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Oscillatory thermocapillary flow is investigated for high Prandtl number fluids. The main
objective is to delineate the physical mechanism of oscillations. The investigation is done
experimentally as well as numerically. Some model problems are analyzed numerically to
identify some important features of oscillations. The model predictions are compared with
the experimental information whenever possible. The oscillation process is shown to be very
much affected by the flow in the hot corner and by the thermal boundary layer along the hot
wall. It is shown experimentally that it takes some time before the oscillations can be
detected when the imposed temperature difference is very close to the critical value but they
appear very quickly just above the onset point.

1. INTRODUCTION

Much attention has been given lately to th@“m@cgpiiiafy flow in the so-called half zone
(or liquid bridge) configuration, in which a ;g@ﬁu column is suspended between two
differentially heated metal rods, because of its simila Tity to the floating-zone crystal gr thh
technique. Many experiments have been performed in the past with high Prandtl flui
because it is easier to perform thermocapillary flow experiments with those fluids due to ih@ﬂ*
insensitivity to surface contamination. Those @Xp@ri?n@?z‘ have shown that %hemocapiﬂa?y
flow in the half-zone configuration becomes oscillatory. G‘W@V@E despite the fact that much
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experimental information is available, the cause of oscillat
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The main objective of the present work is to clarify the cause of oscillations in the half-zone
and similar configurations for high Prandt! number fluids.
1 1 1 1 :
In order to understand the oscillation mechanism, it is important to know the basic flow

field. Kamotani and Ostrach [1] analyzed the basic flow and temperature fields in the half-
zone configuration for high Pra&mﬁ number fluids. They have derived the scaling laws for
various flow variables and have shown that the flow is mainly driven in a relatively small
region near the hot wall, called the hot comer. The oscillation process is also observed to
start from the hot corner. Based on the information on the basic flow field and also on the
sxp@rimem‘iaﬁy E{ﬁewn conditions for the Gm@% of oscillations, Kamotani and Ostrach [1]
postulated an oscillation mechanism involving dynamic free surface deformation (free
surface def@&maﬁom caused by fluid m@ﬁ@ﬁ}a Kamotani and Ostrach [2,3] also analyzed the
oscillation phenomena in other configurations and proposed similar oscillation mechanisms
involving dynamic free surface deformation. The present work is an extension of those
studies and is intended to clarify the postulated model further.

If dynamic free surface deformation were important in the oscillation mechanism, as
postulated, the best way to prove the model would be to control the deformation
experimentally and study its effect on the onset of oscillations. However, this direct approach
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is not feasible technically, so we must rely on other ways to prove the postulate. One way is
to simulate the oscillation phenomenon numerically. Since it is very difficult to include the
dynamic free surface deformation in the analysis of actual oscillatory flow in the float-zone
configuration, we analyze some model problems in order to clarify some important features
of oscillation mechanism. As mentioned above, much experimental information is available
mainly concerning the conditions for the onset of oscillations. However, some of the data are
contradictory or the data tend to scatter considerably, which is one of the main reasons for the
lack of our clear understanding of the oscillation mechanism. We want to clarify the reasons
for some misleading trends. We also investigate some important aspects of oscillations that
have not been investigated before in order to give some new light into the oscillation
mechanism,

2. NUMERICAL INVESTIGATION OF BASIC OSCILLATION
PROCESS

2.1.  Basic Steady Flow Field

The half-zone configuration and the coordinate system adopted herein are illustrated in
Fig. 1. The important dimensionless parameters for steady thermocapillary flow in this
configuration in the absence of gravity with flat free surface are known to be: Marangoni
number Ma = &7 ATL/jo, Prandtl number Pr = v/o, and aspect ratio Ar = L/2R, where ot 18
the temperature coefficient of surface tension, AT is the imposed temperature difference
between the hot and cold walls (= Ty — Tc), L is the length of liquid column, R is the radius,
i is the dynamic viscosity of the fluid, v is the kinematic viscosity, and o is the thermal
diffusivity. The Reynolds number of the flow, Ro, is related to Ma and Pr as Ro = Ma/Pr.
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Fig. 1 Half-zone configuration

One important feature of thermocapillary flow of high Pr fluid at high Ma is the existence
of a hot corner where the flow driving force is concenirated.  Typical streamline and
isotherm patterns, which are computed numerically, are presented in Fig. 2 for steady
thermocapillary flow at 2 high Ma. Since the flow is axisymmetric, the flow and temperature
fields in one radial (r-z) plane are shown. A thermal boundary layer is clearly recognizable
along the hot wall. Because of the thermal boundary layer, a large temperature gradient is
generated along the free surface near the hot wall. Since the surface temperature gradient
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determines the thermocapillary driving force, large driving force exists in that small region
near the hot wall, called the hot corner, and the driving force is relatively small outside the
corner. Therefore, the overall flow is mainly driven in the hot corner (Kamotani and Ostrach
[1]) so that the center of unicellular mofion is located near the hot wall as seen in Fig. 2.

STREAMLINES ISOTHERMS

z/h

0 /R

Fig. 2 Computed streamlines and isotherms for Ma= 1.1 x 10°, Ar=0.7 and Pr=50

2.2. Time Scale of Oscillation Process

During oscillations, the whole flow field is known to change cyclically. Since the flow is
driven mainly in the hot corner, the driving force there must also be altered periodically. The
only way to change the hot corner temperature distribution, thus the driving force, is to
change the thermal boundary layer thickness along the hot wall. The thermal boundary layer
is closely related to the heat transfer at the hot wall. In order to see how the heat transfer is
distributed over the hot wall surface, the dimensionless heat flux at the wall (9T IQZ!Z—L
@/55) ); mmﬁg}h@@ by /R (to take into account area change in the radial direction) is shown
in Fig. 3. Since the flow is squeezed into the relatively small hot corner, the shear siress at
the main retarding force for the flow. For that reason the r% mensioniess shear
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stress at the hot wall (3v/9z | =1 (L/Gy ATYL/RY), multiplied by r/R, is also shown in Fi ig. 3.
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Fig. 3 Distributions of shear stress and heat flux along hot wall
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As the figure shows, the whole hot surface is contributing to the overall heat transfer.
That suggests that during oscillations the boundary layer over the entire hot surface must be
altered. In contrast, the shear siress is much more concenirated in the hot corner, which
means that the flow retarding force is adjusted relatively quickly after a change in the driving
force (and thus the flow field) in the hot corner, namely the flow field is quasi-steady.

