39

217

A Solution-Adaptive Technique using Unstructured Hexahedral Grids

M. Sun and K. Takayama !

Abstract This paper summarizes our work on the development of a solution-adaptive flow solver
using unstructured hexahedral meshes for thress dimensional computation. A cell-face data struc-
ture is proposed to avoid data dependency that is encountered when applying unstructured data
for high performance computation. Two flow solvers are constructed using two different schemes.
One solver uses the MUSCL-Hancock scheme, a second-order upwind scheme, another employs
a second-order central-difference scheme with artificial viscosity. The parallel performance of the
solvers on three supercomputers is reported. Numerical result of shock motion from a square tube

to a circular tube is also presented.

Introduction

Unstructured meshes have been widely used in com-
putation fluid dynamics [11]. In order to improve the
accuracy of numerical solutions with less computer
time, various grid adaptation methods (e.g. [5, 12])
have been developed and applied to the simulation
of flows that contain disparate length scales, such as
flows with shock waves. Most schemes were proposed
for triangles and tetrahedra. Since a triangular
mesh contains more edges than the quadrilateral
counterpart, it consumes more storage and flux
evaluations. Aftosmis et al [1] compared a variety
of schemes on both meshes, and concluded that on
regular and stretched meshes the additional edges do
not lead to apparent accuracy advantage. For three
dimensional meshes, Biswas and Strawn [2] also
concluded that hexahedral meshes utilize computer
resources more efficiently than tetrahedral meshes
for the same level of accuracy by comparing the
solutions of the Euler equations. In addition, unlike
the hybrid methods that combine structured quadri-
laterals/prisms around body with unstructured
triangles/tetrahedrals outside in the computation of
viscous flows, a technique using unstructured quadri-
lateral or hexahedral meshes will neatly generate
a layer of body-fitted mesh by repeatedly refining
the cells in the boundary layer. It is a real bonus
that hexahedral grid generation becomes rather easy
especially due to rapid progress on the automation
of unstructured hexahedral meshing,. ?

The 2-D vectorized adaptive solver (VAS2D) us-
ing a grid containing uniform quadrilateral cells has
been presented in [9], and applied to the solution of
a variety of problems. The present work aims to de-
velop an algorithm for three-dimensional flows using
hexahedral cells. The paper is organized as follows.
Section 2 is devoted to the basic ideas of the present
data structure and grid adaptation. Section 3 reviews
the main points of the present flow solver. Section 4

1Shock Wave Research Center, Institute of Fluid Science,
Tohoku University, Katahira 2-1-1, Aoba, Sendai 980, Japan

L3 5
—
6
a 4

4//
T
{

Left Cell f Right Cell
/2

b 1

Figure 1: Cell-face data structure: a. every cell stores
its location and points to six faces; b. every face
stores the locations of its four vertices and points to
two neighboring cells.

reports numerical results.

Data structure and grid adapta-
tion

The data structure used for unstructured quadrilat-
eral and hexahedral meshes is optimized for the finite
volume method, in order to enhance computational
efficiency and to minimize memory requirement. The
finite volume method evaluates the change of the con-
servative values of all control volumes by integrating

Thic dociiment i nrovided hv JAXA

218 000000000000 0460

’ Refinement
—»

s
Coarsening

Figure 2: Strategy for grid adaptation: a father cell
is divided into eight sons

their interface fluxes which consists of two steps, cal-
culating fluxes at every interface and gathering in-
terface fluxes for every control volume. The data
structure is designed as having two primary arrays,
one for control volumes, another for faces, with a bi-
directional reference between them,
control volume <= face.

Thus the data structure is called a cell-face one. The
data structure actually degenerates to a cell-edge one
for 2-D quadrilateral grids. There are no reconcur-
rence appearing in the bi-directional reference, so
that it naturally avoids sorting or coloring for vec-
tor/parallel supercomputing. Furthermore, because
of the similarity of the data structure for two dimen-
sions and three dimensions, it is rather convenient for
programming.

A basic nature of the data structure for three di-
mensions is that every cell points to its six faces, and
every face points to its two neighboring cells, as shown
in Fig. 1. Physical variables are stored at cells, there-
fore it is a cell-centered data structure. Every face
is set to have a direction, so that we may label two
neibhouring cells, left and right, according to the di-
rection. The six faces of each cell is ordered following
these rules: two opposite faces must have the same di-
rection, and three pairs of opposite faces must consti-
tute a local coordinate system (the right-hand rule).
These strict definitions in the data structure reduce
the complexity of logic in the unstructured adaptive
solver without losing generality. The existence of the
ordering method for any unstructured quadrilateral
and hexahedral grids has been proven in [6, 9]. Note
that the data structure does not require additional
memory to store the definitions, but stores the neigh-
boring information following the rules.

