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ABSTRACT A set of numerical simulations was conducted to understand characteristics
of oscillatory Marangoni convection in half-zone liguid bridges with various aspect ratios
(from 1 to 1.8) and Prandtl numbers (from 0 to 0.02) by a finite difference method. The
simulation resulis indicated that under smaller temperature differences the flow in the liquid
bridge is axisymmetric but it becomes unstable against a three dimensional disturbance
beyond a certain threshold value of temperature difference. The flow becomes steady three
dimensional. This steady flow becomes unstable against time dependent three dimensional
éis‘im’baﬂcgs beyond a second critical condition. T}iﬁe numerical simulations revealed the

ritical conditions and flow structures. The first critical conditions showed good agreements

with those of linear s‘g"%ﬁii‘y analyses. The second critical conditions also agreed with
previous values and gave new critical values for different conditions.
Keywords: Marangoni flow, Oscillatory flow, Critical Marangoni number, Low Pr fluid

INTRODUCTION

In a half-zone liquid bridge of radius ¢ and length L, a fransition from an
axisymmetric o a three-dimensional (3-D) Marangoni flow takes place when the temperature
difference between two sclid disks exceeds a certain ﬁﬁ‘?isaj value. In the 1998 Annual

R@@ﬂ'ﬁ of NASDA Marangoni Convection M@@@;iﬁg ‘ﬁ% arch, we ‘é‘@ﬂ@ﬁsé numerical
simulations on 3-D oscillatory wﬁaﬁaﬂgmu convection in Pr=1.02 fluid and some preliminary
results for Pr=0.01 and 0.02. The asﬁ%iv numerical s LQ;‘E_! 5351 Rupp et al.ft] QHQGQQ?E’fE ‘ﬁ’m‘%

liguid bridge of low Prandtl number ﬁw@ experiences a first transition
a 3-D steady flow and then at larger temperature difference the second
start oscillatory flow. Later, linear stability analyses[2-4] *@mvaﬁ @

from axisymmet
bifurcation occurs %@
AS with the critical

Marangoni numbers as function of the Prandtl number, the aspect ra s=1/a) and the Biot
number. Linear stability anal W@g indicated that 3-D Marangoni ﬂ@w is &iwfvg oscillatory in
liquid bridges of high Pr fluids. This has been confirmed by numerical sim __,‘i ﬁg ns of Rupp
et al,[1] and others[5,6,7,8,9]. E‘ low Pr fluids (Pr<0.1), however, linear stability analysis
predicts Ma, for the first bifurcation to a steady 3-D flow. The first bifu z’“”‘igm in a Hguid
bridge of 45=1.0, Pr=0 and Pr=0.01 was numerically confirmed by Levenstam et al.[5]. They

also obtained a second critical Marangoni number above which the three dimensional
oscillatory flow starts but did not show the effects of aspect ratio on flow mode. Later,
Leypoldt et al.[6] conducted 3-D numerical simulation for 4s=1.0, Pr=0 and 0.02. These
simulations predicted a 3-D flow patiern with a two-fold symmetry in azimuthal direction, in
other word, m=2. The present authors also conducted several numerical simulations for
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bridges of 4s=0.75-1.6 of Pr=1.02 fluid[7] and 4s=1.0, 1.2 and 1.8 for Pr=0.01 and 0.02
fluids [8,9]. In our previous paper [9], we reported some strange behavior of 3-D oscillations
in a liquid bridge of 4s=1.2 for Pr=0.02. In this paper, we slightly extended the range of 4s
and Pr to obtain better understandings of the oscillatory Marangoni flow in half-zone of low
Pr fluids. These analyses will help planning and designing apparatus for the space
experiments on oscillatory Marangoni flow in half-zone liquid bridge on board the
International Space Station.

DEL FORMULATIONS

A standard model of half-zone liquid bridge as shown in Fig. 1 is adopted [7]. The
liquid surface is assumed adiabatic, non-deformable and cylindrical. This shape is true under
microgravity condition. There acts the Marangoni effect on the liquid surface. Fundamental
equations are as follows. '

V.-U=0 )
ou/e t+ U V)U=-YP+Y2U )
Pr(d ©/9 ¢ +(U-V)8)=V?0 (3)

Initial conditions: U=0, 6=-0.5 T £0

Boundary conditions:

on both end plates (Z=0 and 4s):

UR, 0,00=UR, 0,As=0, OR, 0,0=+05, B[R, 0, As)=-0.5
at the surface (R=1):

d0/3R=0, 3Uz/dR=-Red®/37Z,

R?3 (U,/RY3R=-Red®/0 8, Ur=0.

