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Abstract

Difficulty of data assimilation arises from a large difference between the sizes of a state vector to be determined, 
i.e., the number of spatiotemporal grid points of a discretized numerical model, and a measurement vector, i.e., 
amount of measurement data. Flow variables on a large number of grid points are hardly defined by 
spatiotemporally limited amount of measurement data that poses an underdetermined problem. In this study we 
conduct sensitivity analysis of a vortex flow field by the use of an adjoint method. The idea of optimal/targeted
observation in meteorology which aim to effectively determine a flow state by limited observations is
interpreted in fluid dynamic problems where unsteady flows of much smaller scales are of interest.
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Introduction 

The use of observation data to improve a numerical prediction is known as data assimilation method in 
meteorological and oceanography communities [1]. The data assimilation is based on the optimal control theory.
As a consequence there are two major approaches: sequential and variational methods, where the former
includes a Kalman filter. The application of these methods to large scale problems in meteorology made the 
development of data assimilation methods slightly independent from optimal control studies, that is, the effort is 
put into the reduction of numerical costs of those methods. One example is the invention of ensemble Kalman 
filter, which approximately represents the system error covariance by an ensemble of model runs. By this the 
cost of matrix operations in Kalman filter can be drastically reduced. The numerical cost of variational methods 
such as the four-dimensional variational method (4D-Var) is usually smaller than the ensemble Kalman filter, 
therefore, the introduction of the 4D-Var into the operational weather forecast was earlier than that of ensemble 
Kalman filter. However, the cost for maintaining the adjoint code in the 4D-Var and the need for parallel 
computation accelerate the use of ensemble Kalman filters in meteorological community. Because of its rational 
approach to estimate a true state based on both measurement and simulation, the application of data assimilation 
methods  is not  limited to the area of meteorological and oceanographic studies.

We have been studying the applicability of data assimilation methods in aeronautical researches. Numerical 
simulations of atmospheric turbulences such as clear air turbulence and aircraft wake turbulence were performed
with the 4D-Var method based on an aeronautical computational fluid dynamics (CFD) code [2,3]. Recent 
attempt is the mitigation of uncertainty of Reynolds-averaged Navier-Stokes (RANS) turbulence modeling by 
the use of ensemble Kalman filter, where parameters of the Spalart-Allmaras turbulence model are optimized 
based on pressure measurement around an airfoil [4]. On the other hand, a classical nudging technique is used to 
initialize aircraft wake in a computational domain to simulate realistic wake turbulence, where a high-fidelity 
RANS flow field is nudged instead of measurement data [5]. Nevertheless, the numerical approach used there is
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very similar to that of data assimilation. Based on experiences gained from those applications our interest is to 
have a more general guidance to apply data assimilation methods successfully to problems with given conditions 
for measurement and simulation.

As a small step to that direction, the present study is an attempt to investigate the impact of measurement in a
data assimilation system by a sensitivity analysis method and to use the information for optimal/targeted 
measurements. Here again we refer the preceding work of sensitivity analysis in meteorology [6]. We consider 
here an idealized situation in numerical experiments, i.e., a two vortex system where self-induced advection 
velocity realizes a transient flow field. The impact of the number of measurement points is firstly investigated,
and the possibility of optimal measurement is exploited in the numerical experiments where locations of the 
measurement points are optimized to use the limited number of measurement points efficiently.

Approach

In this study we employ the 4D-Var method. The objective of data assimilation based on the 4D-Var method is 
to obtain an initial flow condition which reproduces corresponding measurements during a certain time period 
(assimilation window) [1]. Figure 1 shows a schematic of the 4D-Var method. Vertical and horizontal axes 
show flow state and time, respectively. A solid line shows a trajectory of a real flow state. Broken lines show 
trajectories of the simulated flow state starting from different initial conditions. The 4D-Var method is the 
method to obtain the initial condition of the real flow state by evaluating the difference of these trajectories
within a assimilation window.

Figure 1. Schematic of data assimilation based on 4D-Var method.

The differences of measurements (usually measurements have less information compared to the numerical 
simulation) and corresponding numerical results evaluated by conducting the numerical simulation over a period 
of time are represented as an objective function with respect to an initial flow variable 𝑸𝑸0,

𝐽𝐽(𝑸𝑸0) = 1
2
∑ [𝐻𝐻𝑖𝑖(𝑸𝑸𝑖𝑖) − 𝒚𝒚𝑖𝑖]𝑇𝑇𝑹𝑹𝑖𝑖−1[𝐻𝐻𝑖𝑖(𝑸𝑸𝑖𝑖) − 𝒚𝒚𝑖𝑖]𝑁𝑁
𝑖𝑖=1 .                                          (1)

