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Consideration of Free Surface Displacement (Part 3)
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Abstract

One of the purposes of the space environment utilization such as a space station is the
process of a new material. Uniform or high-quality material can be formed on the ground owing
to the natural convection by the buoyancy effect and sedimentation by the density difference.
On the other hand, the buoyancy effect can be reduced in the space environment. Thus a high-
quality material processing is expected to be enabled.

Floating Zone Method is one of the likely candidates of the material processing methods
under the micro-gravity. In this method the both ends of the material rod are cooled down, and
the center is heated to melt. Molien liquid sustained between the rods is called liquid bridge.
This melt zone is slowly moved vertically and thus a uniform single crystal is produced. The
material in the liquid phase is sustained by the surface tension. Generally the surface tension of
a liguid decreases with increasing temperature. Because a temperature variation exists along the
free surface, the difference of the surface tension is originated from the temperature difference.
Thus a flow occurs in a liquid bridge even under the micro-gravity. This flow is called as
thermocapillary or Marangoni convection. Though this convection can occur also on the ground,
it is usually hidden in the action of the bucyancy. And this phenomenon is hardly recognized
in our usual observation. On the other hand, thermocapillary convection becomes dominant
under the micro-gravity because the influence of the buoyancy is strongly reduced. Therefore,
the analysis of the thermocapillary convection is primary important for the material formation
under the micro-gravity. The configuration of the floating zone method is called as Full Zone
Model. For the sake of simplicity, Half Zone Model is preferred in the fundamental research on
the ground. Half zone model is the part of the liquid bridge in the full zone model. In this study,
the upper disk is heated up and the other one is cooled down.

From existing re gg,ar@hes thermocapillary convection exhibits the oscillatory flow under a

ertain condition. And the free surface vibration is observed with the oscillatory flow in the
terrestrial experiments. An influence of surface vibration upon the flow field nstability must
be evaluated to understand the mechanism of the oscillatory flow. However existing numerical
simulation are performed without considering the free surface movement.

Consequently the purpose of this research is to analyze the three dimensional thermocapil-
lary ¢ orwscﬁsﬁ n&m@nsaﬁy with consideration of the free surface movement. The numerical

apills wection was performed by the finite difference method using
boundary ﬁﬁ@d ssorémaé@ The fz’e@ surface deformation was considered in this calculation. As
the results, the free surface deformation is obtained from the beginning of the thermocapillary
convection to the steady one. The cases of different Marangoni number are calculated and its

influence on the thermocapillary convection are analyzed.

ana
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1 INTRODUCTION

One of the purposes of the space environment utilization such as a space station is the
production of a new material. Uniform or high-quality material can rather hardly be formed
on the ground owing to the natural convection by the buoyancy effect and sedimentation by the
density difference. On the other hand, the buoyancy effect can be reduced and thus, a high-
quality material processing is expected to be enabled in the space environment.

Floating Zone Method is one of the likely candidates of the material processing methods
under the micro-gravity. In this method the both ends of the material rod are cooled down,
and the center is heated to be melt. Molten liquid sustained between the rods is called a liquid
bridge. This melt zone is slowly moved vertically and thus a uniform single crystal is produced.
The material in the liquid phase is sustained by the surface tension. Generally the surface
tension of a liquid decreases with increasing temperature. Because a temperature gradient exists
along the free surface, the difference of the surface tension is originated by the temperature
difference. Thus a flow occurs in a liquid bridge even under the micro-gravity. This flow is
called as thermocapillary or Marangoni convection. Though this convection can occur also on
the ground, it is usually hidden by the buoyancy. Thus this phenomenon is hardly recognized in
our usual observation. On the other hand, thermocapillary convection becomes dominant under
the micro-gravity because the influence of the buoyancy is strongly reduced. Therefore, the
analysis of the thermocapillary convection is of primary importance for the material formation
under the micro-gravity. The configuration of the floating zone method is called as Full Zone
Model. The upper half of the full zone model is deeply influenced by the buoyancy on the
ground so that the thermocapillary effect can scarcely be recognized. @n the other hand, the
lower half is less affected by buoyancy. Because upper temperature is higher than the lower
one. As the results the thermocapillary effect dominates the convection in the lower half of the
full zone model. Consequently Half Zone Model is preferred in the fundamental research on
the ground and is employed in this research as well. The half zone model corresponds to the
half part of the liquid bridge in the full zone model; the one side of the bridge is heated up and
the other is cooled down.

The experiments for the thermocapillary convention are widely conducted. KamotanilUstudi-
ed effect of zone rotation on oscillatory thermocapillary flow in simulated floating zones. Velten!?
observed the periodic instability of thermocapillary convection in cylindrical liquid bridges.

As for the numerical simulation Savino and Monti®®) simulated the oscillatory flow numeri-
cally and COH“Q&[@@ it with their experiments. Yasuhirol*l investigated the relations between the
wave number and aspect ratio or Marangoni number.

From these researches, it turned out that thermocapillary convection exhibits the oscillatory
flow under a certain condition.