From the above result one can make the following observation. Based on the concept of
boundary layer, we know that the thermal boundary changes when the flow near it is altered
and that the boundary layer change occurs starting from the flow upstream region. The
upsiream region in this case is near the centerline (near r = 0). After a change in the velocity
field in the bulk region, the thermal boundary begins to change from the centerline region
toward the free surface f@gﬁ@*’} (near r = R). Therefore, since the hot corner is located near the
free surface, it takes some time before the driving force and the flow field are changed. From
this one can infer that the period of oscillations should scale with the time scale associated
with the thermal boundary layer.

The above observation is checked in the numerical simulation. For this purpose, we

isturb the thermal boundary layer and determine its recovery time. The recovery time
E@pﬁ:’@S@’KS the time scale of the boundary layer and is compared with available experimentally
observed oscillation frequency. Numerically, we first obtain a steady solution for the
conditions that are known to be close to the onset of oscillations, and then we suddenly
increase Ma by a small amount (10%) and monitor the subsequent variation of the total heat
transfer rate (Nusselt number) at the hot wall.

In our ground-based experiments we often use 2-centistokes silicone oil. To minimize
buoyancy, ‘we usually use 2-mm dia. liquid columns.” We have accumulated much
experimental information for those conditions, so the computations are done for those

conditions for comparison. To cover a much wider range of Ma, without introducing

¢
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buoyancy, we also analyze the conditions of the microgravity experiments by Monti et al. [4].
Two cam@@?{&&@mg results are presented in Fig. 4. As the figure shows, the total heat transfer
rate increases when Ma is increased and eventually reaches a plateau. Since the heat tra
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rate approaches the plateau asymptotically, one cannot cleanly determine the time to get there
. ° : 41 +3 LR, | - 3 3, £ 1

Instead, we determine the time constant from the time it takes to reach 90% of the final value,

7.4

48
o D=8emL=450m
2 ¢St ol »qi ScStol
45k o : /
z S ek .
£ 80 percent change &
o -
< <
@ oaal wor
= 2
5 iij 5ok
& =
434 L,=17s
I 1,=0.084s il 1
42 ¥ A ; 8.8 . L L . L
0.05 0.10 815 0.20 0.25 e 100 110 120 130 140 150
TIME (5) TIME (S)

Fig. 4 Variation of total heat flux at hot wall after a sudden increase in Ma
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The boundary layer time constant, t;, is compared with observed oscillation period, ty, 11
Table 1. To show that t; scales with t,, the ratio ty/ty is computed. As the table shows, the
ratio is indeed nearly constant in those tests.

Table 1 Comparison of boundary layer time constant and oscillation period

D (cm) L {cm) Fluid th (8) ty (s) tp/th
0.20 0.15 2 ¢St 0.064 0.33 5.1
0.20 0.10 2 cSt 0.044 0.23 52
3.00 8.00 5 ¢St 8.0 31.3 5.2
4.50 3.40 5 ¢St 11.5 47.6 4.1
4.50 4.50 5 ¢St 13.5 714 53
5.00 4.50 5 ¢St 17.0 83.3 4.9

In order to show that the above time scale, ty, is the time scale for the thermal boundary
layer, we use the result of the scaling analysis performed by Kamotani and Ostrach [1]. They
have shown that there exists only one velocity scale, Uy, in the problem. Based on [1], U
scales as (oTAT/wWMa"". From boundary layer theory, the time scale for the boundary scales
with the time of convection along the hot wall, namely R/Uy ~ (RL/0)Ma™®". Then, if the
computed time constant, t, scales with the boundary layer time scale, the ratio t/(R/Uy)
would be constant. The ratio is shown in Fig. 5. The figure shows that the ratio is indeed
nearly constant over a wide range of Ma.

Ar=05-20
Pr=25-67
20 ©
> %
o
3 @ °
10
5 5 i
104 5x10% 108 4x10°

Ma

Fig. 5 Comparison of boundary time constant and convection time

From the above discussion one can con

time scale of the thermal boundary layer
layer is closely related to the hot corer, th

hot corner in the oscillation mechanism.
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2.3. Flow Adjustment Process

Next we discuss how the flow adjusts itself after it is disturbed. It is important to
understand this adjustment process before we investigate the cause of oscillation process, as
shown below. For that purpose we disturb the flow in the following way in the numerical
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simulation. After a steady flow is obtained, the value of Ma is increased by 30% for a certain
time. After that, Ma is decreased to the original value. Various dimensionless quantities are
monitored in the subsequent time. One example is shown in Fig. 5, where the dimensionless
total heat transfer rate (Nusselt number) at the hot wall is monitored after the disturbance. As
the figure shows, the response to the disturbance is periodic with the amplitude decaying with
time.
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Fig. 6 Variation of total heat flux at hot wall after disturbance

ince the flow adiustment is periodic, it is useful to see how other quantities are varyin
Yy
with ng that period. We consider two quantities: the maximum stream function,

which represents the strength of the overall flow, and the total shear at the hot wall, which

time duri
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represents the flow retarding force as discussed above.

among those quantities

for the conditions of Fig. 6.