Here, 𝐻𝐻𝑖𝑖 is an observation operator which converts the dimension of computational flow variables into that of 
measurement data to evaluate these differences. Subscript i shows a time step of the flow computation and N is 
the total time number of the time steps. Equation (1) is a function of 𝑸𝑸0, that is, the data assimilation process is 
formulated as a minimization problem of 𝐽𝐽(𝑸𝑸0) with control variables of 𝑸𝑸0 . The 4D-Var method has a 
capability to treat measurement error through a measurement error covariance matrix 𝑅𝑅𝑖𝑖, where its elements are 
the covariance between each measurement points. In this study 𝑅𝑅𝑖𝑖 is set to unit matrix. Basically the covariance 
matrix defines relative importance of measurements; therefore, we do not consider the effect in the present
numerical experiments.

To obtain the gradient of 𝐽𝐽(𝑸𝑸0) used for the minimization of 𝐽𝐽(𝑸𝑸0), a Lagrange function is introduced using a 
Lagrange multiplier vector 𝝀𝝀𝑖𝑖. The procedure to obtain the gradient is finally written as follows [2]:

𝝀𝝀𝑁𝑁+1 = 0,                                                                        (2)

𝝀𝝀𝑖𝑖 = 𝑴𝑴𝑖𝑖
𝑇𝑇𝝀𝝀𝑖𝑖+1 + 𝑯𝑯𝑖𝑖

𝑇𝑇[𝐻𝐻𝑖𝑖(𝑸𝑸𝑖𝑖) − 𝒚𝒚𝑖𝑖],       (𝑖𝑖 = 𝑁𝑁 ∽ 0),                        (3)
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∇𝐽𝐽(𝑸𝑸0) = 𝝀𝝀0.                                                                      (4)

Equations (2)-(4) show that the gradient of 𝐽𝐽(𝑸𝑸0) is obtained by the inverse time integration of 𝝀𝝀𝑖𝑖 using the 
adjoint operator 𝑴𝑴𝑖𝑖

𝑇𝑇 with a force term: 𝑯𝑯𝑖𝑖
𝑇𝑇[𝐻𝐻𝑖𝑖(𝑸𝑸𝑖𝑖) − 𝒚𝒚𝑖𝑖]. After obtaining the gradient, the minimization of 

𝐽𝐽(𝑸𝑸0) is conducted by the quasi-Newton method through modifying the initial flow variable 𝑸𝑸0. The Hessian 
matrix is approximated using the limited-memory Broyden-Fletcher-Goldfarb-Shanno (BFGS) method. In this 
method, memory requirements are reduced because the approximated Hessian matrix is not stored explicitly.

Here we investigate the impact of measurement data on a retrieved flow field within a framework of the data 
assimilation system based on the 4D-Var method. The sensitivity of the cost function with respect to the 
observation vector 𝒚𝒚𝑖𝑖 is represented as follows [6]:

∇𝒚𝒚𝑖𝑖𝐽𝐽(𝑸𝑸0) = 𝑯𝑯𝑖𝑖𝑴𝑴0,𝑖𝑖�∇𝑸𝑸0𝑸𝑸0
2 𝐽𝐽(𝑸𝑸0)�−1∇𝐽𝐽(𝑸𝑸0),                                             (5)

where ∇𝑸𝑸0𝑸𝑸0
2 𝐽𝐽(𝑸𝑸0) represents a Hessian matrix, and we can use the approximated Hessian matrix obtained from 

the limited-memory BFGS. A mapping of the sensitivity on measurement points onto the grid points of 
numerical simulation is performed as follows:

𝑯𝑯𝑖𝑖
𝑇𝑇∇𝒚𝒚𝑖𝑖𝐽𝐽(𝑸𝑸0) = 𝑴𝑴0,𝑖𝑖�∇𝑸𝑸0𝑸𝑸0

2 𝐽𝐽(𝑸𝑸0)�−1∇𝐽𝐽(𝑸𝑸0).                                               (6)

For flow simulations we employ incompressible Navier-Stokes equations. The equations are discretized by the 
fully-conservative fourth-order central difference scheme [7]. Time integration is performed by third-order low 
storage Runge-Kutta scheme [8]. The Lagrangian dynamic model is used as a subgrid scale model for large-
eddy simulation [9], which has superiority in vortical flows [10]. The adjoint codes are derived first by 
linearizing the above equations, then by rewriting it from backward by replacing inputs and outputs of each code 
line. The latter operation corresponds to a transpose of the matrix composed of coefficients of the linearized 
Navier-Stokes equations. The both Navier-Stokes and the adjoint codes are parallelized by using message 
passing interface (MPI) for large scale computations.

