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A Study of Flight Trajectories to Lunar Orbits via Low Thrust Propulsion and Gravity
Capture

by Koji Yamawaki

Future Space Systems Laboratory, Systems Engineering Department, Office of Research and
Development, National Space Development Agency of Japan

Introduction

In lunar and planetary exploration missions, the use of an engine with high specific
impulse such as electrical propulstion thrusters as the orbital transfer propulsion system is
highly desirable in making small exploration spacecraft possible.

Normally, in the case of the electrical propulsion thruster such as an ion engine, the
specific impulse of 3,000 seconds or more is obtained, making it possible to greatly reduce
the fuel weight ratio of the spacecraft. For example, in the case of the flight from a low
earth orbit to a low lunar orbit, the fuel weight ratio is about 80% in a conventional chemical
rocket engine, but this decreases to about 20% with electrical propulsion from the ion engine,
greatly improving the chances of achieving smaller size in the spacecraft.

However, since the thrust being obtained from ion engines is very small, the orbital
transfer from low altitude of several hundred kilometers is naturally very slow, occurring in a
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increases greatly. In addition, since rapid acceleration and deceleration for the escape from
the low earth orbit and entering the lunar orbit are not available, it is necessary to follow such
as allows gradual transfer from the low earth orbit to the lunar orbit with low

thrust. The existence of these kind of gravitational capture orbits has been reported by

researchers of NASA, ISAS, ete."™”

the aforementioned gravitational capture orbits is near the path through which the spacecraft
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can approach to the moon with minimum energy; this path passes near the Lagrange point
between the earth and the moon.**"

Additionally, since total energy can be constant unless thrust is used, the spacecraft
breaks away from the moon. Therefore, unless velocity relative to the moon is reduced and
orbital altitude decreased within a limited time, it is not possible to enter a stable lunar orbit.

This report gives the concepts and conditions for flight path generation that requires only

very low thrust acceleration on the order of 10°G, and examples of numerical calculation of

flight paths based on this.

2. Flight path configuration and generation conditions
2.1 Concept and configuration of a low thrust lunar flight path

Basic problems relating to the generation of the flight path to the moon can be considered

separately in each part as follows:

piral earth orbit in the region in which the earth's gravity is dominant.

7]

(n
(2) Lunar capture orbit in the region in which the earth's gravity and the moon's
gravity compete.

(3) Spiral lunar orbit in the region in which the moon's gravity is dominant.

Fig. 1 shows the concept and configuration of the whole flight path, considering the

First, in the spiral earth orbit, nearly continuous thrusting gives a nearly circular orbit
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of the gravitational potential is large, the main task of the phase is to use this effect to change
the orbital plane. In later phase, the effect of the J, term weakens, and fine adjustment of the

orbital plane by thrust vector control becomes necessary. In this phase the eccentricity does
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not increase rapidly, and the target orbit is a quasi-circular orbit of radius 150,000km or less.
The required inclination of this orbital plane to the moon's orbital plane is mainly determined
by the path and the time of the penetration to the lunar orbit. However, since the number of
days required for the flight varies with, for example, fluctuations in the thrust, this orbit will
not automatically link to the intended lunar capture orbit. Consequently, even after the
arrival into the intended orbit, it is necessary to adjust the time and make orbital corrections
to obtain the appropriate conditions for the approach to the moon. The reason for choosing
a quasi-circular orbit of radius 150,000km or less as this target orbit (referred to below as the
parking orbit) is to minimize perturbations due to the moon's gravity.

The lunar capture orbit is a flight path from the parking orbit to the stable orbit around
the moon; it consists of a transfer phase in which the eccentricity is increased, a flight phase

of approach to the moon by coast flight, and a transfer phase of entry to a stable lunar orbit

=

1ereafter these phases will be referred to the P transfer phase, the coast flight phase and the

—
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Q transfer phase, respectively; the end point of the P transfer orbit will be called the P point,
and the starting point of the Q transfer orbit, the Q point). Among these, the coast flight
path that links the P point and the Q point is a trajectory that reaches the moon supplemented
by the gravity, but this trajectory, continuing its coast flight, escapes from the moon afterall.
For this reason, it is necessary to reduce the velocity of the spacecraft relative to the moon
and transfer to a stable lunar orbit within an appropriate term. However, depending on th
position vector and the velocity vector of the Q point (also called the Q point state variables)

not possible to find a Q transfer orbit that transfers to a stable orbit. Whether or not it is

possible to obtain a Q transfer orbit that links to a stable lunar orbit is strongly related to the
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thrust magnitude that can be used for the orbital transfer and the magnitude of the relative
velocity to enter the moon.

The spiral lunar orbit is a phase of lowering of the orbit with nearly continuous thrusting
(deceleration); like the spiral earth orbit, it consists of 2 phases. In this spiral orbit, once the
eccentricity is suppressed to a small value, it does not increase again even if continuous thrust
is applied. Therefore, if the eccentricity increases in this former phase, it is necessary to
decrease the eccentricity by unilateral deceleration on the perigee side to prepare for the
continuous thrusting in the latter phase.  If the eccentricity cannot be decreased in the former
phase, the number of flight days will be increased because the periéd of time for decelerating

is limited to the perigee side.

2.2 Properties and generation of the spiral orbit

In a quasi-circular orbit of small eccentricity e, if we let S and 7 be small directions in the

1 -

direction of the orbital radius and in the direction that is parallel to the orbital plane and
perpendicular to the orbital radius, respectively, the rate of change of the semi-major axis of
the orbit da/dt becomes approximately®:

daldt=2(a%/ 11)"*(Sesinf+T) (D

)

Here fis the true anomaly, and y is the gravitational coefficient in the central force field

(Mavanfar we will e 17 (=7 0865105
(hereafter, we will use 1 (=3.986x10°

[OS)

L (=4.903x10°km’sec™?) for the lunar orbit.
According to Eq. (1), S contributes almost nothing to increasing the orbital radius.
Consequently, here we assume that the thrust vector is in the same direction as the velocity

vector. In this case, as shown in Appendix A, the eccentricity e is given by:
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e=2(FIm)/(/a%) 2)
so that the eccentricity of the spiral orbit is determined by the thrust acceleration F/m and the
gravitational acceleration w/a’>. Consequently, in the case of low thrust on the order of
F/m = 2x10"*m/s?, the eccentricity does not exceed 0.05 as far as the earth orbit of radius is
150,000km or less and the lunar orbit of radius is 20,000km or less.

