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Abstract

Measurement Integrated Simulation (MIS) is a data assimilation method using the idea of a flow observer. MIS is 
already used in the analysis of incompressible fluids in biomedical and pipe flows. In this study, a coupled system 
of a CFD solver and an MIS algorithm was constructed, and an identical twin experiment for the flow field around 
a 2-dimensional airfoil subject to different boundary conditions was performed. It was found that the MIS 
reproduced the aerodynamic coefficients of target data even if different boundary conditions are set. The accuracy 
of MIS was demonstrated, not only for the physical properties used for the assimilation but also for unassimilated 
properties. In addition, for sample data with random or bias error, the difference between the simulated and sample 
data achieved by the computation with MIS was much smaller than the difference achieved without MIS. 

Key words: Experimental Fluid Dynamics (EFD), Computational Fluid Dynamics (CFD), Data Assimilation, 
Measurement Integrated Simulation (MIS). 

1. Introduction  

At the Japan Aerospace Exploration Agency (JAXA), the complementary use of Experimental Fluid Dynamics 
(EFD) and Computational Fluid Dynamics (CFD) is currently being studied [1]. In flow analysis, EFD and CFD are 
commonly used. EFD is a direct method to obtain the state of real flow phenomena, and its reliability is ensured by 
calibration techniques. However, there are differences from real flight condition, such as Reynolds number, the 
walls and support of the wind tunnel, and model deformation. Moreover, it is impossible to obtain complete 
information about the flow state both spatially and temporally. On the other hand, CFD provides the full state of 
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flow phenomena on grid points of the computational domain. However its reliability is always a concern, especially 
for complicated phenomena such as turbulence, transition, separation, and reacting flow; so validation by 
experiment is required. These advantages and disadvantages of the two approaches are summarized in Table 1.  

A primary aim of EFD/CFD integration is to improve the accuracy and reliability of data by the complementary 
use of EFD and CFD. Such data assimilation techniques have been employed in many fields. In aerodynamics, 4-
dimensional variational assimilation (4D-Var) [2], the extended Kalman filter (EKF) [3], [4], the ensemble Kalman 
filter (EnKF) [5] and the particle filter (PF) [6] are used. These methods use the error covariance matrices of EFD and 
CFD to optimize the assimilation parameter. However it is sometimes difficult to estimate precisely the error 
components in determining the matrix. When 4D-Var or the EKF is used, the reliability of the estimated matrices is 
a concern. When the EnKF or PF is used, the matrices are estimated by ensemble computation and the 
computational cost is high.  

In maritime engineering, the nudging method is also used to overcome the disadvantages of these methods [7].
The nudging method is a simple method and its computational cost is low because, in contrast to other methods in 
which the assimilation parameter is optimized from the covariance matrices, this parameter is specified a priori.  

Measurement integrated simulation method is a data assimilation method that uses the idea of a flow observer [8].
It is used in the analysis of incompressible fluids in biomedical [9], [10] and pipe [11], [12] flows. The observer 
algorithm [13] is similar to the Kalman filter [14] in the sense that it is a maximum likelihood estimation method using 
the error covariance matrices of CFD and EFD. However, it is a method of reproducing EFD data itself and it is 
also a nudging method since the assimilation parameter is chosen a priori.  

In this study, a coupled system of a CFD solver and an MIS algorithm was constructed, and an identical twin 
experiment, studying the flow field around a 2-dimensional airfoil, was performed to investigate the accuracy and 
versatility of the method.  

Table 1: Advantages and disadvantages of EFD and CFD  

 Advantage Disadvantage 

EFD ・A direct way to obtain real flow phenomena 
・Reliability is ensured by calibration techniques 

・Differences from real flight conditions 
・Difficulty in obtaining complete information 

CFD ・ Provides the full state of flow phenomena ・Reliability is always a concern 
・Validation by experiment is required 

2. Measurement Integrated Simulation method (MIS) 

MIS is a method of integrating measurement and simulation data by applying the idea of a flow observer (Figure 
1). This is similar to the EKF, but is a method of reproducing EFD data itself. It is useful for the problem of 
interpolating missing or immeasurable measurement data. The main feature of MIS, which distinguishes it from 
other existing observers, is the use of the CFD scheme as a mathematical model of the physical flow.  