These equations are equivalent to those reported last year. But slightly different
definitions of non-dimensional variables are adopted as follows in order to enable simulations
on Pr=0 fluid. The dimensionless parameters are the Prandtl number, the Reynolds and the
Marangoni numbers defined as Pr=v/q, Re=ctdlo/uv and - Mo=crAlu/pio=RePr,
respectively. The non-dimensional variables are defined as; {R, Z}= {r/g, z/a}, P = pgz/{v;i}s
U=wualv 0= (T-Ty)/ AT, sz/azs where Ty, = (Tyt+To)/2, oo =Ac, p , u: velocity, p: pressure,

al conductivity, ¢ viscosity and v: kinematic viscosity.
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adiabatic
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Fig.1 Model of a half-zone liquid bridge.
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Fig.4 Snap-shots of 3-D steady flow in bridges of As=0.6-2.0.

—161—

This document is provided by JAXA.



3. NUMERICAL METHOD

These equations are discretized by a finite difference method with a modified central
difference treatment for the convective terms [10] and non-uniform staggered grids.
Non-uniform grids were adopted to increase the resolution. The radial velocities on the
central axis were calculated by means of the method of Ozoe et al. [11]. The HSMAC
scheme was used to proceed time evolution of velocity and pressure. For the sake of reducing
computation time, the energy equation was solved by an implicit method. By this
modification, computation speed was increased by a factor of 3 to 10. This method becomes
more effective for smaller Pr cases. Time step 67 was chosen between 1x10” and 1x10™,
However, the critical Reynolds numbers were searched by means of fully explicit method
with time step 07 between 1x10° and 5x10°%. In this work, we gave 3-D disturbances by
imposing very small random value (average value=0, standard deviation of 108) on velocities
on every grid points, as embryos of disturbance. These numerical disturbances incubate 3-D
disturbances automatically and they start growth with time. A two dimensional (2D)
simulation code with the same scheme and 2D grids was run in order to obtain a 2D solution
under the same conditions. If we adopt thermophysical properties of molten silicon, such as
v=2.5x10" [m%/s], non-dimensional time span A7=1 corresponds approximately io 100
seconds for a liquid bridge of 5.0mm in radius. The program was run on an MPU of the
Fujitsu VPP700 at the Computer Center of Kyushu University or Compaq XP-1000. The
validity of the numerical code has been reported for Pr=1.02 fluid [7] and also for Pr=0.01
fluid®® by comparing the first critical Reynolds numbers (Re.;) with those of linear stability
analyses[3,4], and also comparing the second critical Reynolds numbers (Recz) with available
results [5,6,12]. By our code, we determined both the first and the second critical Reynolds
numbers within few percent of error from the reported values.

4. RESULTS
4,1 Results with Pr=0

4.1.1 Steady 3-D flow and Rey

As for a limit of the small Pr number cases, a set of simulations was conducted by
setting Pr=0. In this case, the Marangoni flow is induced by a linear axial temperature
distribution but the temperature field would be never disturbed by any change of flow pattern.
Transient numerical simulations with a small value of Re (Re>Re.;) shows an exponential
growth of 3-D disturbance with time with a growth rate constant 5 as shown in Fig.2. Mode
of the 3-D Marangoni flow is characterized by the azimuthal wave number, m. Then, the

gravrth nrocees of dist nee wnnlad ke d age
growth process of disturbance would be expressed as:

X() = X(O)sin(m)exp(f7)

Origin of the 3D flow in half-zone of Pr=0 fluid was explained as a shear instability
caused by the large amount of return flow. Under very small Re, the cold return flow goes
back along the axis as a coaxial plume. As increasing Re, the flow rate increases and large
amount of returning liquid meets at the axis near the cold plate. Shear instability occurs at a
certain flow rate and the return flow is deformed oblate and cold fluid flows back obliquely
and a 3-D flow pattern is formed [12].

