same initial condition as that of the 
ordinary simulation but with the feedback signal in which the standard solution was used as the velocity of the 
real flow. Convergence of the MI simulation to the standard solution was evaluated by the error norm in the 
convergent state and the time constant in the transient state. Conditions investigated are shown in table 2. A 
feedback signal was applied at all grid points using all three velocity components (Case 1), or at all grid points 
but using partial components (Case 2), or at limited grid points using all velocity components (Case 3). The 
effect of the initial condition was also investigated in Case 1.  

Table 2 Conditions of MI simulation

 Case 1 Case 2 Case 3 
Feedback points  All All Partial 
Feedback velocity  
components 

All Partial All 

Initial condition  Independent solution 
and null velocity 

Independent solution Independent solution 

 

Table 3 Computational conditions

Periodical length L   4 
Pressure difference p   0.0649 
Standard Reynolds number Re0 (Re 9000 (573) 
Grid points N1× N２× N３  80×40×40 
Grid spacing h1× h２× h３  0.05×0.025×0.025
Time step hT     0.025  
Total residual at convergence  0.015
CPU time [s] for one time step   10.4 
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Standard solution and ordinary simulation without feedback 
This section explains the standard solution and the ordinary simulation. The present computer code, ROTFLO2, 
was validated in detail in former studies [23, 25]. For a fully developed turbulent flow with the same geometry, 
the authors have previously examined the convergence of the solution with grid refinement [23]. Under the 
computational conditions summarized in Table 3, we obtained a proper turbulent flow solution in good 
agreement with the DNS solution by Huser & Biringen [22] in the mean u1-velocity profile, the Reynolds stress 
distribution, and the energy spectrum of u1-velocity perturbation [23] (see Fig. 5). 
A standard solution was first obtained as a model of a real turbulent flow. The final velocity field of the 
statistically steady solution for a fully developed turbulent flow in the former study [23] was used as the initial 
condition of the standard solution.  
The present study focused on the convergence of the solution of the MI simulation to the standard solution. The 
initial condition of the MI simulation was defined as the state of the standard solution at t = 20 (we confirmed 
that the autocorrelation function of the velocity fluctuation at the center of a cross section sufficiently reduces at 
t = 10). The two solutions are very different although their statistical properties are the same. This initial 
condition is used in most of the following MI simulations except for the special case of the null velocity 
condition.     
MI simulation with feedback of full velocity components 
A numerical experiment for MI simulation was performed using the above-mentioned standard solution as the 
model of real turbulent flow. The feedback signal in the MI simulation in this section was applied at all grid 
points as the artificial force vector in the discretized Navier-Stokes equation proportional to the difference in 
velocity vector between the standard solution and the simulation, and as the source term in the pressure equation 
(Case 1 in Table 2). MI simulation for the feedback signal determined with partial information of velocity 
components (Case 2) or partial grid points (Case 3) are considered in the following sections.  
MI simulation was performed for various values of the feedback gain Ku, which represents diagonal components 
of the diagonal matrix Ku. In order to evaluate the error of the MI simulation from the standard solution, we 
define the error norm Eu and Ep as follows: 

Fig. 5 (a) Comparison of mean axial velocity profile with DNS solution (Huser & Biringen 1993), and 
(b) Flow structure on a cross section for the present numerical solution for a fully developed turbulent 
flow through a square duct (Hayase 1999). Upper left: mean u1-velocity contours normalized by the 
mean center velocity uc; lower left: mean transverse velocity vectors normalized by the mean center 
velocity uc; upper right: contours of RMS value of u1-velocity fluctuation, ;  lower left: contours 
of the Reynolds stress,  
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where un denotes a component of uN, or u1, u2, u3 at any grid point.  
Variations of the error norms Eu and Ep for MI simulations with different values of the feedback gain Ku are 
plotted in Fig. 6. For the error norm of the velocity vector field in Fig.6 (a), the result for Ku = 0, corresponding 
to the ordinary simulation, remains almost constant (E0 = 0.130.02) showing that the standard solution and the 
solution of the ordinary simulation maintain the same distance in the state space. In a range of the feedback gain, 
the error norm is reduced almost exponentially and afterwards deviates irregularly within some range. The 
exponential reduction rate in the transient stage increases with the feedback gain for Ku  32, but becomes 
negative (meaning that the error increases) for Ku = 64, showing instability characteristics which are typical in 
feedback systems. The range of deviation of the error norm in the steady stage is almost constant with time for 
each gain. By carefully examining the variation of the error norm in that range, the error norm is seen to switch 
between two typical states near the bottom and top of the range: a quasi-stationary state near the bottom and a 
steady oscillation state near the top. The level of the bottom state, which takes the minimum value around 110-6