The governing equations of the CFD model are generally written as 

 N
N

d f
dt


Q Q              (1)

where QN is a 5N-dimensional conservative vector 

 1 2

TT T T T
N i NQ Q Q Q Q･･･ ･･･           (2)

      Ti i ii i i
u v w e   Q           (3)

and N and Qi are the number of grid points and the conservative vector at grid i, respectively. When the vector 
constructed from measurement data is denoted by y, the basic equation of MIS is  

Table 1: Advantages and disadvantages of EFD and CFD

2. Measurement Integrated Simulation method (MIS)
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     KN
N N

d f h
dt

  
Q Q y Q            (4)

where the second term is the additional term of MIS derived from the difference between EFD and CFD. Function 
h is called the "observation function" and is the relation between the measurement vector y of EFD and the 
conservative vector QN of CFD. K is called the "feedback gain matrix". This matrix is constructed from the 
assimilation parameter. In MIS, the assimilation parameter is not optimized from the error covariance matrices, as it 
is in the EKF or EnKF. In previous studies of MIS, the matrix was designed by trial and error based on physical 
considerations, because the theory of the observer cannot be directly applied [15], [16].

In this study, the feedback matrix is designed using the Jacobi matrix H of the nonlinear observation function h.
The details are given in Section 3.3. 

Figure 1: Block diagram of MIS 

3. Numerical Experiment 

In this section, a coupled system of a high-speed CFD solver (FaSTAR)[17], and MIS is described, and an 
identical twin experiment investigated flow field around a 2-dimensional airfoil with different boundary conditions 
is discussed. First, the twin experiment used in this study is explained briefly. Then, the computational conditions 
are given and the corresponding feedback matrix is derived.  

3.1. Twin experiment 
Twin experiments are a method of numerical experiment commonly used for benchmark tests of data 

assimilation techniques. This method uses pseudo-measurement data derived from simulation instead of 
measurements. 

Figure 2 shows a schematic diagram of the twin experiment. The target data is original CFD data, and the sample 
data is created by adding an error component to the target data. Generally, the benchmark test of the integrated 

Figure 1: Block diagram of MIS

3. Numerical Experiment

3.1. Twin experiment
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analysis system is comparing comparison with the target data. The benchmark in this study is, however, a 
comparison with the sample data since MIS is a method of reproducing sample data. 

The procedure of the twin experiment is as follows. 
(1) Produce target data according to specified boundary conditions. 
(2) Produce sample data by adding artificial error components to the target data. 
(3) Perform integrated analysis with varying boundary conditions by regarding the sample data as measurement 

data. 
(4) Compare the integrated analysis data with the sample data. 

3.2. Numerical conditions 
The twin experiment deals with flow field around a 2-dimensional airfoil as shown in Fig. (3). The Mach number 

of the uniform flow is 0.8. The flow field in this study is assumed to be steady, hence the integrated data are 
obtained as an asymptotic solution of Eq. (4). The flow chart of the algorithm is shown in Fig. (4). 

In the twin experiment, the angle of attack in the target data is 3 degrees, and integrated computation is made 
using intentionally different angles of attack. The sample cases in the present experiment are shown in Table 2. The 
sample data is the velocity field over the whole computational domain. In this study, three types of sample data are 
employed: (1) data without measurement error (exactly same as the target data); (2) data with random errors of 1%, 
2%, 5%, or 10%; and (3) data with bias error of 1%, 2%, 5%, or 10%. All computations were done using the JAXA 
Super computer System (JSS). 

        

Figure 2: Schematic diagram of twin experiment Figure 2: Schematic diagram of twin experiment

3.2. Numerical conditions
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Figure 3: Setup of this twin experiment 

Figure 4: Flow chart of EFD/CFD integrated computation of MIS 

Table 2: Sample cases of twin experiment 

 Angle of attack (AoA) 
Case (1) 0° 
Case (2) 1° 
Case (3) 2° 

Case (4) 3° 
(Same AoA as the target data) 

Figure 3: Setup of this twin experiment

Figure 4: Flow chart of EFD/CFD integrated computation of MIS

Table 2: Sample cases of twin experiment

5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) 221

This document is provided by JAXA.