Figure 7 shows the phase relations
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Fig. 7 Variations of dimensionless maximum stream function and total shear at hot wall

relative to that of heat flux

The maximum stream function variation and the total shear variation at the hot wall are
nearly out-of-phase. This means that when the shear is large (small), the bulk flow is weak
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(strong), which makes sense because the shear is the main retarding force. Since the flow is
viscous-dominated, the wall effect is felt very quickly by the bulk flow. = The total shear
variation and the heat flux variation are nearly in-phase. This means that when the thermal
boundary layer is thin (which increases the heat transfer), the hot corner is narrower, which
increases the wall shear effect. Putting that iﬁf@rm@mn together, we get the following
picture. When the bulk flow becomes strong, the thermal boundary layer becomes thinner
after some time, which increases the wall shear and slows the bulk flow. The opposite
happens when the bulk flow becomes weak. This mechanism simply tries to bring the whole
situation back to the original state. In order to oscillate, the adjustment process must
overshoot and undershoot the original state (non-linear effect). In the process shown in Figs.
6 and 7, the non-linear effect comes from the inertia forces, but the inertia forces are not
strong enough to sustain oscillations. We will discuss this in the next section.

2.4, Effect of Inertia Forces in Oscillation Mechanism

As discussed above, the inertia forces make the flow adjus‘im@n&: oscillatory. Since the
inertia forces become more important with increasing Reynolds number (Ro), we analyze the
flow adjustment process after the disturbance described above for one of the conditions in the
microgravity experiment by Monti et al. [4]. One result is shown in Fig. §, where Rois 2.2 x
10%. At this Ro it becomes extremely time-consuming to obtain grid-independent solution, so
the result shown in Fig. 8 is not exactly grid-independent. Nevertheless, at this very large Ro,
the oscillatory process seems to sustain itself. The oscillation period in Fig. § is 125 seconds,
compared to the measured oscillation period of 83.3.seconds (see Table 1). In Fig. 6 the
oscillation period is 0.39 seconds csmpaf@d to the measured period of 0.33 seconds. The
fact that the computed periods of oscillations associated with the inertia forces are in
reasonable agreement with the measured ones suggests that the inertia forces play some role
in the oscillation process. However, it is important to note that the inertia forces by
themselves cannot generate oscillations generally, because we observe oscillations
experimentally in small liguid bridges where Ro is relatively small. The requirement that we
need an extra feature to explain the oscillations makes this pm‘zﬁ@m very complex. In the
next Chapter, we discuss the situation where the extra feature is given by a relatively simple
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Fig. 8 Oscillations at high Reynolds number.
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3. A NUMERICAL STUDY OF THERMOCAPILLARY CONVECTION
IN TWO-DIMENSIONAL LIQUID BRIDGES WITH CURVED FREE
SURFACES

3.1. Introduction

Thermocapillary flow in the so-called half-zone (or liquid-bridge) configuration is known
to become oscillatory under certain conditions. High Prandtl number liquids were used in
most of past thermocapillary flow experiments because of their relative insensitivity to
surface contamination (e.g. [5,6]). It is known experimentally that the onset of oscillatory
thermocapillary flow of high Prandtl fluids depends very much on the liquid bridge shape [7,
8], but the reason for the strong shape effect is not yet well understood. Although the
oscillation phenomenon in liquid bridges of unit-order Prandtl number fluids with flat free
surfaces has been analyzed as a type of hydrodynamic instability in the past (e.g. Wanschura
et al. [9]), no such study exists for high Prandtl number (> 15) fluids with curved free
surfaces.

In the present work, steady and oscillatory thermocapillary convection in liquid bridges of
a high Prandtl number fluid is investigated numerically. Although the oscillation
phenomenon is known to be three-dimensional generally, an accurate three-dimensional
simulation of oscillatory flow of a high Prandtl number fluid with a curved free surface is
computationally exiremely time-consuming and is beyond the scope of the present study.
Instead, a two-dimensional version of the half-zone is considered in order to simplify the
computation and to gain some physical insight into the oscillation phenomenon with curved
free surfaces. In the past, combined thermocapillary and buoyancy convection has been
investigated numerically for two-dimensional liquid bridges [10] and for axisymmetric flow
in cylindrical bridges [11], both with curved free surfaces. No oscillatory flow was found
without buoyancy in those studies. Also related to the present work, Peltier and Biringen [12]
numerically investigated oscillatory thermocapillary flow in two-dimensional rectangular
open containers with flat free surfaces for Prandtl number = 6.78. No oscillations were found
when the container aspect ratio (length/depth ratio) was smaller than 2.3. The present two-
dimensional simulation does not include buoyancy and our range of interest of Ar is near
unity, but the flow is shown to become oscillatory under some conditions. The present result
also shows strong dependency of the onset of oscillations on the free surface shape. Some
implications of the present results to the experimentally observed oscillation phenomenon in
cylindrical bridges are discussed. The present paper is based on the thesis by Gupta [13]. In
Chapter 2 we discussed the importance of inertia forces. The subject is explored also in this
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cnapier. it IS snowhn &t the flow becomes oscillato Iy €ven wi he inertia rCes are

negligible and also without including dynamic free surface deformation. This work shows

that the subject of oscillatory thermocapillary flow in high Pr fluid is a2 complex one.
3.2. Problem Formulation

The configuration investigated in the present work is sketched in Fig. 9. A two-
dimensional liquid bridge is formed between two differentially heated plates. The two free
surfaces are either flat or curved. In the absence of gravity the curved surface shape is a part
of a circle. The coordinate system adopted in this chapter is defined also in Fig. 9.
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Fig. 9 Two-dimensional liquid bridge with curved free surfaces

The following assumptions are made in the present analysis: (i) The flow is laminar and
incompressible. (ii) The fluid properties are constant except for the surface tension which is
considered to vary linearly with temperature. (iii) The heat loss from the liquid free surfaces
is negligible.

The continuity, momentum and energy equations can be expressed in dimensionless form
as: '

du ov
— e =
ox oy
@;ﬁLQE+V%=_E+ i s,d.'LA“LA%_z& ij}

9% 39 9y 9x ArRe ox’
v dv  ov 2 8?? i ,62v . , 3%V

U=t Ve— = —AT — Ar® ———
gt g% gy 8}/ "AtRo %7 8}/2}
oT . oT . 3T [ Rt ¥ 2 0°T

——t gt V= (c5+Aar"—)

gt ax gy - ArMa a9x dy

The x-coordinate, y-coordinate, velocities, pressure, and time in the above equations are non-
dimensionalized by L, W, ¢tAT/y, ;@(@Té?lgi}zs and uL/G7AT, respectively. Temperature is
made dimensionless as (T-T¢)/ AT. The boundary conditions at the wallsare: u=v=0and T
=latx=0. u=v=T=0atx=1. Along each free surface we have: negligible heat loss
condition (dT/dn = 0) and tangential stress balance (duy/on=0T/ds).