The development of linear and adjoint codes can be done step by step processes in the following way. First the 
derived linear code is checked by |𝑀𝑀(𝑸𝑸 + 𝛼𝛼𝛼𝛼𝑸𝑸) −𝑀𝑀(𝑸𝑸)|/|𝛼𝛼𝑴𝑴𝛼𝛼𝑸𝑸| − 1 = O(𝛼𝛼) where the left-hand-side 
decreases with the order of 𝛼𝛼 . It is also possible to check the angle: [𝑀𝑀(𝑸𝑸 + 𝛼𝛼𝛼𝛼𝑸𝑸) −𝑀𝑀(𝑸𝑸)]𝑇𝑇[𝑴𝑴𝛼𝛼𝑸𝑸]/
(|𝑀𝑀(𝑸𝑸 + 𝛼𝛼𝛼𝛼𝑸𝑸) −𝑀𝑀(𝑸𝑸)||𝑴𝑴𝛼𝛼𝑸𝑸|) − 1 = O(𝛼𝛼2), which decreases with 𝛼𝛼2. The adjoint code is a transpose of the 
linearized code and is derived line by line without composing an explicit matrix. In the adjoint code, the 
following relation [𝑴𝑴𝑸𝑸]𝑇𝑇𝑴𝑴𝑸𝑸 − 𝑸𝑸𝑇𝑇�𝑴𝑴𝑻𝑻[𝑴𝑴𝑸𝑸]� = O(𝜖𝜖) is true on the order of 10−14 in the Fortran double 
precision real. The above processes can be conducted in small program modules such as convective and 
diffusion terms of Navier-Stokes equations as well as a whole code including all terms and a time integration
part. Finally, the computed gradient is confirmed by |𝐽𝐽(𝑸𝑸 + 𝛼𝛼𝛼𝛼𝑸𝑸) − 𝐽𝐽(𝑸𝑸)|/�𝛼𝛼𝛼𝛼𝑸𝑸𝑻𝑻�∇𝐽𝐽(𝑸𝑸)�� − 1 = O(𝛼𝛼), where 
again the left-hand-side decreases with 𝛼𝛼. Table 1 shows the computed gradient, while Table 2 shows the strong 
scaling of the gradient computation in parallel where the number of total grid points is fixed with increasing 
processor numbers.

Table 1. Confirmation of gradient computation.
𝛼𝛼 ∇𝐽𝐽(𝑸𝑸0)

1.E+1 1.394683E+1
1.E+0 1.614762E+0
1.E-1 1.626424E-1
1.E-2 1.626592E-2
1.E-3 1.626596E-3
1.E-4 1.626548E-4
1.E-5 1.623851E-5
1.E-6 1.414659E-6
1.E-7 -2.144048E-6

5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) 211

This document is provided by JAXA.



5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012)
3-5 October 2012
JAXA Chofu Aerospace Center, Tokyo, Japan

4

Table 2. Strong scaling of the gradient computation.
Number of processors Wall-clock time [sec]

8 1476.56
16 638.72
32 277.10
64 184.39

128 93.93
256 109.62
512 42.15

The computational setting is as follows (see also Fig. 2). We consider a flow field defined by a pair of Lamb-
Oseen vortices which are characterized by vortex circulation 𝛤𝛤0 = 300 m2/s, vortex core radius of 𝑟𝑟𝑐𝑐 = 4 m and 
vortex separation 𝑏𝑏0 = 40 m . The vortex flow field is initialized two-dimensionally along x-axis within a 
domain bounded by 𝐿𝐿𝑥𝑥 = 64 m, 𝐿𝐿𝑦𝑦 = 128 m, 𝐿𝐿𝑧𝑧 = 128 m sides. A constant mesh spacing of 2 m is used for 
all three spatial directions. Time integration is conducted until one tenth of vortex reference time 𝑡𝑡0, i.e., 3.3 s in 
the present condition, where the vortex pair moves a distance of one tenth of vortex separation 𝑏𝑏0 during this 
period. Parallel computation is performed by a domain decomposition approach, where typically 𝑛𝑛𝑥𝑥 = 2, 𝑛𝑛𝑦𝑦 =
4, 𝑛𝑛𝑧𝑧 = 4 processors are used in the present study.