The condition for the entry to a lunar capture orbit from a parking orbit is found by the
adjustment of the departure condition at the parking orbit and of the Q point state variable.
This problem will not be discussed here, but it is the important problem for future

consideration as the Q point targeting problem.

2.3 Properties and generation of the lunar capture orbit

The Q point is the condition that characterizes the lunar capture orbit; it is defined by the
position vector and the velocity vector with respect to the moon.  Whether or not it is
possible to generate the lunar capture orbit for this Q point depends on whether or not the P
point in the region where the earth’s gravity is dominant can be found by reverse integration
from the Q point and on whether or not the Q transfer orbit that links to the spiral lowering
orbit with low thrusting can be generated. A Q point for which this kind of P transfer orbit
bit can be generated is a usable  point.

e
i

ipnisisa

vector vo. Then, a usable Q point must have values that generate an orbit that is a no-thrust
orbit with the relative velocity suitable for approaching the moon, and more or less orbits the
moon although not permanently stable. If it is a stable lunar orbit, there will not be a coast

flight path that connects to the P point, so the Q point is not a usable Q point.
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Referring to Fig. 2, in the fixed Earth-Moon coordinate frame in which the x-axis joins
the Earth and the Moon and rotates around the z-axis with angular velocity w with respect to
inertial space, the so-called pseudo-energy E of a unit mass is expressed in terms of the

position vector r and the velocity vector v by the following equation®:

E=v*12—~(wxp) 12— 1) ¥ L T (3)

Here 7, and r,, are the absolute values of 7, and 7, respectively.  This relation is
obtained by transforming the Jacobian integral of the constrained 3-body problem® into the
relation in units of energy. If we take the absolute value r,,, of the vector r,, from the earth
to the moon and the absolute value w of the angular velocity w in the E-M coordinate system
to be fixed, the pseudo-energy E, when v is zero is related to the Jacobian integration constant
C by the relation:

E=—(remw)’x(C/2) (4)

Also, from Eg. (3), the pseudo-energy of a Q point that is 45,000km above the lunar north
pole and has a velocity of 350m/s in the x direction (the velocity corresponding to an
eccentricity of 0.12 obtained from the 2-body problem with the moon) becomes -1 .588km?/s’;

rom the mooi Fig. 3 shows the pseudo-energy
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this does not change even

on the straight line joining the earth and the moon (called the L line); the above energy is an

energy for which it is possible to escape from the moon with the relative velocity exceeding

Next, if we rewrite Eq. (3) in terms of the semi-major axis g and eccentric

1

earth orbit, the inclination i, with respect to the lunar orbital plan
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the L line and r,, we obtain approximately:

E=— /28— w[ 11.8(1—€%)] P COSly— Llind o+ hnCOSO Fo (5)
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so that an approximate relation with the final orbital elements of P transfer is obtained. For
reference, if we take E=—1.588km?/s’, i,=15 degrees, and assume that the spacecraft is at a
right angle to the L line and 450,000km from the moon, the semi-major axis for an
eccentricity of 0.3 is obtained from Eq. (3) to be about 250,000km, so the perigee radius
becomes 175,000km and the apogee radius 325,000km. Consequently, the final apogee

point of the P transfer orbit almost reaches the L point.

2.4 The region in which the Q point radius exists

The constraints on the Q point radius are found from the magnitude of the thrust and the
effect of the earth's gravity. Let us take the Q point to be the perigee of an orbit of
eccentricity e,, with the moon providing the central force field, neglecting the earth's gravity.
Then we seek the velocity increment oV necessary to stabilize the orbit.  First, starting from

the orbit of perigee radius r, if the perigee radius r, of the orbit generated by the deceleration

wn

within half a period is smaller than r,, then it is possible to obtain stable spiral descent
without increasing the eccentricity by switching the thrust ON and OFF roughly every half

period. Then, as a condition for stabilizing the transfer orbit, if we assume that the relation:

m<xry  (0<x<l) (6)
applies between the perigee radius r, of the orbit after stabilization and r,, then the velocity
increment 6V must satisfy

SV>(tnlr0) *[(1eo) "~ {21/(1+1)} 7] (7)

Here, if we take r,=45,000km, ¢,=0.1 and 4=0.8, then 8V >35m/s. Consequently, in the case
of a spacecraft for which F/m=2x10 *m/s’, if the deceleration is supposed to be done

continuously for about 2 days, then we obtain a rough condition for the entry to the more
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stable orbit. In addition, if we let A be the ratio of the time during which deceleration is
possible in the vicinity of the Q point to the orbital period, we obtain:

o> tm(1—ee)?[(1+e0) "~ 26/(1+0} *(2 w A Flm)]"

=19,000/2km (8)
Consequently, if we assume that it is possible to apply decelerating thrust through a half
period so that the Spéc@craﬁ is decelerated only on the perigee side in order to decrease the
eccentricity, then, since A=1/2, we obtain r;>27,000km. Thus, the lower limit of the Q point
radius r, is determined by the magnitude of the thrust acceleration on the spacecraft. Next,
in the case in which the Q point radius is large, the effect of the earth's gravity becomes
relatively large, so that the lunar orbit becomes unstable. First, we find the acceleration
vector o applied to the spacecraft with respect to an inertial coordinate frame with origin at
the moon's center: |

= (e 7V et/ P VP =X (WX F) (%)

Thus, if we assume that the moon moves in a circular orbit around the center of gravity of
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where i_ and i, are the unit vectors from the spacecraft to the moon and the earth,

respectively, ¢ is the angle between the direction from the earth to the moon and i, ¥ is the

frevolution of the moon wand »_, and i is th it
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vector of the vector of w. However, since the terms other than the 1st term on the right side
of Eq. (10) tend to disrupt the stable elliptical movement of the spacecraft, they must be made
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suitably small compared to the st term.
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being stable, we require that the sum of the 2nd term and the 3rd term be smaller than the 1st
term:

Q el Fem oW )<Ll - (1D
then we obtain the following relation:

FFom bl Qi W ren”)} 2=61,000km (12)

From the above analysis, usable Q points for the spacecraft with thrust acceleration
2x10™*m/s* can be said to have a possibility of existence in the region of orbital radius from

30,000 to 60,000km.