It should be noted that the existing numerical simulations ware conducted without consid-
ering the free surface movement. On the other hand, the free surface vibration is cbserved with

the oscillatory flow in the terrestrial experiments. An influence of surface vibration upon the
stabilit ty must be evaluated to understand the mechanism of the oscillator Y fow.

I in
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Conseguently the purpose of this research is to analyze the three dimensional thermobapﬂ-
lary convection numerically with consideration of the free surface movement.
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diameter

gravity

height of the liquid bridge

unit matrix

Jacobian

surface-normal vector
normalizing dominator

pressurs

coordinates

position of the free surface

radius of the disk

main radii of curvature

stress tensor

time

temperature

reference temperature

velocities

velocity without considering the movement of the computational grid
temporally velocity

volume of the liguid bridge
contravariant velocities

temporally contravariant velocities
temperature difference between the disks
coefficient of viscosity

dvnamic viscositv
ynamic viscosit ),

kinematic viscosity

coordinates in the computational domain
density

surface tension

reference surface tension

thermal coefficient of surface tension
time in the computational domain
angle

Bond number

Capillary number

Grashof number

Marangoni number

Prandtl number

Reynolds number

—183—

This document is provided by JAXA.



3 NUMERICAL METHOD FOR THE THREE
DIMENSIONAL ANALYSIS

The goal of this study is to analyze the influence of the free surface deformation upon the
thermocapillary flow. Therefore, an analytical method is developed to capture the temporally
varing surface motion. In this analysis, B.F.C.(Boundary Fitted Coordinate) method is em-
ployed.

To consider a thermocapillary convection in a

Ty + AT liquid bridge, a configuration of the analysis is

17 defined in figure 1. The liquid bridge with vol-

w ume V' is bounded by two rigid parallel disks

: of equal radii » = Ry located at z = 0 and H.

: The temperature difference between these

Free surface disks is defined by AT'. The gravity is assumed
‘ in the direction of —2z.

m The governing equations are described in
Cold dis¥ 0 T é Ro cylindrical coordinate. As for the gravity, the
M Oberbeck-Boussinesq approximation is uti-

0

1z A i thhnas o PO
lized 1n these equations.

Hot Disk

0 . Oug 0
a T T =0 (1)
37‘( )+ 35 az(/'WUZ) i /
[Navier-Stokes equation]
(r-direction)
o, o N \ , 0 oP
y + ﬁ—T(TUTUT} + (}—ﬁwgvrj —uj + 5—2—(7“%2)7.) = —7‘—0,?
Pr 0 6 Ovu, o ,10v, d , Ov, v, 2 0vg
— =)t 555t r5) —— — -4+
Ma[ﬁr<r 07“) 09<r 0{7’> az(r oz) r r 08
(f-direction)
&Ua 0 / \ 0 / \ 3/ \ oP
7 6i - 87"‘\1 UpUg) T g\ugug} — UplUg + gs\: U, Vg = —@
Pr 0  Ouvg 0 10vg d , Ouvg 20v, Vs
(=) + (o) + )+ =5 — —
e Y T Trae )
(z-direction)
Ov 0 0 0 oP
r 8; + E(rvrvz) + %(Ug?)z) + g(mzvz) =%
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[Energy equation]

or 9o 0 0
ror T -é;(T?)rT) + ég(ng) + g(rva)

 Ma'dr' or g8 r 06 Jz Taz

The scales used for non-dimensionalization are as follows.

Table 1: Scales used for non-dimensionalization
Variable 71,2 t v = (v, Vg, ;) P T
Scale  H Huf/orAT orAT/u plorAT/u)* AT

The non-dimensional numbers are defined by

Re = vt
v
Pr = i
K
1
Mo = —o0,AT-H
LR
3
Gr = @gﬂi
v

)

&)

Egs. (1)-(3) can be transformed from the physical domain to the computational domain by

Jacobian matrix.

(5] (e G [#]
EAEENEAE:
E i(}&ega%l[a_ng
ngj LG& Cz 7"/'2_17507;,.
(&1 117 6, 27727
}%’i 0 re b z | ’
Fl=|, & F %y
L ac | |0 7¢O 2 || 5 |
l-a;fnj L()Tna,}znjl_é—l

Equation (5) is inversely transformed as follows,

~
-

[ A A Az Ay
1| Ay Ap Ay Ax
J | Ay Az Asz Axy

Ay Agp A Ay

SNININTS
FloRloleTlo
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Apy = (reczq + 1y + robezg — Tobcze — TcOezn — Telyzc)
Ay = —(r0c2y + 1¢Onzr + 190 2c — Tp0c2r — 1¢0r 2y — r-0p2¢)
Ars = (1,02 + 70,2, + T 2e — Tybezr — T60- 2y — T-0n2¢)
Ay = —(r:0c2¢ +1e0c2r + 1072 — 1(Oc 2 — Tebrzc — r-0c28)
Ay =0

Agy = (Oczy — Oyz¢)

Ags = —(O¢zn — bn2e)

Ags = (02:2C — O¢2¢)

Az =0

Aga = —(r¢zg — 792%)

Ass = (rezy — TnZ)

Asy = —(rezg — 1¢2)

A41 - 9
A42 = (7” ;@n - ’,‘”néc)