Snap-shots of growing small disturbances at very early stage are shown in Fig.3.Ina
short bridge (4s=0.6), growing disturbance is characterized as m=3 and this disturbance
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continues its growth. In bridges of 45=0.8-1.4, disturbance with m=2 is incubated and
increases its amplitude until its steady state. In longer bridges, 4s=1.6 - 2.0, the very initial
disturbances are mostly characterized as m=1 as shown in Fig.3. But in bridge of As=1.6
soon a disturbance with m=2 takes places and starts growing. In bridges of 45=1.8 and 2.0 ,
the initial disturbance with m=1 survives until it grows up to a detectable 3-D steady flow.
But in cases of 45=1.8 and As=2.0 with Re.,>Re>2500, a mode shift occurs and the finally
observable flow pattern is characterized by m=2, as shown in Fig.2 and Fig.4. Only in case of
As=2.0 with 2000 > Re >Re.; , a 3D disturbance with m=1 continues its growth. In these cases,
we can determine the growth rate constant f value from slope of the semi-logarithmic plot of
Usmax vs. T. By plotting 8 vs. Re as shown in Fig.5, we can determine the first critical
Reynolds number which is defined as the Re value at which B crosses zero. Thus determined
first critical Reynolds number, Re;, are summarized in Fig.6, as a function of aspect ratio,
As.

In liquid bridges of Pr=0 fluid, the 3-D steady flow pattern of m=2 is dominant over
wide range of As (45=0.8-2.0) except for the 3-D steady flow with m=3 at 45=0.6. However,
it should be noted that the most dangerous mode for 4s=1.8 and 2.0 is m=1.

Thus determined Re.; fall below those for finite Prandtl number fluids (Pr=0.01 and 0.02)
obtained by linear stability theory [3, 4].

[-1]

Uz

=]

Uy

|Ue,_. |[—]

100 02 04 06 08 1 1.2 1.4 1.6 1.8 2
Non-dimensional Time T [ -]

Fig.2 Time evolution of 3D Marangoni flow in a liquid bridge of Pr=0, As=2 and Re=2500.

—163—

This document is provided by JAXA.



60 As=0.6 (m=3)
+ As=0.8 (m=2)
® As=1 (m=2)
40 A As=1.2 (m=2)
— |0 As=1.4 (m=2)
I V As=1.6 (m=2)
— 20 As=1.8 (m=1)
o [O0] As=2.0 (m=1) |
760 g~ 3
G 4/"/ '/ /”XF:;
oV Toea| g tiond ol 3
| TR 1069 11146{1425 1958, . . 3618 . . . 13578 |, ]
1000 2000 3000 4000
Re [-]
Fig.5 The f vs. Re plot to determine Re;
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Lines : Re; for Pr=0.02 by liner stability theory by [3] and [4].

Fig.6 Summary of Re, for the first flow transition in liquid bridge of
low Prandtl number fluids ( Pr=0, 0.01 and 0.02) as a function of

aspect ratio, As.
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4.1.2 Oscillatory flow and second critical Reynolds number, Re

These steady 3-D flows become unstable against time-dependent 3-D disturbances
and start oscillation at and beyond the second critical Reynolds number. For example, in a
liquid bridge of As=1.4, the 3D steady flow becomes unstable and exhibits oscillations as
shown in Fig.7 at Re=5850. The oscillation at early stage (7=0.17-0.45) is characterized by
the time-dependent disturbance of m=1 imposed on the basic steady flow of m=2, as shown in
Fig.8-a. This type of oscillation is well known for short liquid bridge of low Pr fluids [5,6,8].
As time passes, this type of oscillation is taken over by a different type of oscillation at T >0.7.
The new type of oscillation is featured by the torsional-oscillating (twisting) action of the
longer axis of the oblique cold plume in azimuthal direction, as shown in Fig.8-b.

Transition of oscillation mode also occurs in long liquid bridge. Fig.9 shows an
example of such transition in a liquid bridge of 4s5=1.8 at Re=4000. In the early stage,
oscillation is classified as m=2 torsional oscillation, but Fig.10 shows that later an oscillating
disturbance of m=1 is superimposed on the torsional oscillatory flow of m=2, similar to that
in Fig.8-b. In much longer liquid bridges, such as 45=2.0, the dominant mode of oscillation is
the torsional oscillation. After long time, the flow cells starts drifting and the pattern get
somehow distorted.

Growth and decay of the oscillation amplitude of [Ug| at a point (R=0, Z=0.5As)
with time depends on Re value as shown in Fig.11. The growth rate constant f3 is determined
and plotted against Re. Then the second critical Reynolds number is determined from the
cross-over point. Thus determined values of Re.,, yet incomplete, are plotted in Fig.12 as a
function of As together with Re.;. It must be noted that Re., shows local maximum at 4s=1.2.
The physics behind this anomaly is yet to be investigated.

oo I

1070 0.1 02 03 04 05 06 07 08 09 1
Non-dimensional Time |-

Fig.7 Time evolution of a 3-D oscillatory Marangoni flow in a bridge of
Pr=0 fluid at As=1.4 and Re=5850.
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0.573

a) time-dependent m=1 disturbance imposed on a basic steady flow of m=2 mode
b) torsional oscillation mode.