2.5 Constraints on the Q point
The problem to find the flight path which approaches the lunar orbit using a low thrust,
rendezvous with the moon for an appropriate period and approaches the moon softly is not
other than the 3-body problem; the region in which the Q point exists can be expected to
depend strongly on not only the magnitudes of the Q point position vector r, and the Q point
velocity vector v, but also on their directions. This problem is also related to the
1

shown in Fig. 4 (this is called the Q ring) as a region in which the Q point can exist. Is there

not any additional region beyond the Q ring shown in Fig. 4 where a usable Q point can

we search for the specific region of Q point existence and determine the constraints on the
usable Q point.
Fig. 5 shows a 3-dimensional flight path (the dots are at intervals of 1 day) for a Q point

radius of 45,000km; the approach is from below the moon's orbital plane and the path passes
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through the Q point above the North Pole.  Fig. 6 and Fig. 7 show flight paths for a Q point
radius of 40,000km, with the Q point on the moon's orbital plane. In both cases the velocity
at the Q point reaches 350m/s; escape from the moon occurs not later than 10 days after
passing through the Q point.  Since these flight paths are sets of Q points in a broad sense,
we can assume that there exist many Q points surrounding the moon. Conversely, since one
of the Q points is representing many Q points, candidates for usable Q points are constrained
to lie on the ring in Fig. 4. In Fig. 7 we have chosen a Q point, ry, which is parallel to the
line joining the earth and the moon (the L line) and which exists on the circular orbit going
around the moon. But, this is a special path in which the @ point is reached about 8 days
after passing the vicinity of the L point and swinging around the moon. This is a very
interesting orbit to which approach occurs at low inclination angle, but here we believe that it
is better not to treat this point as a standard Q point.

In Fig. 4, the angle ¢, between r,, and the moon's north polar axis (the complement of the
latitude, called the Q angle) is a parameter that determines the orbital inclination angle.  As
shown in Fig. 6, seen from the earth the usable Q point exists in the right side of the Q ring;

point conditions such that the flight path escapes from

11 S IITTICHIIY 1 TING U v 11 ¥
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the moon and links to the P transfer orbit. In the example shown in Fig. 8, the Q angle 1s

-90 degrees to the left; the path shown is obtained by reverse integration in the case in which
the Q point radius and the Q point velocity are the same as in Fig. 6 and only the Q point

escape from the moon is not possible; ever
possible to obtain a flight path that approaches the earth. Consequently, there is no Q point
that links with the P point.  This is an interesting problem related to the energy in the E-M

coordinate system, but analytical discussion is omitted here. From the above discussion, to
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generate a low thrust orbit it is sufficient for the usable Q point to satisfy the following
conditions.
(1) The penetration direction of the spacecraft is approximately along the L line
toward the earth. Approach from the opposite direction is inconceivable.
(2) The lunar escape flight path from the Q point to the P point is a no-thrust orbit
with perigee radius of 200,000km or less.
(3) Taking the Q point radius to be 45,000 £ 10,000km and the Q angle to be 0 to
180 degrees, the Q point velocity vector is orthogonal to the Q point position vector.
(4) The lunar orbit is stabilized, normally by decelerating on the perigee side, from the
time of passage through the Q point.
(5) With a semi-major axis of the Q transfer orbit of 20,000km, the eccentricity

becomes 0.2 or less.

2.6 Example of calculation of the region in which Q points for which lunar capture is possible

exist

Admite A€ tTha rmcrraremed £l Tha lAtiros Ty £ ~ tha + nf 50m/c A N

orbits of the powered flight. The lower limit fluctuates on the order of 20m/s depending on
1 : £ avrival o a ~ aaay a ~f P fe P 1 smnts .+l § T 1 £3
the time of arrival at the moon because of the moon's elliptical motion; the graph 1n the figure

shows its maximum values. At a Q point radius of 55,000km or more, the orbit becomes
somewhat unstable, so the range of condition computation was taken to be
45,000 + 10,000km. In addition, the deceleration control in the Q transfer phase is

according to the eccentricity control method discussed in section 3: normally. it starts 2 to 3
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days before passage through the Q point.  The region in which usable Q points can exist is
the range of the above Q point radius; it is the region bounded by the limit of possible escape
from the moon's gravity and the limit of lunar orbiting stability.

Fig. 10 shows the region within which Q points for which lunar capture is possible can
exist in the case in which a lunar orbit that is parallel to the moon's path is generated. In this
example, the Q point was set in the direction 90 degrees from the L point, but compared with
Fig. 9, the region within which Q points can exist is much smaller than that in the case of a
large orbital radius. The reason for this is that, as can be seen from the relation between the
eccentricity computed from the 2-body problem shown by the dotted line shown in the figure
and the Q point velocity, although the Q point exists on the apogee side, the logic of
decelerating only on the perigee side is applied unconditionally. If, for example,
deceleration is applied continuously from 4 days before passage through the Q point until the
apogee radius drops to 30,000km or less, and then deceleration control is subsequently

1

s shown

@)

o

applied to decrease the eccentricity, the range of lunar orbiting stability expands y
the dashed line in the figure. This kind of continuous deceleration in the Q transfer phase is
effective in expanding the region within which Q points exist, but since the perigee point is

lowered by deceleration on the apogee side, a problem arises in subsequent eccentricity

control. Consequently, it is necessary to monitor the perigee radius and judge whether or
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3.1 Spiral ascending orbit transfer
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When the direction of the spacecraft thrust vector is aligned with the direction of the
velocity vector, and in addition the eccentricity is held at nearly zero and the orbital radius is
changed very gradually from r, to r along a spiral path, the relation between the cumulative
value V. obtained by summing up the velocity increments and the orbital radius is found as an
approximate solution to Lagrange's Planetary Equations for the orbital radius or as the
limiting solution of a multi-stage very small Hohmann orbital transfer:

Vi=(ulrs) (i) (13)
This V1, as shown in Appendix B, is the upper limit of velocity increment in the multi-stage
Hohmann orbital transfer. If we let ' be the thrust, /,, the specific impulse, m, the initial
mass and m the residual mass, the cumulative value V; of the velocity increment can be
written as:

Vi=glsplog(mJ/m) (g=9.8m/s%) (14)

Consequently, substituting V: found from Eq. (13) into Eq. (14), the residual mass ratio
m/m, becomes:

mimg=exp(—Vv/glsp) (15)
and the number of flight days t becomes:

10 I/

=Aglspl(Fimy)} {1—exp(~Vv/glsp)} (16)

Thus, in a low thrust spiral orbital transfer, if the thrust acceleration F/m, at the time of

number of flight days are uniquely determined.
Fig. 11 shows the relation between the orbital velocity and the number of flight days with

r=7,378km and the initial thrust acceleration having the standard value of 2x 10 *m/s>. This

gives a flight time of about 10 months until an orbital radius of 150,000km is reached. The
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graphs in the cases in which F/m, fluctuates =20% from the standard value are also shown;
if orbital control is applied based on these 3 thrust levels, the orbital height and the number of

flight days can be easily adjusted.

3.2 Orbital plane transfer

The inclination angle of the orbital plane with respect to the lunar orbital plane is an
important parameter which plays a significant role in determining the approach orbit to the
moon; the shift of the ascending node of the spacecraft orbital plane due to the oblateness of
the earth is used in this adjustment. That is to say, even in the case in which the spacecraft
1S in no-thrust fli
changes because of perturbation forces due to the J) term of the gravitational potential. The

relation of this to elapsed time becomes”

: 3
sion of the ascending nods

where (2 is the right ascen

the inclination angle of the orbital plane with respect to the equatorial plane. Further,

valatinm frer thae Hial Annciirmnting rota s o
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Consequently, the variational form of equation (17) can be rewritten as:

5@2_ S ”’;’:;;V; : Ay 5 o a\r
4r v glsp (19)

which gives us a relation between the variation & of the orbital radius » and the variations 6

£2 of the right ascension (2 of the ascending node. If we numerically integrate Eq. (19), we
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can find the right ascension (2 of the ascending node with respect to the orbital altitude,
which converges to a specific value at orbital altitude of 20,000km and higher.

Next, we seek a relation between the right ascension of the ascending node of the
spacecraft's orbital plane and the inclination angle of the orbital plane with respect to the
plane of the moon's path.  Let i, be the inclination angle of the ecliptic with respect to the
equator, ¥the difference of longitude between the ecliptic longitude of the ascending node of
the equator and the ecliptic longitude of the ascending node of the moon's path, and i, the
inclination angle of the moon's path with respect to the ecliptic. Then, if £2 is known, the

unit vector ri, in the direction normal to the spacecraft's orbital plane in the coordinate frame

. . P
o f}\.p unit vector # in ﬁpg co oordingte frame F ca 1

Lhiv wiidt ¥ iz i gordinate rame 1ix

(o8

ived in the e
AN

fixed in the earth is transforme

1EDEIUJELRE

of the moon's path by the following equation, using the Quaternion (also called Euler's

parameter) which expresses rotation through the above angles:

0=c0s({Y2)e,5in{2) 2D
@ZCQSQ@/Q}W"Q;an{.ie/z} (22}
p=cos( ¥ 2)te;sin( ¥12) (23)

py=cos(i,/2)ressin(i,/2) (24)
Hg=—€,S1INi+e,cosi (25)

where e, €, and e; are parameters which can be calculated as follows:

e{zzezz:e;:_ﬂ i !\LOj
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€,6,=—e,8,=2; 27

236——€38,=€, (28)

e,e,=—e,e5=e, (29)
o is in a conjugate relation with g, and defined as follows:

prE=cos((Y2)—e;sin((I2) (30)
From Eq. (26) to (29), we have the more general relation:

o=l (=1,2,3,4) (31)

Here, noticing that the ascending node of the equator and the ascending node of the

moon's path are at nearly the same ecliptic longitude, the inclination angle #v of the

spacecraft's orbital plane with respect to the plane of the moon's path fluctuates within the

approximate limits:

|i~(ie— i) S b S|+ (i) (32)

due to fluctuations of the right ascension & of the ascending node. Consequently, since

i=23.5 degrees and i,=5.1 degrees, by adjusting {2 the inclination angle iv can be adjusted

within the limits i+ 18.4 degree

Fig. 12 shows the relation between the orbital radius and iy computed from Eg. (20) for
=30 degrees, £2,=330 degrees. In this case, by adjusting the thrust = 20%, the
inclination angle 7, until an altitude of 20,000km is reached can be adjusted within the limits

of 12 to 39 degrees. i is one of the conditions of a parking orbit for the purpose of entering an
orbit around the moon that has a specified inclination angle, and is determined by reverse

integration from the Q point.
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3.3 Increase of the eccentricity in the P transfer orbit

According to Eq. (2), the eccentricity of the spiral orbit for reaching the L point from the
parking orbit by continuous low thrust of 2x10 *m/s” is 0.09 degree; and the semi-major axis
of the orbit becomes about 300,000km. Substituting this condition into Eq. (5) the orbital
energy E is found to be -1.566km?/s’, and the velocity of penetration to the moon is increased
60m/s over the 350m/s found in section 2.3. Thus, in the spiral orbit generated by
continuous thrust the deceleration condition in the Q transfer phase becomes more severe, sO
it is desirable to perform orbital transfer in the P transfer phase by applying thrust for half an
orbit to increase the eccentricity.  To obtain simple regularity of orbital control, hereafter we
will use:

thrust ON when r<a

thrust OFF when r=a (33)

as the thrust ON/OFF control condition.

bemdey

In addition, even in the case of departure from the same Q point, if the thrust ON/OFF

condition changes, then the parking orbit elements obtained by reverse integration will also

(e
N

N’

and treat f; as an object of control, then the boundary conditions between the parking orbit

and the P transfer orbit can be adjusted. Here we do not generate an orbit using Eq. (34).