A cell to be refined is divided into eight subcells
or sons as shown in Fig. 2. To avoid unlimitedly
adding fine cells around shock waves, either the max-
imum level of refinement or the minimum cell vol-
ume or both should be prescribed. When either the
level or the volume of cell reaches the given limit, fur-
ther refinement is prohibited. This strategy is simi-
lar to many other h-adaptive schemes. The criterion
used for grid adaptation is based on the truncation
error of the Taylor series expansion of density. The
truncation error indicator is given by the ratio of the
second-order derivative term to the first-order one in
the Taylor series. The indicator is consistent with
the limiting procedure in flow solvers so that the cells

that turn on the artificial viscosity or the slope limiter
must be refined.

Refinement and coarsening procedures are handled
separately. Both procedures have similar steps for
vector /parallel processing:

1. handling the inside of cells which are flagged to
be refined or coarsened,

2. handling the faces of the flagged cells,

3. arranging memory.

Step 1 is conducted based on cells, and updates all in-
formation inside, such as face deletion and adding of
finer cells, which is independent of other cells. Step 2,
based on faces, renews every face of refined or coars-
ened cells and its two neighboring cells, which may be
done without influencing other faces. In this way the
adaptation procedure has no data dependence and
can be naturally vectorized. Step 1 and 2 change the
status of some cells and faces, for example from sons
to fathers. Step 3 fills the “holls” that appear due to
the deletion of cells, and make the memory easily to
be accessed by other subroutines such as flow solvers.

Either the conservative or the primitive values at
newly appeared cells in the adaptation procedure
have to be imposed by those on the old mesh. In
the refinement procedure the conservative variables of
new sons are linearly interpolated from those of their
father, while in coarsening procedure flow variables of
a coarsened father cell are the volume-weighted aver-
age of these of its “dead” sons. The interpolation and
the weighted average for new cells preserve conserva-
tion [6].

Flow solver

The conservation laws are solved by the finite volume
method. The method solves the conservation laws
by directly applying them to every non-overlapping
discrete volume the summation of which covers the
whole computational domain. The conservation laws
written for a discrete control volume are, for a second-
order scheme in both time and space,

At faces .)
<o 2 (1)

b k=1

Uittt =u, -

where];"ZH/ ? are fluxes evolved by half a time step,

and locate at the center point of the interface k. Since
the values are unknown at the center point, they are
interpolated from the centroid (cell-centered data are
considered here). Difference between all conserva-
tive schemes is just how they calculate the numeri-
cal fluxes. Two schemes that belongs to the central-
difference scheme and the upwind scheme respectively
are used to calculate the fluxes.

For the solver using the central-difference scheme,
a TVD smoothing scheme is used [6]. A predictor
step evolves the solution by a modified half time step,
%(1 — 2u), by locally solving the two-dimensional
Lax-Friedrichs scheme at the interface, where p is a

Thic dociiment i nrovided hv JAXA

goboooooboooooboooboobooobobooooobog 219

smoothing coeflicient (see [8] for details). Both the in-
terpolation and the predictor step necessitate estima-
tion of the gradients at every cell which are given by
the least-square method. In solving the compressible
Euler equations, the fluxes through cell faces, which
consist of inviscid fluxes and smoothing fluxes, are

F= I;—‘inviscid + I‘Aﬂsmoothing' (2)

The inviscid fluxes are convection terms and pressure
surface terms, or those in the Euler equations. The
smoothing fluxes which are added to suppress spuri-
ous oscillations, read

— Pzl — Pyl — P:pi3
pu)zpr — (pu)yptz — (pu):pi3
~(pv)er — (pv)yp2 — (pv): 3
—(pE)ap1 — (pE)yp2 — (pE):p3
3)

where pq, po and p3 are nonlinear coefficients of ar-
tificial viscosity. In multi-dimensional flow, the arti-
ficial viscosity coefficient is actually a tensor. Since
it should be as less diffusive as possible, it is set to
be zero in directions other than the normal direction
of the wave front. It is then rotated to the Carte-

anloothing = *((

Hi
sian coordinates, and become | 0 p» 0 |. Hav-
0 0 w3

ing obtained the artificial viscosity coefficient in z, y
and z directions, one may easily design a smoothing
flux as that in (3). The direction of the wave front is
estimated by velocity difference between two cells.
For the solver using the upwind scheme, the
MUSCL-Hancock scheme (see, [10] for formulations
on structured grids) is extended to unstructured
grids. Primitive variables are first reconstructed by
the least square method at cells, and other proce-
dures are all conducted at interfaces. In slope lim-
iting procedure which aims to maintain TVD condi-
tions around sharp gradients, only gradients in the
direction along two neighboring cells beside an inter-
face are modified by limiters. The minmod limiter is
used in most applications. The limited slopes are then
used to evolve solutions at the two cells respectively
by half a time step. A HLL approximate Riemann
solver (see, [10]) is chosen to determine the flux at
interface because of its simplicity and generality.