N
&
i

¢
—(r¢by — rabe)
Ags = (refc — ¢b)

Each component can be related from Egs. (4), (6) as:

J= 7’§§§Zn -+ T4§n25 -+ 7’779§ZC — rn§<z§ - 7‘(55277 — Té&an
1

£t = —-}(rﬁ(zn + 7‘(97]27— + ’l‘“ng—rZQ - Tnggzr - ngrzn - Trgnzi)
: 1
G = }(ﬂ—g&zﬁ + 7’597,27— + Tr]é}rzg - T'ngfz‘r - T§§TZ72 - rT@T)Zf)
1
n = ——j(rTéng + rebcze + 102 — 1Oezr — rebrzc — 16 2E)
1
f,» = "j(‘gﬁzﬁ - 372()
i
Cr = ”}(95377 — Oy 2¢)
1
e = —;(QSZC - §§Z§)
1
Eo = "}(TCzn - Trﬂ()
i
Cp = E(an ~ TnZe)
1
o = == (rez — re2e)
i
£ = ““,5(7”{37} ~ 70
o
1
¢, = —}(Tégn — Tbe)
1
n: = 5 (refg = 7¢be)

The continuity equation, the Navier-Stokes equation and the energy equation ( Egs. (1)-(3) ) are
yeq : 1 gy €q 1
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11

transformed by these rules.
[Continuity equation]

0 0
SEUT) + eIV +

Here, V¢, V¢, V,, are defined by

5 I
55(]7";/,7) =0

1

ifé - grvr + ;59'09 + gz'vz
1 .

% = CTUT =+ ;€9U9 =+ szz
1

Vo = nu + ~1ovo + 1,0, .

These velocities are called as contravariant velocities.
[Navier-Stokes equation]
5’1)@‘ ’/Y T

. e [ 2
é‘t+(vl V)-v VP+MV v2+esz

Equation (8) is expanded as

§vi _Ov;  Ou; N ov;
-%-ct 5e + G ac ma
+ 1 0 —(JrVev) + (Jer)
ag ST\ T by
opr
= (& a2 ac +77i,\—,_\ei
on/
. J Ov; 5] J Ov;
Pr 1 L il il
+E k| %(ma T+ UGG T + e rem )
0 ov; 3 (7 Ov; 0 ov; |
-+ 8C( C ér 65 ) + CTC’I‘ ) 5‘5(»77‘@7%—6;')
o0 & 6 5 8%‘ ) 0, 8“1
-+ %(Jrnr& 2; + _n(*”ﬂnrgrg) i g?;(d’rﬁrnr'afl)
) 8 71 2 Q i u&)z ) 5' , __,,:EL_)_ g’(‘ii\
+ @fék(f; Eolo—== §§ § T@Ce 6‘§ —5(0’; 87?96%?7)
: i/ E» ~ av’ﬂ\ ; _i! T}/‘ Pl 6/UZ\ | __8;_/ TE/’ - a,l}i\
+ (%kdr e§@6€)+6CUTSe 93C)+3er 6’/98?7}
9 ey + 2 e 2 + 2 (L, 2
+ 3n(drﬁeﬁa 3€) + ﬁn(jrﬁefe §<)+ 577(0 7679 &n)
6 @v; 5 @’U
N~ z z—b s 25z J ztiz
b e T + UG + e Gh)
o Jv; 5} 8 Jv;
+ —JTZZ”‘“Z' —'JTZZ Jzzrxl\
8 6'0@\ 6 §U’L 8 §/UZ
-+ ~ 26z " 711282 ST,
877(”75 o) ( 1:C C) ( 77?7&7)

¥
b Rl e end)
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where v; = (v, Vg, Us).
[Energy equation]

oT 1 _,
— 4 (v - V)T = —V71I 10
ot (v )T Ma (10)

Equation (10) is expanded as equation (11).

a & 5 Ct g OT
+ ji -(%(JHQT) i.(JT%T)+§;(JTVnT)
:“fv%?iﬁ![ “5% Tﬁrgraé:g)‘r;éw 57“57‘8?\ gg(ﬁ@m%)
b UGh % i(ﬁ%%’ij)j%(m%zﬁ)
+ ;(Jrnrér ﬂ€)+—(5mrcr C> %(irnrnr%%)
+ %(Jigﬁ&) 85) E( fe(eac) é;( %E&ﬂez—i)
+ —(%(Ji(géa —) + ;Z(Jiga@gg) i( ECM&%%)
. %u‘m@i?) ;(jinggg@g +_8_(J%7’197?9%%
+ 5%( IréL, @5)+8%'Jrgzcz 30+ 3;< ré:n: ;)
v e UGG 30 + é%urgznz‘—;%)
+ ikngzﬁfj+3<szcﬁi—.ﬁ>+ﬁ(§mznz£ﬂ an
o’ On 0 on on 'l

3.2 The coupling and time advancemen

In this analysis, fractional step method is utilized to computate these governing equations. Euler
method is adapted for time advancement.

Here, the time in the computational domain is defined as the same time in the physical domain
(r=1).