3.4 Stabilization and decrease of the eccentricity in the Q transfer orbit
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As shown in Fig. 5 through 7 of the previous section, a spacecraft that approach the moon
in coast flight does not enter a stable orbit, but returns to the region in which the earth's
gravity predominates. Therefore, in contrast to the previous section, it is necessary to apply
the deceleration on the perigee side for several days before and after passage through the Q
point to decrease the spacecraft's energy.

Fig. 13 shows the process of stabilization of the lunar orbit during 12 days after passage
through the Q point for 4 cases (Q-3 to Q-1 and Q0) in which the spacecraft is decelerated
from a few days before passage through the Q point. For example, in case of Q-3, the
deceleration is done 3 days before passage through the Q point. In the cases except for Q0
the spacecraft does not pass through the Q point anymore, but by applying the deceleration
before passage through the Q point the Q transfer orbit is rapidly stabilized, and even as this
is done, the orbital inclination angle does not deviate greatly.

3.5 Spiral descending transfer

Reverse thrusting is applied continuously to decelerate the spacecraft and decrease the
eccentricity while retaining a circular orbit. Normally, in the low thrust spiral descending
orbit transfer, the increase of the eccentricity tends to be suppressed. However, in a case in

which the eccentricity is not decreased by the effect of the earth's gravity and orbital control,

eccentricity is reached, as in the case of orbital control in the Q transfer phase. The residual

g reauired can be found from the relations i
H I

nd thae niimhar va " \ Q1T QY
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4. Examples of numerical calculation of lunar capture orbit
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4.1 Polar entry flight path

First, a flight path in which the Q point is above the North Pole is generated. Since the
result obtained for the spiral orbit is as discussed in section 2.2, it is omitted here. We now
compute the flight path for arriving at a parking orbit by F/m=0.0233mG. In addition, the
lunar capture orbit fluctuates somewhat depending on the date to intersect the moon (the
number of days from the moon's passage through the perigee to the spacecraft's passage
through the Q point); here we take this to be 0 days.

Fig. 14 shows the lunar capture orbit for Q point radius 45,000km, Q point penetration
velocity 350m/s (eccentricity 0.122) and polar entry.  The initial conditions of the P transfer
orbit are found by reverse integration from the Q point. Thrusting is ON in the parts of
orbits shown by thick lines. Orbital Parameters are in the figure, the upper row gives the
vector normal to the orbital plane and the lower row gives, from left, the semi-major axis, the
eccentricity and the period (in hours). In the P transfer phase, by applying unilateral thrust
in accordance with Eq. (33) for 4 orbits a parking orbit of radius about 150,000km is linked to
the Q point; the orbital inclination angle i, is about 15 degrees and the number of flight days
in this phase is about 42. In the generation of the Q transfer orbit, forward integration is
done starting 4 days before passage through the Q point; Eq. (33) are applied as the
deceleration control condition.
which are coordinatized in the inertial frame perpendicular to the plane of the moon's path

21l Bi1 Ll 14 180 IR0 EL

centered at the moon. The path reaches an approximately circular orbit (eccentricity about
0.02) of the radius of 20,000km or less about 2 weeks after passage through the Q point, and

which becomes nearly the polar orbit, which goes round the moon.
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4.2 Equatorial entry flight path

Fig. 16 shows a lunar capture orbit with equatorial penetration at Q point radius

45,000km and Q point penetration velocity 290m/s (eccentricity 0.23, apogee side), rq of
which lies on the plane of the moon's path in a direction pe*rpeﬁdicuiar to the L line. The
inclination angle of the orbit that is generated becomes 0 degrees. This Q point lies on the
boundary region of the lower limiting values in Fig. 10; a parking orbit of radius 115,000km
and eccentricity 0.05 is reached in about 60 days. In the numerical calculation when the
penetration velocity increases, the perigee radius of the P transfer orbit kdccssases and the
number of flight days taking to reach the parking orbit increases. Fig. 17 shows two cases
of lunar capture orbits, with and without deceleration, which are coordinatized in the inertial
frame centered at the moon. By applying deceleration control from 4 days before passage

through the Q point, the path reaches a quasi-circular orbit of radius about 20,000km 10 days

jater.

5.1 Orbital control in the P transfer phase

1 o o 1 0 1 . ) S 1 '~ ~ e 3 <7 P

The nominal flight path in the P transfer phase is generated by the ON/OFF sequence control
a) o1 TY 4 H 3 1 1 1 Y

of the thrust. However, in the orbital control in which only a predetermined O

sequence is applied, the spacecraft will have a possibility not to approach the moon |
fluctuations and the solar pressure will make it impossible to approach to the moon.
Fig. 18 shows the P transfer orbits with and without the thrust errors of * 1% and

generated under the same conditions as used in Fig. 14 except the thrust errors.  Since the
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orbit deviates considerably with even a 1% thrust error (corresponding to 2x107°G), it is
conceivable that even the effect of solar pressure could make it impossible to reach the Q
point. Consequently, in the flight requiring many days, it is necessary to apply the orbital
control in response to fluctuations at least in the coast flight phase.

In a case in which external disturbances due to solar pressure or thrust errors are large, it
will become impossible to correct the orbit errors accumulated in the coast flight phase by
applying the orbital control. In this case, the orbital control during the powered flight is
important; the control method describéd below (simply called the thrust control method) is
used. First, orbital errors related to the motion in the central force field and orbital errors in
the direction perpendicular to the orbital plane are corrected by changing the thrust vector
direction £ 8.5 degrees (0.15 radian) from the nominal direction. Regarding the former,
the equation of motion of radius r is as follows:

d*r/dr=v . r—pelr’ (35)
then we find:

5= 2rv vl (2 1/ t—v) (36)

regard to the latter, the distance error & and the velocity error dv in the direction

perpendicular to the orbital plane are added to give:

Then 3-value control of the thrust direction is applied to &s: and s..  The reason for
applying this kind of constraints to the angle of change is to prevent the reduction loss of
thrust in the nominal direction. In addition, adding errors of position and velocity in the

orbital plane in the direction perpendicular to the radial direction we find:
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s =St i v (38)
and 3-value control(Z£30%) is applied to the average thrust. Fig. 19 shows the effect of

applying the above thrust control method. The top set of numbers in the figure gives orbital
errors in the case in which the perturbation guidance discussed in the next section is applied
in response to a 10% thrust error from 10 days before; the other sets of numbers are with no
guidance and thrust errors of +10% and -10%. Within each set the upper row gives errors of
position(km) ané the lower row gives errors of velocity(m/s). According to this, if thrust
control is applied in the P transfer phase, the spacecraft can be accurately guided to the Q
point by the perturbation guidance in the coast flight phase. In addition, if the orbit is

Tect uring no-thrust flight in th n 1ase, the cumulative orbital errors due to

solar pressure etc., can be decreased every orbit, increasing the accuracy of guidance to the Q

point.