Numerical experiment is conducted first by generating reference flow fields starting from the above conditions.
In this process we acquire pseudo measurement data based on the following strategies, i.e., velocity components 
of the all grid points are considered as measurements (Case 1), velocity components from every second grid 
points in both y- and z-directions are used (Case 2), and the data on every fourth grid points are used as 
measurements (Case 3). Compared to Case 1, the number of measurements is one fourth in Case 2 and one 
sixteenth in Case 3. Then the 4D-Var cycle (forward time integration for the evaluation of a cost function, 
backward time integration of the adjoint code, Hessian matrix computation with limited-memory BFGS and 
linear search) is started with an arbitrary flow field, where we consider a weaker vortex pair compared to the 
reference flow field (𝛤𝛤0 = 200 m2/s, 𝑟𝑟𝑐𝑐 = 6 m and 𝑏𝑏0 = 60 m). Adaptive measurement processes starts after a 
few iterations of the 4D-Var cycle. Having an approximated Hessian matrix and the gradient from the adjoint 
code, the observation sensitivity can be computed by using Eq. (5). In this paper we only consider the 
observation sensitivity at the beginning of time integration. Using the observation sensitivity mapped onto the 
numerical grid, measurement points are redistributed based on the magnitude of the observation sensitivity, 
where the total number of the measurement points is kept constant. 

Figure 2. Computational domain with grid lines and initial vortex positions.

Results

Figure 3 shows histories of cost function defined by Eq. (1) for three measurement strategies, while the global
error is evaluated by using the whole mesh points. This indicates that the decrease of the cost function in the 4D-
Var is not always connected with the convergence of the retrieved flow field to the reference flow field. In Case 
1 the value of the cost function and the global error are identical because three velocity components on all grid 
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points in the domain are used as measurements. The value of the cost function is proportional to the number of 
measurement points and time steps, therefore, the values reduce from Case 1 to Case 3. On the other hand, the 
decrease of the global error becomes slow as the number of measurements is reduced. This confirms that there is 
a limitation for defining a flow field by using a limit number of measurements, i.e., a number smaller than a
degree of freedom in the numerical model. Please note that the behaviors of the cost function and the global 
error might vary depending on the data assimilation methods used and parameters included in the optimization 
algorithms, however, the tendency shown here may be true also for other methods.

Figure 4 shows a similar plot as Fig. 3 but with optimal measurement strategies described above. Here the 
redistribution of measurement points is done in the every 5th iteration of the 4D-Var assimilation cycle. Until 5th

iteration the values of cost function and the global error are the same as those of Fig. 3. At the 6th iteration the 
value of cost function rapidly increases because the measurement points are redistributed to the regions where 
the global error is relatively large. The cost function again decreases after a few iterations. During the reduction 
of cost function, the global error values are also decreased in Case 2 and Case 3, and the values become smaller 
than those in Fig. 3. This implies that the global error can be effectively reduced by locating measurement points 
on places where the relative error is large. And it becomes possible by checking the observation sensitivity in 
the data assimilation cycle. Even with the adaptive measurement strategy the global error is larger than the Case 
1 where measurements of all grid points are given. 

Figure 3. Histories of cost function and global error with different measurement points

Figure 4. Histories of cost function and global error with adaptive measurement
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Figure 5 shows the distribution of measurement points in Case 2, where every second grid points in both y- and 
z-directions have measurements. The total number of measurement points is one fourth of that in Case 1. Figure 
5(a) shows the initial distribution, and Fig. 5(b) shows the distribution after the first rearrangement of 
measurement points. These measurement points are colored by the magnitude of observation sensitivity at those 
locations. Since the measurement points are redistributed using the grid points of the numerical simulation, the 
measurement points do not come closer than the grid spacing. The resolution of measurements finer than that of 
numerical simulation may not improve the retrieved flow field in the context of data assimilation. Figure 5(c) 
shows the distribution of measurement points at 16th iteration, where the distribution is similar to that of Fig. 
5(b) where the points are clustered near vortices. In the same way Fig. 6 show the Case 3 where every fourth 
grid points in both y- and z-directions has measurements. The total number of measurements is one sixteenth of 
that in Case 1. As in the Case 2 the measurement points are clustered near vortices at the first adaptation. 

Figure 5. Distribution of measurement points with optimal measurement (Case 2), where the color of the 
points shows the magnitude of observation sensitivity at those locations.

Figure 6. Distribution of measurement points with optimal measurement (Case 3) , where the color of the 
points shows the magnitude of observation sensitivity at those locations.

Conclusions

In this study we conduct sensitivity analysis of a vortical flow field by the use of an adjoint method. The idea of 
optimal/targeted observation in meteorology which aim to effectively determine a flow state by limited 
observations are interpreted in fluid dynamic problems where unsteady flows of much smaller scales are of 
interest. The present approach enables to investigate the impact of measurements in an actual data assimilation
system of the 4D-Var. We investigated a simple case with a pair of vortices which move due to self-induced 
advection velocity. The amount of measurement points affects the convergence of the cost function as well as
the global error against the reference flow field. The optimal measurement strategy based on the observation 
sensitivity effectively redistributes measurement points near vortices. This results in the further reduction of the 
global error. As for future work the impact of the number of measurements in time as well as of assimilation 
window size should be investigated. A series of investigations might show the applicability limit of the 4D-Var 
for given experimental and numerical conditions.
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