Equation (9) is described as

ov; B oP oP oP
'8_+ft fc“' <£2 @5 +Cz§€ +7738—n>€z+fva (12)

where f,, f. and f, are the coordinate movement, convection and viscosity terms, respectively.
In fractional step method, the velocity is solved by dividing into three steps as below.
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G = oAt {—f+ fu} (13)

R ~ 8P(n+1) 8P(n+1) ap(n—l—l)

U = U — At (fi B¢ + G B¢ + 7 an >6i
oY = g+ AL {—fi) (15)

14

Where © means temporally velocity, and superscript (n) indicates a time step. ¢; is a tempo-
rally velocity without considering the movement of the computational gird. Because the free
surface deforms, the computational grid must be restructured. Therefore, it is important that the
influence of the computational grid movement is considered. Equation (15) is utilized to take
account of the computational grid movement.

Equation (15) is considering in two dimensional coordinate for the simplicity.

Jacobian matrix in two dimension can be described as

HEBRIH
| 5 | 0 & n ]l 4] ‘
3
(5] [ =1 ,4
i%J: 0‘7"5 e o 17
L an [_ 0 2 J L 32 _E
Equation (17) is inversely transformed as follows,
8
( 522 ] 1 i_ (rezy — zemn)  (=Tr2n + 2:7y) (rr2e — rr2¢) ] f o _}
%ngj 0 Zy —7% | e | (18)
L 5 0 =Ty Te Izl
From Egs. (16) and (18), the relation of each components are given by
El J = reay — 2y
¢ &= =3 (19)
E\ éz = "T?’ M. = —j‘
Then eguation (15) becomes equation (20) and 1s further transformed to equation (21)
(n+1) _ - AZ{ 0v; 3’01} ~n
Y; i & o€ Uz n (Z20)
(nt+1) _ - [ 06 &;
v U; + At {E\ e re -+ 5 zt} @2n

Where v, is the velocity in the previous computational grid.

That is, if the computational grid moves %—;At, the velocity in the restructured grid is indicated
by equation (21) (See Figure. 2).

This approach can be adapted in the three dimension as well.
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Figure 2: The relation between the velocity and the computational grid

The pressure in the equation (14) is solved by the pressure poisson equation. The pressure
poisson equation is derived from the continuity equation and equation (14).
[Pressure poisson equation]

Ay
2p __ ¥ U -
VP = N (22>
Equation (22) is expanded as follows.
J 0 oP d gP
J ror Jr rSr \ Jr riir 5
5( e f) £< rérege) 35( & gy)
v Lree 28+ 20ne. By Sren )
" rCr JTCrlr 3 r\— rir )
ac B¢ ac’ T ac " oy
c P J opP 0 apr
Foo —) + = (o)
a gn(d'rn/fr &6) an(jrﬁrgr r\g) 877(J 'IV[‘ ’7 877}
. _5;_/ T}_y“f aP\ \ _?_/ T}_!‘/‘ 6‘?3\ | _a_/ }'}_c M,ép\
T &ngTCHCG"‘—% e ¢ kJTgeg()“Z )T (%\d Tg&!w an}
g, 1 oP 5 1 o, .1 oFP
+ 55 (I=Ceée Q,)-i” C@Ca + 57 (J=Como 3ﬂ)
US i Uy { 7]
g, .1 "P 3 1 g, .1 oP
—(J= hall ey el I gl hall
+ 677( n6€s 5 + ( ?75&3 )+ @n(vfrﬁene 3?7)
g 1%, opP
+——J’r22r Jr&, (. 4+ —(Jré&n,—
5 et gg) 5( £ C) Seren )
g Ir 0 7 g Jd 7 opP
+ :C«?( CE- né) C( TCzCz‘“n )+ 55( Tsz—ﬁn)
‘ ﬁ/j 6’P _{)_ T 8P 0 ”r ) 6_P\
170 3 -
_ ~ 23
3 35(51“1/5) aC(JrIQ) é377(07?"{/77) (23)

Where X%,VC and Vn are defined by

~ R 1 R
E/E = grvr =+ ;&)UG + foz
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V,, = U+ ;ﬂeve + MYz,

which are called as contravariant temporally velocities.

1
‘V( - CT’JT + ;CBUMH =+ Cz?;z

To solve the pressure variation implicitly, equation (23) is calculated by successive over relax-

ation method (SOR method) in this analysis.

3.3 Boundary condition

3.3.1 Boundary condition of the velocity

To derive the boundary condition of the velocity at the free surface, the balance between the

shearing stress and the surface tension must be considered.

The relation between the shearing stress and the surface tension is shown in figure 3.

0+%%ds

Figure 3: The stress balance between the shearing stress and the surface tension

From figure 3, the equations of the balance between shearing stress and the surface tension are

Acqrriked ag
LUSLIIULU 4D

[ Tasrdds = {(o+ % - ds) — o} - rdf
\ 7o rdds = {(0 + 1% - rdf) — o} -ds

T

Newton’s law of viscosity equation is expressed as follows.

{ o [0vs  Bun

Y LI ¥
5= L 0U L (Y

\ o =iz 5 +r5 ()}

From Egs. (24) and (25) equation (26) is derived.

Svs , Ounl _ Oo
{ Mot B =5
v +ra (=05
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If the velocity upon the free surface in the normal direction is assumed to be zero, equation (26)
can be shown as follows.