5.2 Orbital control in the coast flight phase

The orbital correction in this phase is done by perturbation guidance. First, the position

&=r+rdv (39)

o

and the thrust vector is adjusted in the & direction. Regarding the component of Eg. (39) in
the radial direction, a correction is applied for the effect of motion in a central force field
according to Eq. (36). In the above control, a zone of insensitivity is established

corresponding to position error of & 200km and velocity error of = 2m/s. Discussion
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Fig. 20 shows the flight paths with and without guidance in the case in which the position
and velocity errors at -10 days (roughly at the P point) are 5,000km and 20m/s respectively
for each axis in the 3-dimensional E-M frame. In the case of no guidance, on the day of
planned penetration to the moon, the position error radius becomes about 35,000km and the
velocity error radius 227m/s, and the moon is not reached anymore. However, if
perturbation guidance is applied during a coast flight, the Q point is reached with position
error radius of not more than 200km and velocity error radius of not more than 2m/s.  Thus,
since orbital control in the inertial coast phase is indispensable in a lunar capture orbit, it is
desirable for the flight time between the P point and the Q point to be 10 days or more. An
example of the error sensitivity coefficient matrix between the P point and the Q point is

given in Appendix C.

5.3 Orbital control in the Q transfer phase

1 shows Q transfer orbits until the 12th day for 3 types of Q point above the moon's
north pole. Ifthe Q point radius and the eccentricity are adjusted, in all 3 cases deceleration
control starts from about 3 days before arrival at the Q point and similar Q transfer orbits are

followed.

Fig. 22 shows Q transfer orbits for velocity errors in the orbital plane of = 10m/sec 4
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6. Conclusions

In this report, we have generated flight paths through which a spacecraft can approach
from a low earth orbit to a low lunar orbit with low thrust propulsion on the order of 0.02mG.
We have also discussed basic orbital control problems centered on lunar capture orbits. In
addition, considering the characteristics of low thrust propulsion, the total path has been
broadly divided into 3 flight phases. Based on this classification, the orbital control
problems, number of flight days and amounts of fuel consumed are presented for each phase
of a nominal polar entry flight path in Table 1.

However, it is difficult to analytically express the conditions for orbital transfer from a
parking orbit to the lunar approach point. In addition, since the moon is in elliptical motion,
the lunar capture orbit derived from the Q point varies depending on the day on which the
moon's path is intersected; therefore it is not clear whether or not there exists a direct
guidance method for this phase. Therefore, at present it is necessary to repeatedly perform
reverse integration from the Q point in order to generate orbits, and find the nominal flight
path from the parking orbit that matches the timing and the orbital transfer conditions for that
purpose by trial and error.

Although the above problem is not yet solved, in this report we have generated specific

flight paths, and discussed the overall flight plan and the basic problems of orbital control in
each phase. In particular, the conditions for establishing the Q point have been determined

not only by orbital simulation but, in part, analytically. In addition, we have obtained a

nnnnnnn thhn <7 amelivre : al vl +1 £ a%: * 7 a
ylubyp\.w that Ej aH_,;j 12";% S'mp':: OTShai COnrsG: ‘fl the P transier ?Lﬂ’i ‘;fﬁ AV ?ansfg I)";.S@S ﬁud

orbital correction in the lunar capture orbit, we can guarantee the entry to stable lunar orbits
with the thrust conditions in this report.  Finally, only very small thrusts can be obtained

with electrical propulsion such as an ion engine, and the time for flights to the moon by this
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thrust becomes very long.  This is generally not desirable from the point of view of the
design of equipment to be carried on the spacecraft, its operation and monitoring control. In
addition, even if the effect of gravitational supplementation is taken into account, spiral
orbital transfer cannot be said to be more efficient than Hohmann orbital transfer from the
point of view of the velocity increment that is needed. In order to decrease the flight time to
1 to 2 months, solve the above problems in the orbital transfer and make it possible to design
a more efficient spacecraft, it is necessary to have the specific impulse of 1,000 seconds or
more on the order of 1 to 2N thrust. Consequently, if in the future it is going to be necessary
to construct an economical system for transporting supplies between the earth and the moon,
and to have a spacecraft that shuttles between the earth orbit and the lunar orbit, then it is
necessary to develop a high specific thrust propulsion system as mentioned above, and to
conduct active research on orbital transfer and guidance control corresponding to the

magnitude of the thrust obtained.
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<<Appendix A: Properties of the Eccentricity in a Low Thrust Propulsion Spiral Orbit>>

An approximate relation between the orbital radius and eccentricity can be easily found
from the quasi-spiral orbit generated by very small impulsive velocity increments at half-orbit
intervals, at perigee and apogee.

First, in the case in which the initial orbit is a circle of radius a, the eccentricity produced
by the initial velocity increment 6V is approximately:

e=28Vx(a/)'? (A-1)
and the orbit returns to a circle at the next apogee thrusting. Then, using the period

T(=2n(a’/1)'* ) and the propulsion acceleration F/m, the impulsive velocity increment 8V per

OV=(FIm)xTx(1/2)x(2/ )
=2(FIm)x(a’/ )" (A-2)

A

Substituting Eq. (A-2) into Eq. (A-1) and averaging the eccentricities at perigee and

e=2(F/m)/(u/a’) (A-3)
. AN J
L ) o
To confirm that the above equations are correct, we assume that F/m=2.3x10 *m/s’ and
o= £ NN and Fand thao arnromtrimiter oo e LA TN 24 ~ AN N1 Z r-
a=115,000km, and find the eccentricity from Eq. (A-3) to be e=0.015. In numerical

& 1

calculations the eccentricity fluctuated between 0 and 0.025; the time average agreed well

with the analytical solution. As an example of a case in which the increase of eccentricity