5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) 
3-5 October 2012 
JAXA Chofu Aerospace Center, Tokyo, Japan 

3.3. Feedback gain matrix design 
In this study, the feedback gain matrix K in Eq. (4) is derived as a pseudo-inverse matrix of the Jacobi matrix of 

the observation function.  
If the velocity components are employed as measurement data, y in Eq. (4) is 

   1 1

TT T T T
i N  y y y y y

,        (5) 

  
 Ti i iu vy

,           (6) 

and the Jacobi matrix H of the observation function h is  

   1 2H H H H Hi N
N

diag
   


y
Q

       (7) 
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where 
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and
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Further, Li is the transformation matrix from conservative vector to primitive vector.      , the inverse matrix of Li, is 
the transformation matrix from primitive vector to conservative state vector which is given by 

1Li


3.3. Feedback gain matrix design
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and 1Mi
 , the pseudo-inverse matrix of Mi , is 

  
1 0 1 0 0 0

M
0 0 1 0 0

T

i
  
  
 

                   (12) 

Then, H*, the pseudo-inverse matrix of H, is 

   * * * *
1 2H H H H Hi Ndiag                     (13) 
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In this experiment, the feedback gain matrix K* is designed using H* and is given by 

  
* *K Hk             (15) 

where k is a stability parameter. In previous studies, this parameter was determined by trial and error. These studies 
indicated that this parameter depends on the time increment t of the time-marching scheme from the viewpoint of 
scaling. When the first order implicit scheme is used as the time-marching algorithm, the stabilization condition 
becomes[18]

  
1k
t




               (16) 

Hence, in the present study, the parameter k is set to 

  
t

k



1

               (17) 

Finally we obtain the feedback gain matrix K* as 

   * * * *
1 2K K K K Ki Ndiag              (18) 
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          (19) 

4. Results and Discussion 

First, we discuss the results for the case using the sample data without error. The comparisons of the drag 
coefficients CD and lift coefficients CL with and without MIS are shown in Table 3. The computation without MIS is 
equivalent to a simple CFD computation, and its difference from the target data becomes large as the angle of attack 
recedes from the target value. On the other hand, the computations with MIS successfully reproduce the sample 
data.  

4. Results and Discussion
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The accuracy of the MIS method can be evaluated by using the norms of the difference between two sets of data 
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where the upper subscript sample denotes the sample data, CFD the result without MIS, and MIS the computation 
with MIS. The subscript i is the grid index and N is the number of grid points.  

Table 4 shows a comparison of the norms derived from Eqs. (20)-(25). Since the velocity data are employed as 
the target data, in all cases, the value of velocity norm obtained with MIS is much smaller than that obtained 
without MIS. On the other hand, for the norms for density and pressure obtained with MIS are also much smaller 
than those obtained without MIS. This means that the present method can even reproduce physical properties that 
are not assimilated directly. Figure 5 shows pressure contours in Case (1). Figure 5 (b) shows the computation 
without MIS and of course the distribution is different from that of the target data. On the contrary, as can be seen 
in Fig. 5 (c), an almost identical result is obtained from the computation with MIS. 

Next we consider the results obtained when random and bias errors are introduced. This is to confirm the validity 
of the MIS method even if the sample data includes a typical amount of uncertainty. The sample data including 
random or bias errors are derived from the target data as 

Table 3: Comparison of aerodynamic coefficients with and without MIS 

CD CL

Without MIS With MIS Without MIS With MIS 
Case (1) 0.022518 0.030731 -0.000230 0.260082 
Case (2) 0.023963 0.030776 0.142230 0.260634 
Case (3) 0.027097 0.030815 0.221770 0.261135 

Target data 0.030849 0.261591 

Table 4: Differences between the results of calculations with and without MIS for the sample data without errors 

Without MIS With MIS 
S Cl
 S C

ul
 S C

pl  S Ml
 S M

ul
 S M

pl 

Case (1) 0.05255 0.1492 0.04382 0.006436 0.003614 0.004457 
Case (2) 0.03925 0.1132 0.03355 0.004305 0.002409 0.002969 
Case (3) 0.02305 0.06211 0.01903 0.002181 0.001204 0.001485 

Table 3: Comparison of aerodynamic coefficients with and without MIS

Table 4: Differences between the results of calculations with and without MIS for the sample data 
without errors
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   1random target
i i ir y y              (26) 

  (1 )bias target
i ib y y      (27) 

where ri is a random number chosen so that the level of uncertainty attains a specified value. Similarly, b is a 
constant which represents the bias error component. A total of 4 cases, with levels of uncertainty of 1%, 2%, 5%, 
and 10%, are considered both for random error and bias error. The results of including random or bias error are 
shown in Tables 5 and 6, respectively. In both cases, the difference norms for the computation with MIS are much 
smaller than those obtained without MIS.  

By solving Eq. (4), MIS reproduces the flow field so that it minimizes the difference from the sample data. 
Hence, when the sample data exactly satisfies the flow equations, the sample data itself is reproduced. However, if 
the sample data does not satisfy the flow equations due to the presence of random or bias error, the difference 
between the sample data and the MIS computation remains. The degree of difference between the MIS and sample 
data is comparable to that between the target and sample data. The difference becomes large as the error included in 
the sample data becomes large, as shown in Tables 5 and 6. 