for Ku = 2, increases with increasing gain. The level of the top state, which gives the accuracy of the MI 
simulation, first decreases with increasing gain and remains almost constant for Ku = 2 and 8, but increases 
rapidly with further increases of the gain, and for Ku = 64 it becomes ten times larger than the error norm of the 
ordinary simulation. It is noted that the time of the bottom state or the top state seems to be correlated among the 
results of different feedback gains. This can probably be ascribed to the stability of the feedback system 
dependent on the standard solution, but further examination should be made in a future study.  
The results for the error norm of the pressure field shown in Fig.6 (b) are qualitatively the same as those of the 
velocity vector field mentioned above. This is a natural consequence of convergence of MI simulation in the 
velocity field resulting in convergence in the pressure field. Therefore, we mainly focus on the velocity field in 
the followings.     

Fig. 6 Variation of error norm of MI simulations with different feedback gains for (a) velocity, and (b) 
                                                                                 pressure. 
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where un denotes a component of uN, or u1, u2, u3 at any grid point.  
Variations of the error norms Eu and Ep for MI simulations with different values of the feedback gain Ku are 
plotted in Fig. 6. For the error norm of the velocity vector field in Fig.6 (a), the result for Ku = 0, corresponding 
to the ordinary simulation, remains almost constant (E0 = 0.130.02) showing that the standard solution and the 
solution of the ordinary simulation maintain the same distance in the state space. In a range of the feedback gain, 
the error norm is reduced almost exponentially and afterwards deviates irregularly within some range. The 
exponential reduction rate in the transient stage increases with the feedback gain for Ku  32, but becomes 
negative (meaning that the error increases) for Ku = 64, showing instability characteristics which are typical in 
feedback systems. The range of deviation of the error norm in the steady stage is almost constant with time for 
each gain. By carefully examining the variation of the error norm in that range, the error norm is seen to switch 
between two typical states near the bottom and top of the range: a quasi-stationary state near the bottom and a 
steady oscillation state near the top. The level of the bottom state, which takes the minimum value around 110-6

for Ku = 2, increases with increasing gain. The level of the top state, which gives the accuracy of the MI 
simulation, first decreases with increasing gain and remains almost constant for Ku = 2 and 8, but increases 
rapidly with further increases of the gain, and for Ku = 64 it becomes ten times larger than the error norm of the 
ordinary simulation. It is noted that the time of the bottom state or the top state seems to be correlated among the 
results of different feedback gains. This can probably be ascribed to the stability of the feedback system 
dependent on the standard solution, but further examination should be made in a future study.  
The results for the error norm of the pressure field shown in Fig.6 (b) are qualitatively the same as those of the 
velocity vector field mentioned above. This is a natural consequence of convergence of MI simulation in the 
velocity field resulting in convergence in the pressure field. Therefore, we mainly focus on the velocity field in 
the followings.     