{ Bow = 5 @7
{55 + () = 15
Equation (27) can be non-dimensionalized as following equations.

Qgs_ _ T

In the equation of the relation between normal and tangential dlrections the iaﬁgemie& velocity
v, is divided into radius and axial directions (See figure. 4).

[ v, =w,co80 PN
. (29)
v, = Vs Sin g
s Us — Ur
S { R (30)
Vg = ==
sin @
( B, e ——8——( Yr_ )
\ /
= m o d (31
én ~ 6n singo
L = — COS
{ Ty (32)
= —sinp%;
$
Figure 4: The velocity at the free surface
Generally the following relations are derived in the normal and tangential directions.
[Normal derivatives]
9¢
IO j/—( ade — Boy) (33)
5@ 1
&m 7]\ \/—( ﬂgbf + 7¢7)) (3&>
[Tangential derivatives]
dp 1 RPN
95@ ~ Jal W)
.d?s\ = = — ¢ (36)
dstm /7T A

Here o =124 22, B=rery+ 22y, v =1f+ 2%,
Using equation (33), the equation of the stress balance between normal and tangential directions
is obtained.

a”z) _sinp—— or 37)

1 v,
T7/a% oy
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The axial velocity v, is derived from equation (37). And the radius velocity is derived from the
relation of following equation.

vy = 2P, (38)
sin @

On the other hand, the boundary condition of the circumferential velocity is defined by

10w, 0 vy 19T

r 86 T 87"(7') o8 (39)
Equation (39) is transformed to the computational domain by the Jacobian matrix as
0v, (% J ,vg 0 ,vg 3 ,vg
oz + @(% o R G R T PR et )
8T
- —Hage o5 ) (40)

3.3.2 Boundary condition of the temperature

The condition of the heat transfer over the free surface is assumed to be adiabatic. Therefore
the equation of the boundary condition of the temperature is
oT
=~ 41)
on

Equation (41) is transformed by the Jacobian matrix as

8T 8¢ AT 8¢ 3T dy

§§£+Fggﬁ+§n8nze , 42

To transform into the computational domain, equation (33) is utilized.

3.3.3 The treatment of the liquid center axis

In this analysis the governing equations are described in the cylindrical coordinate. Therefore
the center of the cylinder (r = 0) can not be solved directly by the present equations (Egs.(2)-
(3)). This problem is solved through by the method below. The computational grid is fixed at

J 2
89 (?}gvz) + é;(?“’l)z)
8P Pr |0, Ov, d ,10v, d  Ov, Gr

Il B Ol Ltz I
Oz Ma @T(T 8r)+89(7’ 8§)+§z(r 82) T Re? @4

@

—(rv,v,) + =
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Equation (44) is integrated in all directions.

v, A8 1 [ o102
ot T A ezo(vrvz) * Az { Z]O
8P Pr | A8 X ov,

- _§Z+M-& W&T;E;%) or |ar

—T (45)

_}_ av, Az Gr
Jz R 2

As for the radius and circumference velocity in the center, the velocity is summed over the sur-
rounding mesh points (See figure 5).

)} (46)

Ml\i

= Z {’UT cos &, + vgcos(fy, +
=0

2T

{vr sin @, + vgsin(f,, + = )} 47)

po |3

&
-
i M

Figure 5: The velocity at the center axis

After the summation, the velocities V,, V,, are divided into the radius and circumference com-
ponents (v,, vg).

s 1
{ cos by, + Vy ces(é— —91»)} o (48)
g 17 /ﬂ. ya) 1 /40,\
’Ug——l w(—sinb,,) + Vysin Kg—vve) — (4%)

Here nj shows the division number of the circumference direction. Such treatment at the center

axis is also applied to the energy equation.

[Energy equation of the liquid center]

oT 0 0 o 1 8, 8T 0 10T o, o7 ]

— - =—(r, )+ = (veT) + — (0, T) = —— | = (r=5-) + 55 (=55 50
rp o T) + gg ) + 5 e D) = e 5 ) + 55 (Cg) + 5; 05| OO0
Equation (50) is integrated in all directions

N 1 1 [ ae ZoaT 1 aT]A"E
— T+ —[v,T];" = e 51
ot * AV S g(y )+ Az [v=Tl, Ma im_\ﬂ" ;E;O orlar Az |0z, E D

Also the pressure Poisson equation has to be solved at the liquid center axis.
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OPy
v,

il From the figure 6 the continuity equation is de-
l fined as
W TAT? (v, — vgg) + —ATAZ Z vr; = 0.(52)
Ui p. & J=0
T ok T o
j Time advancement is described as follows.
e
T AN A e AP
I X
n . —iC
Tj - U’" AtAr+ AT]
OPS , where, Ar; is defined as Ar; = Ar.

Figure 6: The model of the in and outflows

The pressure Poisson equation is derived from Egs. (52) and (53).

2 4 1
SRR S Py +P P,
L{kz? + BATQJ < Az A+ Ps)+ nj 3AM2 Z I

PRSE
= _E(v” — Upg) — njAr EUT] Iy (54)

P

3.4 The free surface shape

To computate the free surface shape, the stress balance over the free surface must be considered.
Along the free surface between two immiscible fluids (1) and (2) the forces on adjacent surface
element of (1) and (2) must be the same.