(a) Target data (b) Without MIS 

(c) With MIS 

Figure 5: Comparison of pressure contours Figure 5: Comparison of pressure contours
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Figure 5: Comparison of pressure contours 

5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) 225

This document is provided by JAXA.



5th Symposium on Integrating CFD and Experiments in Aerodynamics (Integration 2012) 
3-5 October 2012 
JAXA Chofu Aerospace Center, Tokyo, Japan 

Finally, we consider the effects of random or bias error on the MIS results for Case (4) in which results that are 
identical to those of the sample data are expected to be obtained if there is no error in the sample data. Table 7 
shows the comparison of the difference norms obtained with random or bias error  

      2 2

1

1
2

N
S T sample target sample target
u i i i i

i
l u u v v

N




             (28) 

and those obtained by the MIS computation. In both cases, the norm from the MIS computation is comparable to 
that from the computation with random or bias error. This means that, even if the assimilated data has a series of 
uncertainties, MIS does not amplify the uncertainty level, and hence, we can say that MIS is a numerically stable 
approach.

Table 5: Differences between the results of calculations with and without MIS for the sample data including 
random errors 

(a) 1% 

 Without MIS With MIS 
S C
ul
 S M

ul


Case (1) 0.1497 0.0055 
Case (2) 0.1136 0.0040 
Case (3) 0.0625 0.0027 
Case (4) 0.0041 0.0022 

(b) 10% 

 Without MIS With MIS 
S C
ul
 S M

ul


Case (1)  0.1587 0.0212 
Case (2) 0.1236 0.0208 
Case (3) 0.0765 0.0206 
Case (4) 0.0413 0.0206 

Table 6: Differences between the results of calculations with and without MIS for the sample data including bias 
errors 

(a) 1% 

 Without MIS With MIS 
S C
ul
 S M

ul


Case (1) 0.1502 0.0058 
Case (2) 0.1141 0.0041 
Case (3) 0.0630 0.0028 
Case (4) 0.0072 0.0023 

 (b) 10% 

 Without MIS With MIS 
S C
ul
 S M

ul


Case (1) 0.1730 0.0176 
Case (2) 0.1396 0.0172 
Case (3) 0.0980 0.0169 
Case (4) 0.0718 0.0168 

  

Table 7: Effect of size of random or bias error in calculations with and without MIS 

(a) Random error 

Level of 
 uncertainty 

Without MIS With MIS 
S T
ul
 S M

ul


1% 0.0030 0.0022 
2% 0.0059 0.0042 
5% 0.0147 0.0104 

10% 0.0295 0.0206 

(b) Bias error 

Level of 
 uncertainty 

Without MIS With MIS 
S T
ul
 S M

ul


1% 0.0051 0.0023 
2% 0.0102 0.0042 
5% 0.0256 0.0100 

10% 0.0512 0.0168 

Table 6: Differences between the results of calculations with and without MIS for the sample data 
including bias errors

Table 5: Differences between the results of calculations with and without MIS for the sample data 
including random errors

Table 7: Effect of size of random or bias error in calculations with and without MIS
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5. Conclusions 
 
 

Measurement Integrated Simulation (MIS) is a data assimilation method that uses the idea of a flow observer and 
has already been applied to the analysis of incompressible fluids in biomedical and pipe flows. In this study, a coupled 
system of a CFD solver and MIS was constructed, and an identical twin experiment studying the flow field around a 
2-dimensional airfoil with different boundary conditions was performed. The velocity data for all parts of the 
computational domain were used as the target data. The target data were used as “sample data without error” and 
further sample data was created by adding random and bias error components. In cases using the sample data without 
error, it was found that the MIS reproduced the aerodynamic coefficients of target data even if we set different 
boundary conditions. Based on the evaluation of the L2 norms for the differences between the target data and the 
simulated data, the accuracy of the MIS method was demonstrated, not only for the physical properties used for the 
assimilation but also for unassimilated properties. Also, for the cases involving sample data with random or bias error, 
the difference between the simulated and target data achieved by the computation with MIS was much smaller than 
the difference achieved without MIS. 

MIS is a nudging method and has a computational cost comparable with single CFD. Therefore, in future 
research, we will apply this method to 3-dimensional problems using actual measurement data, for example, collected 
by particle image velocimetry. 
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