Fig. 6 Variation of error norm of MI simulations with different feedback gains for (a) velocity, and (b) 
pressure. 
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The steady state error and time constant of the MI simulation obtained from the above results are plotted with 
the feedback gain in Fig. 7 (a) and (b), respectively. Steady state error in Fig.7(a) is determined as the maximum 
value of the error norm in the steady stage for t ≤ 40 if the steady stage exists or the error norm at t = 40 
otherwise. It is noted that the steady state error defined here gives the error bound of the MI simulation. Fig.7 (a) 
shows that a significant reduction of the error norm by a factor on the order of 10-4 is achieved in a range of the 
feedback gain of 1  Ku  16. For larger feedback gains, the error norm gradually increases up to Ku = 40 and 
then suddenly increases and exceeds the error norm of the ordinary simulation. Stability analysis of the present 
feedback system remains as a future work. It is noted that the results for feedback gains smaller than 1 do not 
show the error norm in the steady stage as mentioned above. However, this is not important since little 
advantage is expected by using feedback gains which are too small. The time constant in Fig.7 (b) is determined 
as the time in which the excess of the error norm from its steady value decreases to 37 %, or e-1, of its initial 
value [16]. The time constant decreases almost inversely proportional to the feedback gain in a range of 0.5  Ku

 40.  
In order to evaluate the influence of different initial conditions in the whole domain, variation of error norms for 
the above results are plotted in Fig. 8. The figure also includes the result for when the feedback was terminated 

Fig. 7 Variation of (a) steady error norm, and (b) time constant of MI simulation with the feedback 
                                                                             gain. 
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in the middle of the calculation at t = 10. In the figure, the error norms for the ordinary simulations from the two 
relevant initial conditions are also plotted for purposes of comparison. It is noted that the ordinary simulation 
from the null initial velocity corresponds to the MI simulation with a feedback gain Ku = 0. Its error norm 
decreases to the level of the other ordinary simulation as it converges to the fully developed turbulent flow 
solution in a large amount of time as expected in the figure. By comparing two MI simulations having different 
initial conditions, the error norms are seen to decrease at the same exponential rate, and interestingly, come to 
have the same steady values with irregular perturbation ranging between 710-6 and 1.510-5.
The MI simulation after termination of the feedback at t = 10 is identical to the ordinary simulation starting from 
the initial condition very close to the standard solution. Its error norm stays in a range of the MI simulation for a 
short time but then increases exponentially. This exponential rate is considered to be a structural instability 
characteristic of the relevant turbulent flow by which a small difference in initial condition diverges 
exponentially. This is the reason why ordinary simulation is incapable of reproducing the instantaneous structure 
of the relevant turbulent flow over a long period of time. In the MI simulation, on the other hand, the feedback 
loop modifies the dynamical structure of the system. The computational results from different initial conditions 
converge exponentially to the standard turbulent flow solution and stay close to it within a distance in the state 
space.        
MI simulation with feedback of partial velocity components 
In the former section, it was revealed that the MI simulation converged to the standard solution when the 
feedback signal proportional to the error in velocity vector was applied to the governing equations at the all grid 
points. In this section we consider the case in which the feedback signal includes partial velocity components: 
two velocity components u1 and u3 (by omitting one transverse velocity component), or u2 and u3 (omitting the 
primary velocity component), or one velocity component u1 or u2 (Case 2 in Table 2). It is noted that the other 
cases using two components u1 and u2, and one component u3 are omitted considering the symmetry of the 
problem.   
The steady state error and time constant of the MI simulation for each case are plotted with feedback gain in Fig. 
9 (a) and (b), respectively. The former results using all three velocity components are also included in the 
figures for reference. Steady state error in Fig. 9 (a) is determined in the same way in Fig.7 (a). The result using 
u1 and u2 velocity components by omitting one transverse velocity component u3 is somewhat degraded in 
comparison with that of the former case using all three velocity components, but still achieves sufficient 
reduction of the error by a factor of 10-4. The other results using two velocity components, u2 and u3, and one 
component, u1 or u2, are all substantially degraded in comparison with the former two cases, although the 
unstable behavior for Ku > 40 is similar in all cases. Comparison of the time constants in Fig. 9 (b) shows a 
similar result as mentioned above. The result using u1 and u2 velocity components is almost comparable to that 
of the case using all three velocity components, but the time constants for the other cases are more than ten 