Fig.8 Snapshots of contour line of axial and azimuthal velocity, velocity vectors on Z=0.7
plane over a half period of oscillation in a liquid bridge of Pr=0 fluid at 4s=1.4 and Re=5850.

e | [-1

at R=0, Z=1.746

1090 02 04 06 08 1 12 1.4 16 18 2 22
Non-dimensional Time |[-]

Fig.9 Time evolution of a 3-D oscillatory flow in a liquid bridge of
Pr=0 fluid with 4s=1.8 and Re=4000.
7=0-0.3 : m=1 non-oscillatory. 7=0.3 - 0.7: growing pulsating oscillatory flow of m=2.
7=0.7 - 1.2 : dominant pulsating m=2 oscillation and growth of a oscillatory m=1 disturbance.
t=1.5 - : oscillatory m=1 disturbance imposed on m=2.
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AUg=10
Z=0.9
Fig.10 Snapshots of contour line of axial and azimuthal velocity, velocity vectors on
Z=0.9 plane and velocity vectors in two vertical cut planes (a) and b) )
over a half period oscillation : Pr=0, As=1.8 and Re=4000.
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Fig. 11 Growth and decay of the oscillation amplitudes at different Re values (left) and plots
of the growth rate constant 8 and oscillatory frequency  as a function of Re.
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(1995)

-—= Pr=0.02 Re,, Chen et al.
(1998)

B Pr=0.02 Re Leypoldt et al.
(2000

® Pr=0.01 Re, Levenstam et al.

A Pr=0 Re, (1995)

B P=0.02 Reg

® 'r—0.01 Re,, This work

A Pr=0 Re,,

@ Pr=0.02 Re,

p Pr=0.01 Re¢,, This work
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Levenstam et al.

AP Re, (1995)
Leypoldt et al.
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8.5 1 1.5 .
As [-]

Fig.12 The first and second critical Reynolds numbers for Pr=0 fluid as a function of As,
in comparison with the first critical Reynolds numbers for finite Pr values.
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Fig. 13 Time evolution of 3-D oscillatory Marangoni flow
in a liquid bridge of Pr=0 fluid with 45=1.4,
a) periodic oscillation at Re=7600 and b) random oscillations at Re=10000.
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Fig.14 Snapshots of contour line of axial and azimuthal velocity, velocity vectors on
=077 ?ane and velocity vectors in two vertical cut ﬁgﬁﬁﬁg { ?§ mﬁé %ﬁ} éﬁféﬁg the

ty lan:
random oscillations in a liquid bridge of Pr=0 fluid with 4s=1.4 and Re=10000.
The effect of Re on the oscillation behavior is shown in Fig. 13 for a bridge of
As=1.4. By increasing Re, the oscillation period h@csm@s shorter. At Re=10000, local
velocities start kind of random oscillations and power spectra show broadened multi
frequency peaks. These are originated by the aperiodic gjection of eddies from the shear layer,
as shown in the snapshots of velocity vectors on the mid plane at Z=0.7: Fig.14

4.2.1 First transition and Re,

For Pr=0.01 fluid, the critical conditions for the first and the second transitions have
been reported for 45=1.0 &nd As 'E 2 i in previous papers [7,8,9]. In this paper, we added
simulation for As=1.4 and 1 Wit ut finite, value of Pr, a change in flow
pattern may give éaﬁueﬁcss on rature bution and may cause the Marangoni
effect in azimuthal direction. In ha}f zones with 4 i 0 1.8, the steady 3-D flow is classified
to m=2, as shown in Fig.15 for 4s=1.8. This suggests that the coupling between flow field
and temperature field is not so much significant in these conditions. The growth rate constant
B is used to determine the first critical Reynolds number, Reci. The results are plotted in Fig.5.
The present result at As=1.0 agrees well within 6% of error with that of Levenstam et al [5].
Present results of Re.q for Pr=0.01 fall slightly above the results for Pr=0.
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(a) (b) 4"y

AU,=10 Z=0.9 AU,=5

Pressure
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Average Nu
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0.4 525408121620 rdln R b

Non-dimensional Time t[ - ] =0T oS T Pans TA0 0= 2%
AP=500

Fig. 15 Simulation results of 3D steady Marangoni flow in a liquid bridge of Pr=0.01, 4s=1.8,
Ma=20, Re=2000 and Bi=0

(a) Time evolution of steady flow.