Numerical results

The data structure proposed contains no data depen-
dency, so that it allows easy vector/parallel process-
ing without recourse to any sorting or coloring proce-
dure that most unstructured data structures require.
The parallel performance on three different machines
of our 2-D and 3-D solvers is summarized in Fig 3. On
the shared-memory machines, SX-5 and Cray C90,
the data are collected by testing an unsteady compu-
tation in which grid adaptation is performed at every

14 r --©-- VAS2D uon ORIGIN
----- VAS3D on ORIGIN o
L —e— VAS2D on CRAY CY0 -
- —a&— VAS3D on NEC SX-§
o 10}
b=}
=
2
a 8
%) _D'
6 ._
4t “
=,
5 L
P RTRT } 1 ! ! L 1
1 4 8 16 32

Processors

Figure 3: Performance of the 2-D and the 3-D solvers
on machines, Cray C90, Origin 2000, and SX-5

iteration. For eight processors the speedup is approx-
imately six, which is not bad for the two solvers are
automatically parallelized by the compliers coming
with the machines. On the distributed-memory ma-
chines, only steady flow computation is tested, and
very few adaptations are conducted. It seems that the
speedup achieved is not as high as well-tuned parallel
codes using domain decomposition method. However,
if the overheads of conducting domain decomposition
is taken into account, the speedup is rather satisfac-
tory because the data structure allows grid adapta-
tion that will decrease computer time dramatically
(but not the rate of speedup).

Numerical results of a 3-D case are shown in Fig. 4,
in which an incident shock wave with AM;=2.0 moves
from a square cross-section shock tube into a larger
cylindrical tube. Initial mesh contains 299 cells. No-
tice that unstructured cells are used in the cylindrical
cross-section. In this unsteady computation, because
of the existence of the moving shock wave and compli-
cated vortex formation whose locations are unknown
in advance, the mesh adaptation is done at every time
step. An adaptive mesh and the density distribution
on the surface at some instant after shock wave enter-
ing the circular tube are shown in Fig. 4bc; the total
number of cells is increased to about 0.78 million. It
takes about three minutes to run this computation on
SX-5 using one processor. It is seen that basic flow
features, such as incident shock and vortices, are well
reproduced. Hexahedral cells on a cut plane inside
the tube are shown in Fig. 4d; fine cells are clearly
distributed around shocks and vortex regions.

Concluding remarks

A solution-adaptive technique for unstructured hex-
ahedral meshes has been proposed using a vectoriz-
able data structure, and it is successfully applied to
the solution of the unsteady Euler equations. The ef-
ficiency of vector processing is comparable with that
of a structured solver.

In solving the Navier-Stokes equations, unlike the

Thic dociiment i nrovided hv JAXA

220 000000000000 0460

d.

Figure 4: Shock wave entering a cylindrical tube from
a smaller square tube: a. initial unstructured mesh,
299 cells; b. adaptive surface meshes at ¢ = 1.4,
totally 776,550 cells and 2,412,340 faces; c. corre-
sponding density contours; d. adaptive cells on a cut
plane.

hybrid methods which combine structured quadrilat-
erals around body with unstructured triangles out-
side, the present unstructured adaptation method
adopts uniformly unstructured quadrilateral and hex-
ahedral meshes. It neatly generates a layer of body-
fitted orthogonal mesh by repeatedly refining the cells
in the boundary layer, and allows easy directional
refinement. Extension of the technique for solving
Navier-Stokes equations is now being under construc-
tion.

References

[1] Aftosmis MJ, Gaitonde D, Sean Tavares T (1994)
On the accuracy, stability, and monotonicity
of various reconstruction algorithms of unstruc-
tured meshes, ATAA paper 94-0415.

[2] Biswas R, Strawn RC (1997) Tetrahedral and
hexahedral mesh adaptation for CFD problems,
NAS-97-007, NASA Ames Research Center.

[3] Domel ND (1996) Research in parallel algorithms
and software for computational aerosciences,
NAS-96-004, NASA Ames Research Center.

[4] Kallinderis Y, Vijayan P (1993) Adaptive
refinement-coarsening scheme for three-
dimensional unstructured meshes. ATAA J.
31 : 1440-1447.

[5] Lohner R (1987), Comput. Meths. Appl. Meh.
Engrg. V61, pp.323-338.

6] Sun M (1998) Numerical and experimental
studies of shock wave interaction with bodies,
Ph.D. Thesis, Tohoku University, Japan. http:
//ceres.ifs.tohoku.ac.jp/ "sun/thesis.html

[7] Sun M, Takayama K (1999) Conservative
smoothing on an adaptive quadrilateral grid, J.
Comp. Phys, V150 : 143-180.

[8] Sun M, Takayama K (1999) A simple smooth-
ing TVD scheme on structured and unstructured
grids, Godunov methods theory and applications,
Oxford University, Oct. 18-22.

[9] Sun M, Takayama K (1999) H-adaption on un-
structured quadrilaterals, 8th Intl. Symp. on
Comput. Fluid Dynamics, Bremen, Germany.

[10] Toro EF (1999) Riemann solvers and numer-
ical methods for fluid dynamics, 2nd edition,
Springer.

[11] Venkatakrishnan V (1995) A perspective on un-
structured grid flow solvers, AIAA paper 95-
0667. see also AIAA J. V34 : 533-547, 1996.

[12] Voinovich P, Timofeev E, Takayama K, Saito T,
Galyukov A (1998), ATAA paper 98-0540.

Thie dociiment i nrovided hv TAXA