Fig. 9 Variation with gain for (a) steady error norm, and (b) time constant of MI simulations with the 
                                              feedback of partial velocity components. 
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Fig. 9 Variation with gain for (a) steady error norm, and (b) time constant of MI simulations with 
the feedback of partial velocity components.
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times larger implying slow convergence.  
MI simulation with feedback at partial points 
In the former section, it was revealed that MI simulation with the feedback at all grid points but using two 
velocity components by omitting one transverse velocity component showed a good result, while the other cases 
using other combinations of partial velocity components did not. In this section we consider the case in which 
the feedback signal is determined from all three velocity components but applied at limited grid points in the 
domain (Case 3 in Table 2). We perform MI simulations applying the feedback at the grid points on the planes 
skipped in the x1 direction or those skipped in the x2 direction. 
Figure 10 and Figure 11 show the steady state error and the time constant of the MI simulation in which the 
feedback signal determined with all three velocity components was applied on selected planes in the x1 direction 
or x2 direction. As expected from the former results, reduction of the feedback points in the x1 direction did not 
seriously influence the steady state error, as shown in Fig.10 (a). For example, feedback on the planes with a 
density of 1/20 of the whole domain still reduced the error by a factor on the order of 10-4 from the ordinary 
simulation if the gain is optimized for that condition. In Fig. 10 (b), however, the time constant increased 
monotonically with decreasing density of the planes. The results of MI simulation were seriously degraded 

Fig. 10 Variation with gain for (a) steady error norm, and (b) time constant of MI simulations with the 
feedback at the grid points on the planes skipped in the x1 direction. 

Fig. 11. Variation with gain for (a) steady error norm, and (b) time constant of MI simulations with 
the feedback at the grid points on the planes skipped in the x1 direction. 
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when the feedback points were reduced in the x2 direction as shown in Fig. 11 (a). For example, the density of 
planes necessary to maintain the reduction of the error by the order of 10-4 is 1/2, which is ten times larger than 
that of the former case of skipping in the x1 direction. The time constant increased monotonically with 
decreasing density of the planes. 

Eigenvalue analysis  
In the followings a numerical experiment is performed to examine the validity of the eigenvalue analysis 
presented in the previous section. Eigenvalue analysis and MI simulation are performed for the case of simple 
model turbulent flow through a square duct with feedback using all three velocity components (Case (A)), or 
using the mainstream and one transverse velocity component (Case (B)) (see Table 4). 
In the numerical experiment, we deal with a numerical solution for a fully developed turbulent flow in a square 
pipe as a model of real flow, or a standard solution. The computational conditions are shown in Table 5. 
Although the grid resolution is not fine enough to correctly simulate the detailed structure of the turbulent flow, 
the numerical solution has the fundamental characteristics of the relevant turbulent flow [23]. This 
simplification is justified because the purpose of this numerical experiment is not to investigate the turbulent 
flow but to examine whether the eigenvalue analysis can be used to design the MI simulation.  
In the following, all the values are expressed in dimensionless form using the side length of the square cross 
section b , the density of fluid  , and the mean axial velocity 0mu  given by 0 2mu p L    where the 
coefficient of resistance  is evaluated by means of Blasius’ formula [24] 1 4

02 0.316 ep L R    . Time scale is 
given by 0/ mb u  . As to the boundary condition, periodical velocity condition and the constant pressure difference 

p corresponding to a specified Reynolds number 0 0 /e mR u b     is assumed between the upstream and 
downstream boundaries for a duct with a periodical length of 4. A non-slip condition is assumed on the walls [6].  
Computational scheme used in this study is the same as that in former section. The discretized representations of 
the governing equations are obtained through the finite volume method on an orthogonal equidistant staggered 
grid system. Convection terms are discretized by a reformulated QUICK scheme. A two-time level implicit 
scheme is used for time dependent terms. The resultant set of finite difference equations is solved using the 
iterative procedure based on the SIMPLER method. 
The standard solution or the model of the real flow was obtained using the final result of the statistically steady 
flow solution for a fully developed turbulent flow as the initial condition. As to the MI simulation considered 
here, we use a computational scheme identical to that for the standard solution. The feedback gain matrix Ku in 
Eq. (9) is assumed to be a diagonal matrix whose diagonal components are all of identical value ku:

Table 4 Conditions of MI simulation

 Case A Case B Case C 
Simulation Ordinary MI MI 
Feedback points  None All All 
Feedback velocity  
components 

None  All (u1, u2, u3) Partial (u1, u2) 

Table 5 Computational conditions

Periodical length L   4 
Pressure difference   0.0649 
Standard Reynolds number  9000  
Grid points    20×10×10
Time increment     0.025  
Total residual at convergence  0.01
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ukuK I .          (22) 
Hereafter, the orthogonal component ku is called the feedback gain. The resultant feedback signal accelerates or 

Fig.12  Eigenvalue distribution of ordinary simulation (case A) 
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Fig. 13 Eigenvalue distribution of MI simulations (ku=8) 
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ukuK I .          (22) 
Hereafter, the orthogonal component ku is called the feedback gain. The resultant feedback signal accelerates or 

Fig.12  Eigenvalue distribution of ordinary simulation (case A) 
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decelerates the fluid in a control volume to reduce the error in velocity. As for Cu in Eq. (9), we consider two 
cases: all three velocity components, or the mainstream and one transverse velocity component are available at 
all the grid points. 
As to the eigenvalue analysis, we assume no measurement error. Terms due to model errors are also ignored 
since we use the same computational scheme for both the standard solution and MI simulation canceling out the 
model error terms in Eqs. (10) and (11). For calculation of system matrix A’ in Eq. (18), B  in Eq. (16) is 
numerically obtained from singular value decomposition by using MATLAB R2006b (ver7.3, The MathWorks). 
The expression of matrix A is similar to the expression of the basic equation of the SIMPLER method (omitted 
due to space limitation). The eigenvalues of matrix A’ are calculated by the QR method by using SCSL library. 
Computation using MATLAB was performed with SX-9 in Cyberscience Center, Tohoku University, and other 
computation was performed with Altix 3700 Bx2 using one CPU in the Advanced Fluid Information Research 
Center, Institute of Fluid Science, Tohoku University.
In the following we consider three cases: case (A), ordinary simulation; case (B), MI simulation with feedback 
using all three velocity components; and case (C), MI simulation with feedback using the mainstream and one 
transverse velocity component (see Table 4).  
Eigenvalues, i (i=1,2,･･･ ,2N,N=2000) of the system matrix A’ of the error dynamics for the ordinary 
simulation are shown in Fig. 12. The right figure of Fig.12 is a figure whose real axis is enlarged to show the 
most unstable eigenvalues. For ordinary simulation, a number of eigenvalues are unstable, the most unstable 
eigenvalues being m=0.98±3.2j. This means that the numerical simulation starting from an initial condition 
near the standard solution deviates from it exponentially, representing a sensitive dependence on the initial 
condition, which is typical for turbulent flows.  
Figures 13 (a) and (b) show the eigenvalues for MI simulation of cases (B) and (C) with feedback gain ku = 8. In 
each case, all eigenvalues have a negative real part, implying that the error dynamics is stable due to the effect 
of feedback, and the error of the MI simulation decreases exponentially. The result for case (B) in Fig. 13 (a) is 
a translation of the result of Fig. 12 in the negative real direction with an amount of the feedback gain ku. This is 
obvious from the definition of A in Eq. (13). The least stable eigenvalues are m=-7.02±3.2j (see right figure of 
Fig. 13 (a)). In the result for case (C) in Fig. 13 (b), the eigenvalues also shift to the left, but the amount of the 
shift is less than in case (B) for some eigenvalues. The least stable eigenvalues are m=-0.48±0.029j (see right 
figure of Fig. 13 (b)) .  
In the following, the results of the eigenvalue analysis and MI simulation are shown and compared. Here, the 
norm of velocity error is defined as 
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Fig. 14 Comparison of variation of error norm between eigenvalue analysis and numerical simulation
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decelerates the fluid in a control volume to reduce the error in velocity. As for Cu in Eq. (9), we consider two 
cases: all three velocity components, or the mainstream and one transverse velocity component are available at 
all the grid points. 