From the above formulation one sees that the important dimensionless parameters in the
present problem are Marangoni number (Ma = 6rATL/uq), surface tension Reynolds number
(Ro = orATL/uv), and aspect ratio (Ar = H/W). Ma and Ro are related through Prandil
umber {Fz = v/o) as Ma = Ro Pr. In addition, the static liquid free surface shape is
epresented by Ar and width ratio (Dr = Wpi/W).  The fluid motion also deforms the free

urface

surface E}w{ ‘1@ dynamic free s

¢ deformation relative to the liquid bridge dimension is
gsn@;':aﬁy h less than unity E ], so the surface deformation by fluid motion is neglected in
the E,TC—S’“E‘ anal ysm A more discussion on the effect of @yﬁai‘ﬁig free surface deformation

will be given later in conjunction with the oscillation mechanism.

=
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The parametric ranges investigated in the present analysis correspond mostly to the
conditions of our past experiments, for comparison purpose. The physical properties are
those of 2 centistokes silicone oil (Pr = 27). The liquid bridge width is 3 mm and the
imposed temperature difference (AT) ranges from 1 to 30 °C. Thus, Ro ranges from 3.2 x 10°
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t0 1.9 x 10° and Ma from 8.6 x 10° t0 5.2 x 10*. Ar ranges from 0.6 to 1.4, and Dr from 0.4
to 1.

3.3. Numerical Scheme

A commercial computational fluid dynamics package called NEKTON is used for the
present numerical analysis. NEKTON is a two-part package consisting of a preprocessor,
GeoMesh, and a main module, NEKTON. GeoMesh is used for geometry and mesh
generation purposes. NEKTON is based on the Spectral Element Method. The dependent
variables are expanded in terms of N™.order tensor-product Lagrangian interpolants. The
semi-discrete algebraic equations are generated based on the governing equations using
weighted-residual techniques. Those equations are solved by either direct or indirect iterative
solution techniques based on the conjugate gradient method. For transient simulations,
NEKTON employs both explicit and impi;i@i? %ﬁm@-émﬁ@gmﬁga techniques, and the solution is
updated to the next time level using various combinations of multi-step and multi-stage
schemes. The convective terms are treated implicitly or explicitly, using a third order Adams-
Bashforth multi-step scheme or a fourth-order Runge-Kutta multi-stage scheme. The

iffusion terms are treated implicitly using a first- or second-order backward differential
multi-step scheme. Further details regarding NEKTON can be found in [14]. NEKTON has
been used in past numerical studies of various subjects including thermocapillary convection
(e.g. Bullister et al. [15])

For all steady and unsteady simulations, the calculations are started with a 120-clement
second-order grid and then the order is increased to three. A dir@@‘é;—-ceupi@é solver is
employed as the solution technique for all cases. Since the direct-coupled solver is used, th
convection term is treated implicitly, so there is no time step restriction for stability. k@W@V@z‘
it is selected as 0.01 seconds to accurately capture the transient characteristics of the
thermocapillary convection phenomenon. The numerical scheme is under-relaxed by
specifying relaxation parameter as 0.3 as it is found to be diverging in some cases where the
relaxation parameter value exceeds 0.3. The solution process is controlled by the following
convergence criteria: (i) The maximum relative change between two successive iterations for

5 $2 o V=9 ~e s lascstirian
the velocity and scalar fields is sp@u%ea as 107, (ii) The :sf@ﬁé‘@&i tolerance for velocity and
pressure values is specified as 10 07, A more detailed description of the present numerical
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3.4. Results and Discussion
3.4.1. Choice of numerical grid

The numerical grid adopted herein is discussed first. The initial grid is chosen as a
uniform grid of 80 quadrilateral elements of second order. Then, the grid is refined by
monitoring various important quantities of the flow (the maximum stream function,
streamline and isotherm patterns, surface velocity and temperature distributions, maximum
surface velocity near the hot wall, and, in the case of unsteady flow, temperature variations
with time at various points). Table 2 summarizes typical grid study for steady and unsteady
flows with highly curved free surfaces (Dr=0.4). More detailed comparisons of other
quantities with various grids are given in [13]. Based on those grid studies, the third-order
120-element non-uniform grid is used for Dr=0.4, increasing to sixth-order 120-element for
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flat free surfaces, in the present study. The chosen grid for Dr=0.4 is shown in Fig. 10. The
grid has finer resolutions along the free surfaces and also along the hot and cold walls

because of thermal boundary layers in those regions.

Table 2 Effect of numerical grid on steady and oscillatory flows (Ar=1, Dr=04,
Ma=2.6x10%
No. of Elements; Order Fmax Us max
80 2 0.00117 0.0206
108 2 0.00112 0.0212
120 2 0.00101 0.0205
120 3 0.00102 0.0196
120 4 0.00103 0.0196
(a) Steady convection
No. of Elements] Order [Surface Temp.| Surface Temp.
at Point 1 at Point 2
120 2 0.753 08186
120 3 0.782 0.638
120 4 0.773 0.643

(b) Oscillatory convection, free surface temperature at a specific time
(point 1 at x=0.3, and point 2 at x=0.7)
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3.4.2. Steady thermocapillary convection

In order to analyze the effect of width ratio (Dr) on the steady flow field, it is varied from
0.4 to 1, while keeping Ar and Ma constant (Ar=1 and Ma=1.7 x 10%). Some computed
streamline patterns are presented in Fig. 11, which shows that the flow is symmetrical with
respect to the middle plane parallel to the x-axis. For Dr > 0.6, the flow is unicellular on each
side of the middle plane, with the cell center located near the corner of the hot wall and the
free surface. The flow along the free surface toward the cold wall is called the surface flow
and the interior flow toward the hot wall is called the return flow herein. When Dr becomes
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below 0.6, the single-cell structure changes to a two-cell flow structure with the formation of
a second cell near x = 0.5 (called the bridge neck region herein). The secondary cell near the
neck is observed experimentally in an axisymmetric liquid bridge. However, in the case of
the cylindrical configuration, the cross-sectional area at the neck is proportional to the square
of the neck radius, so the flow passage near the neck is more strongly affected by Dr than in
the present two-dimensional configuration. For example, we observe the secondary cell
experimentally even near Dr=10.8 for Ar=1.