(b) 3D view of isothermal and iso-presure surfaces, trajectories of tracers.

(c) ,(d), (e) Distributions of temperature , pressure and velocity.
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4.2.2 Second transition and Re.,

Beyond a certain threshold value of Re, the steady 3-D flow with m=2 becomes
unstable and starts oscillation. The second critical Reynolds numbers are plotted in Fig. 16
together with the Re;; and Rec; of other Pr fluids. 3-D oscillatory flow in shorter liquid
bridges i.e., 45=1.0-1.2, is similar to that shown in Fig.8-a, as reported in the previous papers
[5.6,8,9]. In the medium range of aspect ratio, such as 4s=1.4, the oscillatory mode is
featured by the torsional oscillatory action of axis of the oblique cold plume as shown in
Fig.17-b. The oscillation mode is similar to that shown in Fig.8-b. The torsional oscillatory
motion becomes dominant even in shorter liquid bridges if Re is far beyond the second
critical Reynolds number. In much longer liquid bridge, however, we observed an evolution
of an unusual oscillation mode as shown in Fig.18 at 45=1.8 and Re=4000. The oscillation
has two characteristic frequencies. One shorter period corresponds to the torsional oscillation
of m=2 flow as shown in Fig. 18-b similar to that of Fig.8-b and Fig.17-b. The longer period
corresponds to an alternative, but incomplete, transition of basic flow mode between m=2 and
m=1, as shown in Fig.18-c.

@ Pr=0.02 Re,, Wanschura et al.

(1995)

=== Pr=0.02 Re; Chen et al.
(1998)

B Pr=0.02 Re. Leypoldt et al.
(2000)

® Pr=0.01 Re. Levenstam et al.

A Pr=0 Re, (1995)

B Pr=0.02 Re,

® .Pr=0.01 Re., This work

A Pr=0 Re,,

W Pr=0.02 Re,

P Pr-0.01 Re,., This work

A Pr=0  Re,

(B Pr=0.02 Re.; Leypoldt et al.

® pr=0.01 Re.; Levenstam et al.
A Pr=0 Reg

Lines : Re. for Pr=0.02 by linear stability theory by [3] and [4]

Fig. 16 Summary of Re; and Re,; for the first and second flow transitions in liquid bridge
of low Pr fluids (Pr=0, 0.01 and 0.02) as a function of aspect ratio, As.
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a) Time evolution of oscillatory flow
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b) Snap-shots of temperature,axial,azimuthal
velocity and vectors on Z=0.7 plane.
(At 1=0.4995, goes back to =0.4769)
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Fig. 17 Oscillatory Marangoni flow in liquid bridge of Pr=0.01 fluid
with As=1.4 at Re=6500.
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Fig. 18 3-D oscillation in a liquid bridge of Pr=0.01, As=1.8, Ma=40, Re=4000 and Bi=0.

—173=

This document is provided by JAXA.



4.3 Results with Pr=0.02

4.3.1 First transition and Rey

With this Prandtl number, the coupling between the flow and temperature fields may
become slightly significant. However, the major cause of the 3-D flow still is the shear
instability. In shorter liquid bridges (4s=1.0-1.6), the steady 3D flow is featured by m=2. A
3-D steady flow with m=1 was first observed in longer liquid bridge (4s=1 .8 or larger) caused
by the coupling between the shear instability and the Marangoni effect working in azimuthal
direction. Time evolution and structure of m=1 disturbance in a bridge of 4s=1.8 is shown in
Fig.19.

The first critical Reynolds numbers are determined and are shown in Fig.5.

4.3.2 Second transition and Reo

At larger Reynolds numbers, there also occurs oscillatory flow. The second critical
Reynolds numbers are determined and plotted in Fig.5. The oscillatory flows in 4s=1.0 and
1.4 are quite similar to those of Pr=0.01 in 4s=1.0 and 1.4. In a liquid bridge of slightly
longer than unity, i.e., 45=1.2, however, a quite different type of oscillation (rotating type)
~ occurs as shown in Fig.20. In this case, two flow cells among the four of the m=2 flow
structure, cf. the four equal sized flow units in Fig.15, become slightly larger than the other
two (see Fig.21) and the whole flow and temperature fields starts azimuthal rotation with
very small angular velocity. This rotating oscillation is quite different from the rotational
oscillation caused by the hydrothermal wave type instability in Pr=1 fluid [8,12]. By
increasing Re, the angular velocity increases and the period of oscillation becomes shorter
and the oscillation amplitudes increase. In these cases, it is very difficult to determine the
second critical Reynolds number at which oscillatory flow starts, because the period becomes
very long and amplitudes become very small near the second critical Reynolds number.