As to the eigenvalue analysis, we assume no measurement error. Terms due to model errors are also ignored 
since we use the same computational scheme for both the standard solution and MI simulation canceling out the 
model error terms in Eqs. (10) and (11). For calculation of system matrix A’ in Eq. (18), B  in Eq. (16) is 
numerically obtained from singular value decomposition by using MATLAB R2006b (ver7.3, The MathWorks). 
The expression of matrix A is similar to the expression of the basic equation of the SIMPLER method (omitted 
due to space limitation). The eigenvalues of matrix A’ are calculated by the QR method by using SCSL library. 
Computation using MATLAB was performed with SX-9 in Cyberscience Center, Tohoku University, and other 
computation was performed with Altix 3700 Bx2 using one CPU in the Advanced Fluid Information Research 
Center, Institute of Fluid Science, Tohoku University.
In the following we consider three cases: case (A), ordinary simulation; case (B), MI simulation with feedback 
using all three velocity components; and case (C), MI simulation with feedback using the mainstream and one 
transverse velocity component (see Table 4).  
Eigenvalues, i (i=1,2,･･･ ,2N,N=2000) of the system matrix A’ of the error dynamics for the ordinary 
simulation are shown in Fig. 12. The right figure of Fig.12 is a figure whose real axis is enlarged to show the 
most unstable eigenvalues. For ordinary simulation, a number of eigenvalues are unstable, the most unstable 
eigenvalues being m=0.98±3.2j. This means that the numerical simulation starting from an initial condition 
near the standard solution deviates from it exponentially, representing a sensitive dependence on the initial 
condition, which is typical for turbulent flows.  
Figures 13 (a) and (b) show the eigenvalues for MI simulation of cases (B) and (C) with feedback gain ku = 8. In 
each case, all eigenvalues have a negative real part, implying that the error dynamics is stable due to the effect 
of feedback, and the error of the MI simulation decreases exponentially. The result for case (B) in Fig. 13 (a) is 
a translation of the result of Fig. 12 in the negative real direction with an amount of the feedback gain ku. This is 
obvious from the definition of A in Eq. (13). The least stable eigenvalues are m=-7.02±3.2j (see right figure of 
Fig. 13 (a)). In the result for case (C) in Fig. 13 (b), the eigenvalues also shift to the left, but the amount of the 
shift is less than in case (B) for some eigenvalues. The least stable eigenvalues are m=-0.48±0.029j (see right 
figure of Fig. 13 (b)) .  
In the following, the results of the eigenvalue analysis and MI simulation are shown and compared. Here, the 
norm of velocity error is defined as 
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Time-variation of the error norm Eu for the MI simulation with the feedback gain ku = 8 in the cases of (B) and 
(C) are indicated in Fig. 14 by the solid lines. In case (B), the error norm first decreases exponentially and then 
remains in a certain range. On the other hand, in case (C), the error norm first decreases exponentially in the 
same way as in case (B), but the reducing rate changes around t = 0.6 and the error decreases more slowly 
afterwards. Broken lines in the figure represent the variation of the error norm for the least stable mode obtained 
from the eigenvalue analysis for cases (B) and (C). These are calculated using the real part of the eigenvalue and 
the initial magnitude identical to that of the MI simulation.  
In MI simulation, the error norm reaches some steady value as time passes. Fig. 15 (a) shows steady error with 
the feedback gain. As shown in this figure, the steady error norm Eus decreases to order of 10-4 in the range of 
0.5<ku<24 for case (B) or 1< ku <24 for case (C), respectively. The broken lines correspond to the critical 
feedback gain, or the lower limit of the feedback gain, below which there exist unstable eigenvalues. The error 
norm increases with excessive feedback gain above 30 in the MI simulation. This result is possibly explained by 
the discrete-time system analysis, and is beyond the scope of present paper. 
Next, we consider the time constant  as the time in which the error norm decreases by a factor of 1/e. In MI 
simulation, as shown in Fig. 14, the rate of the error norm reduction is almost constant for case (B), while it 
changes around t = 0.6 for case (C). We evaluated the time constant at t = 0 for case (B), or the value at t = 3 for 
case (C). For eigenvalue analysis, the time constant  of Eu is estimated as 