(a)Dr=0.35

Fig. 11 Effect of Dr on streamline pattern (Ar= 1, Ma = 1.7 x 107)

The isotherm patterns corresponding to the conditions of Fig. 11 are presented in Fig. 12,
In all cases a thermal boundary is clearly recognizable along the hot wall. As the flow along
the hot wall turns at the corner of the hot wall and the free surface, called the hot corner, the
fluid is mixed with the return flow and the temperature decreases quickly. Also, the
isotherms bunch up in a small corner of the cold wall and the free surface, called the cold
corner, due to the convection of hot fluid along the free surface to the region close to the cold

wall.

/i
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(a) Dr=0.35 ®Dr=1.0

Fig. 12 Effect of Dr on isotherm pattern (Ar= 1, Ma=1.7x 10%
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Those hot and cold corner phenomena are some of the important features of thermocapillary
flow of high Pr fluid at large Ma [1]. The free surface temperature is relatively uniform in
the region away from those corners when Dr is near unity. As the free surface becomes more
concave, the convection in the hot and cold corners becomes weaker due to increasingly
narrow flow passages in those corners, so the isotherms bunch up less in those comers,
although the corner regions are still recognizable.

One important feature of thermocapillary flow of high Pr fluid in a container of unit-
order Ar is that the flow is mainly driven in the hot comer at large Ma (e.g. Kamotani and
Ostrach [1]). That is why the center of main flow cell is located near the hot wall in Fig.
11(b) even when the free surface is curved. When the surface is concave, the flow cell tends
to be more elongated along the free surface due to slightly more spread-out driving force
distribution and also due to increased length of the free surface. As the neck region becomes
too narrow, the elongated cell is pinched near the neck to create an additional closed cell.

Since the flow is mainly driven in the relatively small hot corner, it is very much affected
by the viscous forces even when the Reynolds number is large [1]. The values of
dimensionless maximum sitream function, computed with and without the inertia forces in the
momentum equations, are presented in Fig. 13 at a Reynolds number which is near the onset
of oscillations to be discussed later. Wy increases with increasing Dr as the overall flow
passage increases. As seen in the figure, although the inertia forces are not negligible
generally, Wiy is mainly determined by the viscous forces. When Dr is below about 0.6, the
flow becomes viscous-dominated as the overall flow passage is more squeezed. The fact that
the flow is strongly affected by the viscous forces will become important when we analyze
the oscillation mechanism later.

0.20
Ar=1
Ma = 1.7x10%, Rs =640
Q.15 [S]
— [e}
S :
&
Z odof g ©
g €
3= e &
0.05 - - N
&  with inertia forces
& without inerils forces
G.GQ i i i ] i H 13
03 04 08 08 07 08 08 10 14

Br

Fig. 13 Effect of Dr on maximum stream function with and without inertia forces (Ar = 1,
Ma=1.1x 10", Ro=390) :

The effect of aspect ratio on the streamline pattern is shown in Fig. 14 for Dr=0.4. For Ar
> 0.6, the two-cell structure is observed, which changes to the unicellular structure for Ar <
0.6. - The transition from the one-cell to the two-cell flow structure can be again attributed to
the decreased flow passage at the neck region. As the liquid bridge becomes longer (larger
Ar), the overall cell becomes more elongated so that it becomes more susceptible to pinching
near the neck. This means that the two-cell structure appears at larger value of Dr when Ar
becomes larger.
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3.4.3. Critical tempe
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For the parametric ranges ssmid@ed in the present study, it is observed that the flow

always remains quasi-steady when AT is increased slowly wit h time from a small value. Itis
e steady flow, the flow can

urbance is sgve&a tot ine flio

f’cwé however, that when a fini
become oscillatory beyond a critical temperatur Af;sr@ﬁce, T'o provide a ﬁm&e disturbance
to the steady flow, the procedure aé@pa.@@ is as follows. For a given case, AT is increased
from 1°C to a desired value and a steady solution is obtained. After the steady solution is
obtained, one of the free surfaces is made shear free for a fixed time (0.5 seconds) by
changing its boundary condition. The choice of 0.5 seconds is made to ensure that the total
flow domain gets cai‘%@d@m&iy disturbed. After providing the finite disturbance for 0.5

seconds to the flow, the original shear boundary condition is restored and the subsequent

%@havwr of the flow is observed.

Two examples of the unsteady calculation are shown in Fig. 15 for Dr=0.4 and Ar=1.
The disturbance is provided to the steady flow at AT = 8 and 12 °C. For convenient
comparison with available experimental information, we use dimensional AT here. For the
AT = 8 °C case, the fluid temperature becomes steady after a few oscillations of diminishing
amplitude (Fig. 15a). However, for the AT = 12 °C case, the velocity and temperature
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oscillations persist after the disturbance (Fig. 15b). It means that the critical AT for the onset
of oscillations (AT,,) lies between 8 and 12 °C. It will be shown later that AT, for this case is
10.7 °C. In order to find AT, AT is decreased slowly from a value at which the oscillations
are found to occur to a value at which they just disappear (below the aforementioned
computational tolerance limit). The decrement in AT is carried out in steps of 0.1 °C, and it
is made sure at each AT that the oscillations become quasi-steady.

27.0 30.4
.87 _ Es
éi \ 8 2988
g 264 Vaa— e L WW
g _\ G 282
2 26.1 % v
£ \ g
&€ é

25.8 = 286 \

25.5 ‘ . .