)

for a thrust acceleration on the order of 2.3x10 *m/s is small, we use Eq. (A-3) and find the
eccentricity in a parking orbit of radius 150,000km to be ¢=0.026; even at the time of arrival
at the Lagrange point it is e=0.10.  This also agrees well with the result of numerical

calculation.  An effective way to increase the eccentricity is thrust for half an orbit on the
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perigee side.  First, from Eq. (A-3), after departure from a circular orbit of radius 1, the
eccentricity e, after the first half-orbit propulsion becomes:

eo(I—eo)? =4(F/m)/(1dry) (A-4)

The eccentricity ey after the subsequent Nth half-orbital thrust is given approximately by
the following equations:

ev=Sgi, ere(l+ gy (A-5)

For reference, we numerically calculate the spiral orbit produced by approximately
half-orbital propulsion from a circular orbit of radius 150,000km.  After 4 orbits we obtain
an elliptical orbit of perigee radius about 180,000km, apogee radius about 340,000km and
eccentricity about 0.3. Meanwhile, in Eq. (A-4), ¢, becomes 0.059. Consequently, from

Eq. (A-5), the eccentricity after another 3 orbits with half-arc propulsions becomes 0.285, in

approximate agreement with the numerical solution.
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<<Appendix B: Continuous Low-Thrust Orbital Transfer and Hohmann Orbital Transfer>>

In orbital transfer with continuous low-thrust propulsion, the cumulative value of velocity
increment is found from the initial and final values of the orbital radius. Consequently,
since the cumulative velocity increment is independent of how the flight path is partitioned
into segments, if we take r =r, and r=r, then we obtain the relations:

V=g, (B-1)
SVi=(uilri.0) "*—(uilrs) (B-2)
Meanwhile, in a multi-stage Hohmann orbital transfer, if we consider only the case in

which the orbital radius increases monotonically, regardless of whether a circular orbit is
entered in an intermediate stage before return to an elliptical orbit or the spacecraft moves
directly from one elliptical orbit to another, the cumulative velocity increment required is the
same. Consequently, if we divide the process into a number of single-stage Hohmann
orbital transfers between circular orbits, and if the velocity increment 6V at each stage and
the velocity increment 6V, in the transfer from the orbit of radius () to the orbit of radius r,
found from Eq. (B-2) satisfy the relation:

V> 8V (B-3)

then we have proven that the cumulative value V; of the velocity increments required for

orbital transfer by means of continuous infinitesimal thrust is the maximum of values found
using finite increments. The velocity increment oV} required for single-stage Hohmann
orbital transfer from the circular orbit of radius r(;,) to the circular orbit of radius , is:

SV ={(uriare) ()"}

,)”2_(//}".‘,/ ir')l/l} (8“4)
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where g is the semi-major axis of the intermediate orbit. Consequently, if we let e be the

eccentricity and, p= #*/u=a(1—€%), then we have:

SVi=(hip){(1+e)""~(1—¢)"*} (B-3)

SV =(hip){(2e+(1—e)'*~(1+e)'"?} (B-6)
so that:

Vi~V =2(hip){(1+e)'"~e~(1-e)""} (B-7)

Focusing attention on the terms enclosed in braces in Eq. (B-7), since:

{(1+e)P—e} —(1—e)=e {(1+e)""—1}? (B-8)
the difference in Eq. (B-7) is always positive for e>0, proving that Eq. (B-3) is satisfied at
every stage.

From the above discussion, as the number of stages of Hohmann orbital transfer is
increased, the cumulative value of the required velocity increments increases, and

asymptotically approaches the cumulative velocity increment V; in the case of orbital transfer

by continuous infinitesimal thrusting.

Further, if we let ¥ be the ratio of 6V to 6V, then from Eq. (B-5) and (B-6) we obtain

v =(1+e)*+(1—e)"*~1 (B-9)

Consequently, the ratio of the velocity increment V" and V| required for the Hohmann
orbital transfer and the orbital transfer through continuous infinitesimal thrusting is
determined. For reference, if we take »=7,378km and »~150,000km the eccentrity becomes
0.906 and we obtain »=0.687. Consequently, the velocity increment required for the
Hohmann orbital transfer is 69% of that required for orbital transfer through continuous

infinitesimal thrusting.

This document is provided by JAXA.



<<Appendix C: The Error Sensitivity Coefficient Matrix Between Point P and Point Q>>
Letting &r, and dr, be the position error vectors, and év, and dv,, the velocity error

vectors, at the P point and the Q point in the E-M coordinate frame, we introduce the vectors:
Fp=Evp/ W (C-1)
ész:é?yQ/W (C-2)

which are the velocity errors divided by the orbital angular velocity. Then, if we create the

6-dimensional vectors:

A (C-3)

Seg=[8, 6T (C-4)
and define the error sensitivity coefficient matrix & as:

Sxo=Kdox, (C-5)
then the elements of K are found by numerical calculation as those that satisfy the

requirement that the &x,, are produced from the dx;.
For reference, we give the error sensitivity coefficient matrix between point P (10 days
previous) and point Q for the polar entry orbit discussed in the text (Q point radius 45,000km,

Q angle 0 degrees, Q point velocity 350m/s):

(223 271 082 -143 594 1.8
-1.82 0701 020 1.02 159 -0.02

g=| -t66 113 -0.77 -093 -2.13 -0.59 (C-6)
100 -526 150 -533 10.0 1.0
16.7 -2.63 -338 933 500 -1.70
\-2.07 5.64 -3.01 -2.00 -12.8 -4.70

where w=2.66x10 °rad/s. Here linearity holds approximately between the limits of =+

1,000km for dr,and £ 3m/s for dv,; the values given in the above matrix are averages of

-

the bipolar error sensitivity coefficients. In particular, the errors in the radial direction are
strongly nonlinear and some bias occurs, but the width in the errors on either side is

approximately linear.
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Low-thrust lunar flight trajectory

Earth spiral orbit ® Ascent to nearly circular
Anterior phase orbit
—> (injection orbit to 360,000 km —> g (gntrol of orbital plane
radius)
Posterior phase ‘ ' & Ascent to nearly circular
m§(36,000 km to parking orbit™*) — orbit