For As=1.8, the steady 3-D flow with m=1 starts oscillation beyond the second
critical Reynolds number as shown in Fig.22. In this oscillation, temperature and velocity on
the mid plane (Z=0.9) changes with time as shown in Fig.23.

5. DISCUSSIONS

5.1 First critical Reynolds number
Fig.11 summarizes Re.| as a function of As for all Pr values. The thin lines indicate
the results of linear stability analyses for Pr=0.02 [3,4]. The number near the key indicates

£

the value of m i.e., the azimuthal wave number of the 3-D steady flow.

The present results of Rey; show good coincidence with the linear stability within
6%, for Pr=0.01 and 0.02. Most of the results for Pr=0 are new but the result at 4s=1.0 is
very close to the Re,; predicted by linear stability analysis and previous numerical result.
Present results with Pr=0 fall below those of linear stability analyses for Pr=0.02 in a range

of As between 0.6 and 2.0. In all region, Re, increases with increasing Pr.
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The present resu
maximum value at any Pr regardiess the mode of oscillation. The physical background of this
anomaly is yet to be investigated. At Pr=0.02 and As=1.2, Re,, seems to be very much
increased. However, there is no reliable method to determine the Rer for the peculiar
oscillatory flow encountered in case of Pr=0.02, As=1.2. For Re.; and Re.,, complete map 18
required to understand the features of oscillatory Marangoni convection in liquid bridge of
low Prandtl number fluids.
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b) 3D view of isothermal surfaces, trajectories of trace. Distributions of temperature and
velocity.

Fig. 19 Time evolution and structures of 3D steady Marangoni flow in Pr=0.02 fluids with
As=1.8, Ma=50, Re=2500 and Bi=0.
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Fig.20 Time evolution of a slowly rotating oscillatory Marangoni flow in a liquid bridge of
Pr=0.02 fluid with 45=1.2, Ma=500, Re=25000 and Bi=0

T=

Fig. 21 Snap shots of temperature, axial and azimuthal velocity contours and velocity vectors
at Z=0.6 over a half period of the rotating oscillation: conditions: see Fig. 20.
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Fig.22 Time evolution of oscillatory Marangoni flow in a liquid bridge of Pr=0.02 fluid with
As=1.8, Ma=80, Re=4000 and Bi=0.

A) R B)

AG=0.02 AUy=10
Z=0.9
Fig. 23 Snap shots of temperature, azimuthal velocity contours and velocity vectors at Z=0.9
and velocity vectors in two vertical planes: conditions : see Fig. 22.
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6. CONCLUSION

A set of 3-D numerical simulations was conducted to investigate the behavior of the
Marangoni flow in half-zone liquid bridges of low Prandtl number fluids, including the limit
of Pr=0, 0.01 and 0.02. The results indicated that the Marangoni flow is steady and
axisymmetric, if Re is smaller than the first critical value, Rec;. From the numerical results,
we determined Rec; as a function of aspect ratio and Prandtl number as shown in Fig.12.
Structures of the steady 3-D flow and temperature distributions are visualized. In a shorter
liguid bridges (4s=0.6), m=3 mode appears. By increasing 4s value, m decreases to 2
(As=1-1.6) and 1 (As>1.8 for Pr=0.02 and As>2 for Pr=0 and 0.01). The steady 3-D flow
becomes unstable against time-dependent 3-D disturbances and starts oscillations beyond the
second critical Reynolds number, Rep. The modes of oscillation are quite different from
those of high Pr fluids. In high Pr fluid cases, the principal feature is either standing or
traveling hydro-thermal wave. In low Pr fluid cases, the steady 3-D flow structure is
preserved and oscillation is mainly caused by imposing a time-dependent 3-D disturbance. In
these low Pr liquid bridges, the Marangoni effect in azimuthal direction takes little (or no)
role. But the coupling between temperature and velocity fields brings up some curious
oscillation behavior. At some range of As, the second critical Reynolds number indicates
maximum at all Pr values (Pr=0-0.02). The detail of physics must be further investigated.
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