0 2 ¢ ° 8 10 0 0 2 4 8 8 10
Tens {s}
Time (8}

Fig. 15 Temperature variation after initial disturbance (Dr = 0.4, Ar = 1, surface temperature
atx=0.3) ‘ ‘

Figure 16 shows the dependence of AT on Dr for Ar=1. The corresponding value of
Ma is also given in the figure. The curve in Fig. 16 consists of two separate branches, which
correspond to the fat bridge (Dr larger about 0.65) and the slender bridge (Dr smaller than
about 0.55), respectively. In the slender bridge branch, AT, increases with increasing Dr.
On the other side, AT, decreases with increasing Dr. There is a gap in between where
oscillations are not realized for AT up to 30 °C. Those two branches correspond to the
aforementioned two basic flow structures, the unicellular flow structure for the fat bridge
branch and the two-cell structure for the slender bridge branch.

4
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g2 s "
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o
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Fig. 16 Dependency of AT onDrfor Ar=1

This document is provided by JAXA.



The above trend is qualitatively similar to the experimentally observed trend for the
cylindrical half-zone configuration. It is known experimentally that there are two branches in
the AT-Dr curve for a given Ar and that there exists a narrow gap in between where AT
increases sharply [7,8]. It is mentioned in [8] that each branch is associated with the one- ot
the two-cell basic flow structure, as found in the present analysis. The gap region is near Dr =
0.6 in the present two-dimensional analysis with Ar = 1, while experimentally it is around Dr
= (.8-0.9 for Ar = 1 [7]. Although it is not shown here, the present analysis shows that the
gap region moves to higher Dr range as Ar is increased [13], which is also known
experimentally, because the transition from the one- to two-cell structure occurs at a larger
value of Dr with increasing Ar, as discussed above in conjunction with Fig. 14. In addition,
the range of AT,; in Fig. 16 is nearly the same as the experimentally observed range for 3 mm
diameter cylindrical liquid bridges of 2 centistokes silicone oil (7 — 20 °C) [8]. The
computed oscillation frequency near AT, of Fig. 15 is about 1 Hz, while the measured
frequency in the above experiment is about 2 Hz.

3.4.4. Physical mechanisms of oscillations

One important objective of the present work is to delineate the physical mechanism of
oscillations. The fact that there are two branches in Fig. 16 suggests that there exist two
different oscillation processes. It is found that one important difference is the role of inertia
forces. Tt can be shown that in the case of fat bridges the oscillations disappear if we remove
the inertia terms in the momentum equations, while they persist in the slender bridges after
the removal [13]. Therefore, the oscillation mechanism must include the inertia forces for the
fat bridges but not for the slender bridges. That finding is consistent with the fact that the
basic flow is very much dominated by the viscous forces in the slender bridges near the onset
of oscillations but the inertia forces are small but not completely negligible in the fat bridges,
as shown in Fig. 5. Although there exist two different oscillation pms@sssg the key feature
of oscillation mechanism remains the same, as seen below. The key feature is associate
with the hot corner, where the flow is mainly driven in the case of high Pr fluids. As
described in [1] in detail, the overall flow activity is determined by the extent of the hot
corner for a given AT: strong flow when the hot corner is extended and weak flow when it
shrinks. The oscillatory thermocapillary flow in shallow rectangular containers investigated
numerically by Peltier and Biringen [12] is explained also by the change in the hot corner
extent.

QL.,

We discuss first the oscillation mechanism for the slender bridge branch {Dr £ 0.55 for Ar
= 1). A typical oscillation cycle is shown in Figs. 17 and 18, where the streamline and
isotherm patterns are shown at four different times in one cycle of oscillations (they are
equally spaced in time). As seen in the figure, the flow is no longer symmetric with respect
to the x-axis during @Sgﬁi-‘&@ﬁs and the secondary cells near the cold wall are varying with
time prominently. Since the inertia forces are not émpﬁﬁaﬂ; the viscous-dominated flow and
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the free surface to cause the oscillations. By examining closely the flow paﬁems as well as
the surface velocity and temperature distributions at various times, one oscillation cycle is
found to proceed as follows. As discussed earlier, the basic flow E‘%&s the two-cell structure
because the neck region constricts the flow passage. The secondary cell near the neck is
called the cold cell herein. As seen in Fig. 17(a), the cold cell in the upper half is strong
when that in the lower half is weak. The strong cold cell widens the passage in the neck

region for the flow in the upper half. As a result, more cold fluid is brought to the hot corner

A2 AR 4
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in the upper half, as the isotherms near the hot wall in Fig. 18(b) indicate (cold isotherms are
directed towards the hot corner), which eventually shrinks the hot corner.

Fig. 17 Variation of streamline pattern in one cycle of oscillations (equally spaced in
time) for Dr = 0.4, Ar=1, Ma=2.1 x 10*

N

)

Fig. 18 Variation of isotherm pattern in one cycle of oscillations (equally spaced in
time) for Dr=0.4, Ar=1, Ma=2.1 x 10*
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As discussed earlier, the basic flow has the two-cell structure because the neck region
constricts the flow passage. The secondary cell near the neck is called the cold cell herein.
As seen in Fig. 17(a), the cold cell in the upper half is strong when that in the lower half is
weak. The strong cold cell widens the passage in the neck region for the flow in the upper
half. As a result, more cold fluid is brought to the hot corner in the upper half, as the
isotherms near the hot wall in Fig. 18(b) indicate (cold isotherms are directed towards the hot
corner), which eventually shrinks the hot corner. Therefore, the flow in the upper half slows
(Fig. 17(b)) and the cold cell becomes weak. Then, as the upper cell circulates mainly near
the hot wall (Fig. 17(c)), the fluid temperature in that region increases again {cold isotherms
are directed away from the region as Fig. 18(d) shows), which enlarges the hot corner and the
upper cell becomes active again. At that time the cold cell in the lower half is becoming
weaker, which helps the upper cold cell to grow very strong (Fig. 17(d)) and the process
continues. According to our experimental observation in a concave liquid bridge near Ar=1
with tracer particles, some particles are seen to circulate in a cell near the hot corner at one
time. Then, some of them move all the way to the cold wall along the free surface, activate
the cold cell, and go back to the hot wall region in one cycle of oscillations. A strong flow
interaction across the bridge centerline is quite evident. Thus, the observed oscillation process
is similar to that shown in the present two-dimensional analysis.