& Adjustment of orbital plane
® Adjustment of conditions for
lunar approach
* Parking orbit: nearly
circular orbit with radius of
100,000 to 150,000 km

Lunar capture orbit

P transfer phase ® Enlargement of eccentricity
=%(p§;king orbit to 250,000 km —» @ Maintenance of orbital plane
radius) ® Guidance to P point
(semicircular arc
propulsion)
Coast flight phase ® Gravity capture
— (P point to Q point) —® @ Guidance to Q point (position

and velocity correction)

@

Q transfer phase Deceleration for

—> (Q point to 20,000 km radius) — stabilization

Correction of orbital plane
Prevention of lunar breakaway
or lunar collision

Lunar spiral orbit

Anterior phase ® Reduction of eccentricity
> (20,0 ) 5,0 lius) —> o ‘
(20,000 km to 5,000 km radius) € Descent to nearly circular
orbit
Posterior phase ® Descent to nearly circular
(5,000 km radius to target orbit) orbit

®

Control of centrifugal force
{(Prevention of lunar
collision)

Figure 1 Configuration and control of low-thrust lunar flight trajectory
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Figure 2 Barth-Moon fixed coordinate system (E-M coordinate system)
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Q point radius: 45,000 km
Q point position: 0°/ 0°

Q point velocity: 350 m/s / 0°
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Figure 5 Example of flight trajectory for polar approach
(E-M coordinate system, Q angle =0" )
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Figure 6 Example #1 of flight trajectory for equatorial approach
(E-M coordinate system, Q angle = 90° )
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Figure 7 Example #2 of flight trajectory for equatorial approach
(E-M coordinate system, Q point on line L)
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Figure 8 Example #3 of flight trajectory for equatorial approach
(E-M coordinate system, Q angle =-90° )
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Figure 10 Conditions for establishment of
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Figure 11 Relationship between orbital altitude and flight time
(3500 seconds thrust, 0.02myg initial acceleration)
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Figure 12 Relationship between orbital altitude and angle of inclination
of orbital plane ( 0 = 330%)
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( point radius: 45,000 km
i Q point position: 0"/ 0°

; O transfer :or‘b‘t Q point velocity: 350 m/s / O°
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Q goint .
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orbit (showing trajectories for initial deceleration on three days
before Q transfer, as well as on date of transfer)
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Figure 14 P point transfer orbit and coast flight trajectory for polar approach
(shown in 3 dimensions, from —45 days to date of Q point transfer)
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Q point radius: 45,000 km
Q point position: 0° /0’
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Figure 15 Stabilization of Q transfer orbit for orbital approach
(commencement of deceleration: -3 days)
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Figure 16 P point transfer orbit and coast flight orbit for equatorial approach
(from -60 days to Q point; Q angle: 90°
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Q point radius: 45,000 km
Q point position: 90"/ 0°
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Figure 17 Stabilization of Q transfer orbit for equatorial approach
(commencement of deceleration: -4 days)
A0 -+ g oo pTeeeeiteiQ point radius: 45,000 km
X/@’/W\_\W\& :Q point position: 0° /0
v : H ™~ ) noint velaeitv: 180 wn/e £ 0°
e R T L T L) FET TR P TV UL Vbl\)\/l{.)/. P EENFS T U
30 : ‘

:
.......................

Thrust error +1% -

v

POINE U_y e st 1
Qpoint 4oy Ineptal
£ 1 } H

b
‘!"ﬂ' ® €

/?/ ™ Thrust error —1%

248 : :

........................................................

10,000 km units

Figure 18 Coast flight trajectory error due to thrust error of P transfer phase (+1%)
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'Q point radius: 45,000 km
Q point position: 0"/ 0°
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Figure 19 Effectiveness of thrust control method for counteraction of thrust error (£10%)
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Figure 20 Influence of P point error on Q point, and effectiveness of perturbational guidance
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i Becentricity 0.2 (362 m/s)
. Bccentricity 0.0 (299 m/s)
X-7 Inertial

10 10,000km units

Figure 21 Relationship of Q point radius and velocity to Q transfer orbit
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Figure 22 Relationship between Q point approach velocity error
(=10 m/s) and Q transfer orbit
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Table 1  Orbit control, required time, and propellant consumption for each flight phase

Orbit control for flight phases

Required time
(in days)

Propellant
consumed (%)

Earth spiral orbit (approx. 10 months)
o Earth spiral, anterior phase
e Ascent to nearly circular orbit (initial altitude:
10,000 km)
e Adjustment of orbital plane angle of
inclination(control of increase of orbital radius)
e Earth spiral, posterior phase
e Maintenance of eccentricity and orbital plane (at
no greater than 0.05 and 0.3[deg], respectively)

e Adjustment of Q point intersection time

220.6

84.3

11.1

4.2

® Lunar capture frajectory (approx. 2 months)
e P transfer phase
e Enlargement of eccentricity (0.3 to 0.4)
e P point guidance (thrust on/off sequence control)
s Average thrust adjustment
e Coast flight phase
e Trajectory correction (perturbational guidance)
e (Q transfer phase
& Deceleration control

e Reduction of eccentricity (to about 0.2)

M
=
N

15.7

0.8

® Lunar spiral orbit (approx. 2 months)

e Descent to nearly circular orbit
s Lunar spiral, posterior phase
s Maintenance of eccentricity (at no greater than
0.02)

e Descent to nearly circular orbit

[N
L)
Lo

29.9

,_A
n

Total

416.2

20.5

This document is provided by JAXA.



NASDA Technical Memorandum (NASDA-TMR-950006T)
Date of Issue : October 15, 1996

Edited and Published by :

National Space Development Agency of Japan

2-4-1, Hamamatsu-cho, Minato-ku,

Tokyo, 105-60 Japan

© 1996 NASDA, All Rights reserved

Inquiries and suggestions on the Report

should be addressed to :

Technical Information Division

External relations Department

2-4-1, Hamamatsu-cho, Minato-ku,

Tokyo, 105-60 Japan

FAX : +81-3-5402-6516

* This report is an English version of NASDA-TMR-950006

This document is provided by JAXA.



W NASD/A

NATIONAL SPACE DEVELOPMENT AGENCY OF JAPAN

This document is provided by JAXA.