If the surface is plane and the surface tension is constant, the stress balance over the free surface

leads

sV .n=8%.n (55)
where S is the stress tensor.
The each components in the stress tensor are described as
Sij = —P(gij + /\@5%7 -+ HEiy | (56)
where A and u are coefficient of viscosity and second coefficient of viscosity, respectively
In this analysis it is assumed that the fluid is Newtonian, so that
= divy =0 ' ‘ (57)

In addition, if the free surface has curvature and the surface tension varies along the interface,
the equation of the stress balance is described as [°!

SW.n+o(V-nn—(I—nn) - Vo=8%.n, (58)
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where I is the identity matrix, and n is the unit normal vector directed out of liquid (1) into the
ambient fluid (2).

The element o(V - n) in the second term is the Laplace pressure. The mean curvature of the
interface,

1 1

= — (59
R Ry (59)

V-n
can be expressed as the sum of the inverse principle radii of curvature R, and R,. The second
term in equation (58) indicates the surface force acting tangentially originated from the surface
tension . The operator I — nn represents the orthogonal projection of a vector onto the tangent
plane defined by n.

Besides the influence of the surface shape and the surface tension, the action of the gravity is

taken account into the equation of the stress balance,

SO . n+o(V-nn-E—mn) Vo+pVg(H - 2n=8.n+p®g(H-2zn (60)
Equation (60) is described in non-dimensional manner.
1 B
sM . n + <E& - T*) (V-m)n+ (1 - o) - VT* =& — Z2(H - 2)n 1)

The scales used for non-dimensionalization were indicated in table 1. In addition, the normal-
ized temperature 7* = (T — Tp) /AT has been introduced.
The surface tension is non-dimensionalized by using the normalized temperature,

G(T) - GQ(T@) - O’T(T - Tg)‘ (62)
o oo(To .
= -ab g (©3)
Oriai O"Tﬁ\g,i
. 1 .
= 0 = ~ T , (64)
Ca
where 0" = % and the capillary number is defined by
sl
o JTAI (65)
v = {05
oo(Tv)
From equation (64), the gradient of the surface tension is expressed by the normalized temper-
ature,
Vo' =-VT* (66)
Bo is called as Bond number which is defined by
/ (1\ (23 _¥¥2
pr P9
Bo = * ! (67)
Og
The asterisk is omitted hereafter. -
Equation (61) is expanded as follows.
Using the unit normal vector
1 10R OR
n=—le — ——=8 — —¢€ (68)
N\" RO oz °
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with the normalizing denominator

orR\? 1 [8R\?]’
H(&)Wﬁ?(%” , (69)

the surface curvature can be expressed as

-1 &R [,
Vﬁ*w[ azsz ( )}

OR 8}% (81% OR _p O*R )

N =

8z 80 \ 0z 08 0200
oR , 8R\®> _&R
— {1—#(&2)}{}% +2(69) "R_gﬁ}] (70)
The stress tensor is indicated as
Sij = —.!D(Sij + pes; D

where e;; in the cylindrical coordinate is defined by

v, 10u, ’UT Ou,
Crp — Egg — — €y, =
N rog v’ T 9z
1{ 0 <v3> 1@1}& 1 Jl Ov, 5’1}91 1 {é‘vr avz \72)
erg = ST | — 0: =" 5, tFT s €=
T2l or\r 6] " 21rd9  8z) 7 2|0z r
The unit normal ve and the identity matrix are shown below
o
n = g (73
L T |
10 0]
I = 0 1 0 (74)
0 0 1]
nn represents the dyadic product which is expressed as
(][] [ n2 nmg nem, ]
I=1| ng ng | = | nen, ni ngn, (75)
_an han anm n,ng N2 1
The components of the surface tension gradient is
1%
Vo=1| 1% (76)
.08
i
oz

From these matrices, the equation of the stress balance is led in the three directions.
Since the two directions of the curvature exist in the three dimension, the two tri-diagonal
matrices must be considered for axial and circumferential directions. The tridiagonal equations
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are indicated below.
(Radius direction)

R —~R3N3
_ W _ p@
57 = R T PR caT) | P
Bo
—i‘c—a(H—Z)
_6%
or

_1 T_a_(%) E@i}?ﬁ_z @1+@)_z Nz
2% or r rd8°n, 2 0Oz or " n,
1—n2dT 10T oT

o 5*“92@*”@]

b [G2OROROR_ T
R{R? + (OR/00)? Oz 00 "0z 00 0200

+(1+/§-§\2\ (RQ+2/§R\2_R§231-§ /77\
(Circumferential direction)
9’R —R3N? r
= p) _ p®@)
862 ~ R{1+ (0R/92)}(1/Ca—T) el )
2o - 2)
Ca ¢
_Gvr
or
1., 0 ,vg 18v,,n¢ 1,0v, Ov,,n,
—SUg O+ gt T3t e Iy,
1-n20T 10T 0 -!
— = -+ Ne——=~ + U~
Ny Or r 08 0z |
1 O*R . OR
| ] IR? L (Z2)?
TR{1+ (33/&)2}[ gt (5g)
OROR OROR R |
—2——(=————R ‘
520 0: 08 To:00)]
2 0R,
il Gl 8
+R( 8§> + R (78)

tions, the constant volume equation has to be solved to

o]
el
&
o
[
o
e
o
@]
s
-
Q
o
3
€]
o
oy
D
w
[
s
.
£
o]
[y«
©
"
£,
¢}
o
e
o

H 2
Jo Jo

The position of the free surface ,R, is solved by using Tri-Diagonal Matrix Algorithm (TDMA)
derived from Egs. (61) and (79). The tri-diagonal matrices are given below.