The above oscillation mechanism depends on the flow interaction across the middle plane.
As Dr increases, the neck region widens, which makes rﬁ; more difficult to interact so that AT,

increases with increasing Dr, as seen in Fig. 14. he above mechanism does not work
beyond a certain Dr where the basic flow has the @mceiiui“‘f structure.

A typical oscillation cycle for a fat bridge is shown in Figs. 19 and 20. There exists only
one main cell in each half of the bridge. Each cell becomes alternately large and small in one
cycle. When the upper cell grows larger, it overshoots the equilibrium siate (the state
corresponding to the steady-state solution) due to the effect of inertia forces and squeezes the

lower cell. The upper cell is strongest in Fig. 19(a). The strong cell eventually brings cold
fluid tcwafds the hot corner in the upper half (Figs. 20(b) and (c)), which eventually shrinks
the hot corner. Consequently, the upper cell becomes weaker (Fig. 19(2)} When the upper
cell shrinks, the iowe; cell grows and squeezes the ur}per cell info a sma all region near the ho
wall (Fig. 19(d)). As the upper cell circulate ,
region increases (Fig. 20(d)), which enlarges the hot corner and the upper cell
again.  When the upper cell is activated, i inertt
equilibrium state and the process continues. According to b
oscillatory flow in one meridional plane of a cylindrical liquid smége the flow b@wme
alternately strong and weak in one cycle (and the pattern generally rotates around the center
axis). When Ar is near unity, we usually determine the onset of oscillations by detecting a
slight wobbling of the flow centerline, similar to that seen in Fig. 19. The experimental
information seems to be consistent with the oscillatory flow dzscussed above.
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Fig. 19 Variation of streamline pattern in one cycle of oscillations (equally spaced in
time) for Dr=0.7, Ar=1, Ma=2.1 x 10*

Fig. 20 Variation of isotherm pattern in one cycle of oscillations (equally spaced in
time) for Dr=0.7, Ar=1, Ma= 2.1 x 10*
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In the case of a fat bridge, the bridge neck has two different effects. As Dris reduced, the
overall flow slows for a fixed AT, due to the increased flow constriction near the neck.
Therefore, AT, increases when Dr is reduced. When Dr is near 0.7 for Ar = 1, the flow is
almost viscous-dominated (Fig. 13), which makes it very difficult for the flow to become
oscillatory. On the other hand, according to the above oscillation mechanism, it is important
that the two cells interact during oscillations (especially the squeezing of one cell by the
other) but the interaction becomes more difficult as the neck widens. As discussed earlier,
the inertia forces are not very large compared to the viscous forces, so that one cell cannot
squeeze the other very much unless Dr is sufficiently small. Moreover, as the free surface
becomes more flat, the driving force in the hot corner activates the cell more toward the cold
wall, less toward the center plane. For those two reasons the two cells interact much less
when Dr is near unity, which explains why the oscillations disappear suddenly beyond Dr =
0.92 in Fig. 16. By examining not become oscillatory because the two cells do not interact
strongly across the center the flow pattern variation with time after the initial disturbance for
Dr = 0.95, it is clear that the flow does plane.

As seen in Fig. 20, it is important to have a strong flow interaction across the center plane
for the present two oscillation mechanisms to work. That requirement limits the applicable
ranges of Ar and Dr. For example, Ar must be larger than about 0.5 for nearly flat free
surfaces. Within those ranges, the predicted oscillatory flow patterns appear to agree, at least
qualitatively, with the experimentally observed flows in cylindrical bridges. No oscillations
were found in the present analysis when the free surfaces are nearly flat. In that case it may
be necessary to perform three-dimensional simulations to obtain oscillations. However, we
have investigated the oscillation phenomenon in cylindrical bridges with nearly flat free
surfaces for many years (e.g. Kamotani and Ostrach [1]) and showed that the onset of
oscillations for high Pr fluid cannot be specified by Ma alone for a given Ar and Pr.
Dimensional analysis tells us then that we cannot simulate the oscillation phenomenon
accurately unless one..includes .an additional feature. = We have shown that available
experimental information on the oscillation phenomenon for high Pr fluids can be made
consistent by including dynamic free surface deformation [2,3]. In any case, the oscillation
mechanisms discussed herein are for concave free surface shapes and the present analysis
seems to offer an explanation for the shape effect observed in concave cylindrical bridges.

5!

4. EXPERIMENTS WITH HIGH PRANDTL NUMBER FLUIDS

b

4.1,  Experimental Work on Flow Time Constant

One advantage of microgravity is that one can use larger liquid bridges than in normal
This is important because it enables us to cover a much wider Ma range, which
p clarify the oscillation mechanism. One technical problem of using a large liquid
bridge is that it takes a long time to obtain steady flow after a change in the imposed
temperature difference. Since our analysis and modeling of the oscillation mechanism will be
limited to steady basic flow, it is important to have steady flow in microgravity. It is known
that if we use the Marangoni number to specify the onset of oscillations, the difference
between the critical Marangoni number determined in normal gravity tests with small liquid
bridges and that determined in microgravity tests with large liquid bridges is as large as one
order of magnitude [8]. Then, an important question arises: is it possible to explain that much
difference by the fact that the flow is not actually steady in large liquid bridges used in

microgravity? For that reason we investigate some time constants associated with the
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thermocapillary flow in a liquid bridge and their relation to the time for the oscillations to
appear.

For this experiment we use the test apparatus used in the Surface Tension Driven
Convection Experiment (STDCE). The test chamber is a circular dish with a cylindrical
heater placed along the centerline, as shown in Fig. 21. The fluid is 2 ¢St silicone oil. The
test chamber diameter is 1.2 cm. From a comparison of onset conditions of oscillations in
microgravity and those in normal gravity, we know that buoyancy does not have appreciable
effect in the case of the 1.2 cm chamber [3]. Although buoyancy is nearly negligible, the
chamber is not very small compared to liquid bridges in normal gravity, which makes it
easier to measure some flow time constants. Another important reason we use this apparatus
in the present work, instead of our half-zone apparatus, is that it is designed to heat up the
heater very quickly so that, when we investigate the fluid temperature variation after a change
in the heater input, we can neglect the heater warm up time. In contrast, for our liquid bridge
apparatus the warm-up time of heater element is usually longer than that of the fluid.
Numerical analysis is also performed to supplement the experiment.