k
 1


,          (25) 

where k is the real part of the eigenvalue for the least stable mode. Generally, as time passes, the least stable 
mode becomes the dominant mode. 
The variation of the time constant with the feedback gain is compared between the MI simulation and the 
eigenvalue analysis for cases (B) and (C) in Fig. 15 (b). The results of eigenvalue analysis agree well with those 
of the MI simulation except for case (C) with small feedback gain below 4. 
The time required for calculation of the 2000 dimensional eigenvalues was about 30 minutes while the 
corresponding computation of MI simulation was about 7 minutes. Large computational time to obtain 
eigenvalues of large dimensional system is an inherent problem of the proposed method, and will be treated in a 
future work. 
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(C) are indicated in Fig. 14 by the solid lines. In case (B), the error norm first decreases exponentially and then 
remains in a certain range. On the other hand, in case (C), the error norm first decreases exponentially in the 
same way as in case (B), but the reducing rate changes around t = 0.6 and the error decreases more slowly 
afterwards. Broken lines in the figure represent the variation of the error norm for the least stable mode obtained 
from the eigenvalue analysis for cases (B) and (C). These are calculated using the real part of the eigenvalue and 
the initial magnitude identical to that of the MI simulation.  
In MI simulation, the error norm reaches some steady value as time passes. Fig. 15 (a) shows steady error with 
the feedback gain. As shown in this figure, the steady error norm Eus decreases to order of 10-4 in the range of 
0.5<ku<24 for case (B) or 1< ku <24 for case (C), respectively. The broken lines correspond to the critical 
feedback gain, or the lower limit of the feedback gain, below which there exist unstable eigenvalues. The error 
norm increases with excessive feedback gain above 30 in the MI simulation. This result is possibly explained by 
the discrete-time system analysis, and is beyond the scope of present paper. 
Next, we consider the time constant  as the time in which the error norm decreases by a factor of 1/e. In MI 
simulation, as shown in Fig. 14, the rate of the error norm reduction is almost constant for case (B), while it 
changes around t = 0.6 for case (C). We evaluated the time constant at t = 0 for case (B), or the value at t = 3 for 
case (C). For eigenvalue analysis, the time constant  of Eu is estimated as 
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where k is the real part of the eigenvalue for the least stable mode. Generally, as time passes, the least stable 
mode becomes the dominant mode. 
The variation of the time constant with the feedback gain is compared between the MI simulation and the 
eigenvalue analysis for cases (B) and (C) in Fig. 15 (b). The results of eigenvalue analysis agree well with those 
of the MI simulation except for case (C) with small feedback gain below 4. 
The time required for calculation of the 2000 dimensional eigenvalues was about 30 minutes while the 
corresponding computation of MI simulation was about 7 minutes. Large computational time to obtain 
eigenvalues of large dimensional system is an inherent problem of the proposed method, and will be treated in a 
future work. 
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Summary 
In this article formulation of MI simulation and equations of linearized error dynamics and eigenvalue analysis 
of MI simulation were explained. Example of MI simulation was presented for a fully developed turbulent flow 
in a square duct. Numerical experiment was performed for MI simulation with a feedback signal from the 
predetermined standard turbulent flow solution. Convergence of MI simulation to the standard solution was 
investigated as a function of feedback gain and spatial and temporal density of feedback signal. Eigenvalue 
analysis was performed to examine the validity of the linearized error dynamics approach in the design of 
feedback signal. 
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