§ gRQdez —V | (79)

—198—
This document is provided by JAXA.



(Axial direction)

rH H H s rH
L : d1 0 - - fx,o
H H H dff R1 o fH
a, C :
1,1 %11V ) : ,
) 1,1 Rl,l 1,1
H H H ’ H S :fH
a C g
1,nk Lk ek };nk Rl,nk 1nk
1,nk+1a1,nk+l 1,nk+1 1,nk+1 fl,nk+1
H H g " = H
bnj.l anj,lcnj,l dnj,l .l fnj,l
H H " Cw R ‘u
nj,nk anj nk cn'nk nj,nk ok fn'nk
’ H afj' B an,nk+l ‘ fd
H H H H " H H H H H FmRt kel ngn kel P, - rpnEtl
_61,061,1 61,2' : ‘ex,nk—1e1,nk el,nk-{-l ot 'enj,o enj.l enj,z‘ Y ajmk—1 njnk enj,nk+1 4 L
The last array in this matrix gives the constant volume condition.
(Circumferential direction; for each )
-c  C c 7 . i P 4
vr Sk @ . Rl x 1.k
[e] bc’ c ' dd
a2,k 2,k C2,k RZ,IC 2.k
: = |: (81)
C C C ')
anj——lk nj—1 kcn'—-lk Rn]’~1»k dn'—lk
c TR E TS dCJ ’
_an,k , ajk Cnj Aot R L gk

The free surface shape is derived from these matrices. However the momentum equation cannot
be considered by these matrices only. Therefore the momentum equation must be included
into the algorithm of the solving the free Qurface shape. Since the order of the free surface
deformation is so small ( an order of the 107¢ of the radius), the direction of the surface-normal
can be approximated as that of the radius. The following equation is adapted to consider the
time-dependent radius variation. ‘

nnew pold 1 \ new old 9
RPew — ROt 5At(vT Y 4+ v2) (82)
o £ han n o o~ rifatad fran Lae QN FE°28 AN
The free surface shape can be computated from Egs. (80)- (82).

4 NUMERICAL ANALYSIS

= B

4.1 Two dimensional calculation on high Prandtl number fluid

is calculated in a liquid bridge. Table 2 indicates

As the first step, the 2-D ¢ hermecapﬂlar flow
ey mm € e B e it mn Y e By b

the computational condition of two-dimensional calculations.
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Table 2: The computational condition
Aspectratio (H/D)  Ma Ca Pr Bo Gr

CASE-1 0.5 28500 0.08 28 O 0
CASE-2 0.5 57000 0.08 28 O 0
CASE-3 0.5 280000 0.08 28 O 0
CASEA4 0.7 280000 0.1 28 O 0
CASE-5 0.6 27000 0.06 28 O 0
CASE-6 0.6 27000 0.06 28 4.2 1300
CASE-7 0.7 100000 0.1 28 2.0 2800
CASE-8 0.7 200000 0.1 28 0.2° 5600

Figs. 7, 8 and 9 indicate the displacement of the free surface until the velocity fluctuation at the
surface reaches the lower disk. The surface displacements up to the steady flow are shown in
Figs. 10, 11 and 12. Figure 13 describes the free surface deformation at the steady state.

The factors affecting the difference in the surface deformation as shown in figure 13 are inves-
tigated. The each term of the equation (77) can be expressed as

PR

[ A 9

022

= (Pressure term) + (Gravity term)

(Normal stress term) + (Shearing stress term)

+
+ (Thermocapillary force term) + (rest of Laplace pressure term) | (83)

8u

where sum of the rest of Laplace pressure and corresponds to the Laplace pressure. The
each term in the case of CASE-1, 2 and 3 is pioiteé in Figs. 14, 15 and 16, respectively. From
these figures, it is known that the most dominant term on the free surface deformation is the
pressure term. To observe the effect of the pressure term, the time variation of this term is plot-
ted in figure 17. Figure 17 indicates that there is a significant difference of pressure variation
between CASE-1, 2 and 3. In the case of a higher Marangoni number, an abrupt pressure drop
takes place at point A in figure 13 at around time=100. Figs. 18, 19 and 20 indicate variations
of the temperature, radial velocity and axial velocity at point A, respectively. The peak of the
axial velocity in figure 20 corresponds to the peak of the pressure in figure 17.