\/

HEATER
FLUID ﬁ/ COOLE
Q

Fig. 21 Test chamber for STDCE experiment

In order to check the accuracy of the numerical simulation, we compare the predicted
fluid temperature variation with the measured temperature variation after a step change in the
heater power input. The fluid temperature is measured by thermistor probe which is located
at /R = 0.5 but whose height is variable. In Fig. 22 we compare them at two points and
good agreement is shown. The numerical simulation assumes zero warm-up time for the
heater. The fact that it predicts the fluid temperature variation well suggests that the heater
warm-up time is indeed small.
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Fig. 22 Comparison of computed and measured fluid temperature variation with time after a
step change in heater input

For high Pr fluids, the thermal diffusion time is longer than the viscous diffusion time.
Therefore, we have to consider the thermal diffusion time when we estimate the time for the

flow to become steady. The thermal diffusion time based on the container radius, R¥Yo, is a
measure of the diffusion time across the container when the heat transfer through the fluid is
mainly conduction. However, when the Marangoni number {M&} is much larger than unity,
as in the oscillatory thermocapillary flow, convection of heat by fluid flow is very important
and Qpreaés the heat @uigkéy over the whole flow field, so the fluid heats up relatively quickly.

e e CRraTEvy_1tey 1 in o 1
In Fig. 23 we compare the warm-up time in the conduction-dominant case with that due to

convection, based on the numerical simulation for the 1.2 cm chamber. Under steady
condition the total heat flux from the heater is balanced by the total heat removed at the cold
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Fig. 23 Computed variation of heat flux ratio after a step change in heater heat flux
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wall, so the ratio of those fluxes is used as a measure of flow steadiness in Fig. 23. The
overall diffusion time (R¥/¢) is estimated to be 495 seconds. In the case of conduction heat
transfer the warm-up time (~ 400 s) is comparable with that estimate. With convection, the
warm-up time is reduced to about 200 s. The difference becomes larger when a larger system
is used in microgravity as Ma increases. Since the diffusion time increases with the square
of the fluid dimension, it becomes large quickly with increasing size. For example, it is about
3.5 hours when the dimension is 3 c¢m for 2 ¢St fluid, but it dose not take such a long time for
the flow field to become steady.

After knowing the time constants of the basic flow, it is interesting to check how long it
will take before we observe oscillations if we step-change the heater input from zero to a
certain value and to compare the waiting period with the time constants. In reality we do not
change the heat flux so abruptly when we want to identify the onset of oscillations accurately,
but the test gives us information about the worst case. The result is summarized in Table 3.

1

Table 3 Effect of step change in heater input on time to observe onset of oscillations

Queater (W)* AT time to oscillations {s) | oscillation pattern®*
0.95 253 no cscillations
1.00 26.3 273 P&R
1.05 27.9 201 P&R
1.10 28.7 133 P
1.15 29.8 113 P&R
1.20 31.0 93 P&R

(* Qneater,critical = 0.97 W, **P = pulsating pattern, R = rotating pattern)

A few conclusions can be drawn. First, if the abrupt change is to a heat flux below the

critical heat flux, no oscillations will appear, in other words, the abrupt change will not cause

the flow to become oscillatory. Therefore, we can heat up the fluid quickly to a state 3
: t
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in our microgravity te as a pulsating pattern near the onset of oscillations an c%aﬂg\,ﬁ
to a rotating pattern at sng’nﬁy higher AT. In the present test we observe a combma‘czon of
pulsating and rotating pattern. Based on the information from this worst case study, one can
infer the following. If, in a test, we increase the heater temperature gradually from the initial
uniform temperature state and eventually observe the onset of oscillations after the time that
is about the time constant of convection (~ 200 s), the error in determining the critical
temperature difference will be only about 10 %. The error will become smaller if we heat
more slowly so that it takes longer time to observe the onset of oscillations, but the
improvement may not be significant knowing the experimental error and repeatability in the
measurement. So the convection time gives us a good measure as to how fast we can heat up
the fluid. On the other hand, if we want to study a succession of oscillation patterns in the
post critical regime, we need to be more careful about the heating rate. According to Table 3,
the waiting time becomes very large as we get close to the critical point. Therefore, we
investigate near the critical point in details next.
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For this test chamber we know that the heat input to the heater corresponding to the
critical temperature difference is Q = 0.97 W, when we keep Tc at 25 °C. We first heat the
fluid at Qo = 0.96 W and obtain steady flow. Then we increase Q to a value above the critical
value and measure the time it takes to observe the onset of oscillations. We repeat the test for
various Q, always starting from Qo. The result is shown in Fig. 24. As seen in the figure, the
time to observe oscillations is rather large very near the critical temperature difference, about
25 minutes. The time is much larger than the aforementioned time scales. During that time
the temperatures of heater, cold wall and air are all measured to be steady. The result tells us
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la owing process at t above the
point. We are mvssﬁgaﬁmg this long waiting period further. [t turns out that this long
waiting period very near the onset of oscillations is a strong function of Tc. We are
investigating whether any external disturbances can change this waiting period. In pmcﬁce

we may not wait that Esﬁg near § = G 97 W (unless we know a priori that the oscillations will

tlem ~wmitianl

appear @Vbﬂ{i};@iiy as in the present wor K}s so we do not measure the critica: temperature
difference b@%’@wy But with increasing Q, the waiting time goes down exponentially.
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Therefore, if we are carefully investigating the onset conditions the critical state, the

heat rate does not cause much error.

One main conclusion from this study is that we cannot explain the aforementioned one
order of magnitude difference in the critical Ma by the fluid heating up rate alone.
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