The thermocapillary convection exhibits oscillatory flow in CASE-3. Figure 22 indicates the
variation of the free surface temperature at the three points as shown in figure 21. The free sur-
face temperature rises up with oscillation. The variation of the axial velocity on the free surface
during the same time interval as in figure 18 are given in Figs. 23, 24 and 25. These figures
indicate that the axial velocity oscillates as well as the temperature does. The amplitude of the
axial velocity oscillation on the Point-3 is the largest among the three plotted points.

The variations of radial velocities are represented in figure 26. It is noted that the phase dif-
ference in radial velocity profiles exists at various heights. The vibration may propagate from
upper disk to lower one.

The variations of the free surface are shown in Figs. 27, 28 and 29. These figures indicate
that the free surface vibrates with surface temperature and velocity oscillation with the same

¢ £ ¢
L I

e

~ fammaratitre
O e

[{]

eriod. However, the phase of the free surface vibration differs from thos

Iy 222

and v 10@ ity vibration.

o

Figs. 30-34 indicate variations of the surface temperature, radial velocity, axial velocity, free
surface deformation and the amplitude of the free surface under the condition of CASE-4. The
oscillation occurs in this case also. The surface velocity oscillates as well as the temperature in
Figs. 30-32. The amplitude of the velocity on the Point-3 is the largest among the three plotted
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points. The free surface also oscillates in this time. From the figure 33, the oscillation amplitude
of the free surface deformation is plotted in figure 34. Figure 34 shows that the amplitude is the
largest at point-3.

Figs. 35-37 indicate the variation of the free surface deformation, surface temperature, radial
velocity and axial velocity, respectively (CASE-5 and 6). The solid and dotted lines show the
results under the zero-gravity and the normal gravity, respectively. The free surface deformation
under the normal gravity is larger than the one under the zero-gravity. On the other hand, the
axial velocity in the case under the normal gravity is smaller than the one under the zero-gravity.
In these cases, the oscillation is not observed. Therefore the case of a higher Marangoni number
has been simulated. ‘
Figs. 39-42 indicate the variations of the surface temperature, surface deformation, radial veloc-
ity and axial velocity, respectively under the condition of CASE-7. In this case, the oscillation
begun from about time= 1000. The free surface oscillates together with the surface temperature -
and velocity with the same period in these figures.

Figs. 43-45 represent a close up view of the surface temperature and velocities. Figure 46 shows
the amplitude of the free surface. The amplitude of the temperature and velocities are almost
the same among the three plotted points. But the amplitude of the free surface deformation in
the point-2 is extremely smaller than the ones at the point-1 and 3.

Figs. 47-54 indicate the results under the condition of CASE-8. In this case, the oscillation is
also observed. However, the difference from the CASE-7 appears at the time about 750. A very
large vibration occurs and the oscillation has started.
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Figure 53: Variation of the axial velocity
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Figure 52: Variation of the radial velocity
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Figure 54: The oscillation amplitude of the

free surface (CASE-8)
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4.2 Three dimensional calculation on high Prandtl number fluid

The above formulations have been applied to the three dimensional liquid bridge. Calculate
conditions are Ma = 27000, Ca = 0.08, Pr = 28, Bo = 0, Gr = 0. Figure 55 shows the
velocity vector ans the pressure in three-dimensional analysis. Red and purple rings indicate the
high and low pressure regions, respectively. The low pressure region appears near the hot corner
because of the flow acceleration due to the thermocapillary effect. The high pressure region
takes place rather close to the hot corner. This is because the flow is not yet fully developed.
The corresponding surface deformation is shown in figure 56. The surface is concaved where
the pressure is low and convexed where high. The deformation is almost axi-symmetric in
this case. In order to demonstrate the validity of the present algorithm, the three dimensional
flow field has been enhanced by applying an inclined temperature profile over the hot disk.
The inclination is +50% around the mean value. The variations of surface shape are shown in
Figs. 57-59. Since the amount of the surface deformation is very small, the value of the surface
deformation is multiplied by a factor of five thousands. The initial condition of the liquid bridge
is straight cylinder. The free surface near the hot disk moves inward and the one near the cold
disk moves outward. This free surface movement corresponds to the pressure distribution. The
order of the displacement is about 0.1um in maximum if the diameter of the liquid bridge is 5
mm.
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Figure 56: The free surface deformation of
three dimensional analysis

Figure 55: Velocity vector and the pressure in
three-dimensional analysis

Figure 57: The free surface shape on the three- Figure 58: The free surface shape on the three-
dimensional analysis (Time=0 [-]) dimensional analysis (Time=30 [-])

Figure 59: The free surface shape on the three-

dimensional analysis (Time=60 [-])
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5§ CONCLUSIONS

(1) The fundamental equations and the boundary conditions were presented for the two and
three dimensional thermocapillary flow with inclusion of the surface deformation.

(2) Spacial attension has been paid to calculate the dynamic surface deformation while keep-
ing the liquid volume constant. '

(3) The effect of the gravity has been also taken into account. The calculated static surface
shape agrees well with an experimental measurement.

(4) The surface deformation has been obtained for an oscillatory two-dimensional flow. An
order of the obtained oscillation amplitude agrees with that of the experiment.

(5) The three-dimensional calculation has demonstrated the validity of the present algorithm.
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