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ABSTRACT

As a step to develop an accurate solution technique, grid-refined multi-block system in parailel computing was used to
solve two-dimensional unsteady Navier-Stokes equations with Baldwin-Lomax turbulence modeling. Flowfields around
NACAQ012 in several conditions were solved to show effectiveness of the method by comparing several aerodynamic
coefficients with experimental data. In the first part, the solver was validated with steady/unsteady test cases to compare
the results with experimental data. Flowfields around a NACAQ0012 airfoil with pitching and/or plunging motions were
analyzed by solving two-dimensional unsteady compressible Navier-Stokes equations. An unsteady flowfield of the
oscillatory airfoil was solved and compared with experimental data. Grid was refined near airfoil and the wake region
following the shed vortex trace to reduce the numerical dissipation and multi-block grids with Zonal boundary were used
for efficient calculation using parallel computing. In the second part, flow interactions between wake and airfoil were
solved. The shed vortex induced from the oscillating airfoil was applied as inflow condition of the following airfoil using
periodic boundary conditions, which is a simplified two-dimensional model of a helicopter rotor blade at the mid-span
section. The induced wake of the pitching airfoil, which was affected by the following airfoil, was used with various grid
systems to show that refined grid is effective in reducing the numerical dissipation.

1. Introduction

Blade-Wake Interaction (BWI) was introduced more than
20 years ago, and BWI noise was specifically identified by
Brook in 1988. Even there are several ways of dividing
helicopter noise, if wd focus on the spectrum analysis,
helicopter was said to have 4 kinds of noise mechanism as
shown in figure 101,

One is discrete loading noise due to steady and
azimuthally dependent blade loading, which dominates the
lower harmonics of the blade passage frequency. Next is
discrete impulsive noise, or Blade-Vortex Interaction (BVI)
noise which is already weli known to dominate a large
number of harmonics. Broadband noise of Blade-Wake
Interaction (BWI) noise is dominant at somewhat higher
frequencies because of blade interaction with turbulence in
and about the general rotor wake. The last one is broadband
self-noise due to blade interaction with boundary layer and
near-wake turbulence, which controls the high-frequency
part of spectra.
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Figure 1. Diagram of noise sources in helicopter rotor
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The relative significance of each of these mechanisms is
dependent on rotor operating conditions. BVI is, as already
known, dominant during decent flight. Blade-Wake
Interaction (BWI) is known to be significant in level or climb
flight, which is important to human sensitivity!'l. At high climb
angles, BWI is reduced and self-noise from blade boundary-
layer turbulence becomes the most prominent.

In this paper, BWI was simplified into 2D interaction
model. Figure 2 shows the diagram of interaction between

shed vortex from osciilating airfoil and following airfoil. This
can be figured out to compose one repeated computational
domain, and the computational domain can be altered to
include one whole blade with fore and rear flow region. To
simulate the hovering flight or low-speed forward flight of
helicopter rotor, periodic condition can be applied to inflow
and outflow boundary conditions.
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Figure 2. Diagram of interaction between vortex and airfoil

In solving the wake or vortex flow with computational fluid
dynamics method, numerical dissipation is one of the
important barriers for accurate solution. Up to now many
researchers have been trying to overcome these difficulties,
specially linked to vortex capturing CFD methods.

Highly accurate schemes allow one to diminish the
numerical dissipation but they increase the required CPU
time per cell and require extended boundary conditions.
Another approach is to use local Eulerian/Lagrangian
coupling method but stability and conservation problems
may arise. An alternative is to use mesh adaptation using
overset grid or refined grid.

For two-dimensional airfoil problem with wake, two grid
systems can be easily used for refinement, which is shown
in figure 3. C-type grid system (figure 3(a)) is good for grid
reduction and attraction to the surface, and also good to
capture the wake. But in order to calculate re-entered wake
like helicopter rotor, H-type grid (figure 3(b)) will be better for
periodic boundary condition and fine grid following the wake.
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Figure 3. Diagram of multi-block grid system
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In this research, as a step to develop the accurate
solution technique, grid-refined multi-block system was used
to solve two-dimensional unsteady Navier-Stokes equations
in paraliel computing with Baldwin-Lomax turbulence
modeling. Flowfields around NACA0012 in several
conditions were solved to show effectiveness of the method
by comparing several aerodynamic coefficients with
experimental data.

2. Numerical Method
The governing equations of two-dimensional compressible

Navier-Stokes can be written in generalized coordinate
system as the followings:

180 oF-F) 4G-G,) _
J ot , 98 an

0

where
0 =[p.pu, pv.ef
F = [,cu,,ou2 +p,puv,u(e+p):r ,

G =[pv,puv,pv2 +p,v(e+p)]r’
F = 0,rn,rxy,urn +VT, -q ]r,

G, = [O,Iyx,ryy,uryx +VT, -qy]'
F=(EF+EG)J, F =(F, +5G,)/J
G=(F+n,G)/J+ G, =@,F, +n,G)/J

6(5,77) 1

J = Wey) &, -1, =Py, x|
in the above equations, p is the gas density, u, v the
Cartesian velocity components in x, y directions, e is the total
energy per unit volume. The pressure p is obtained by the
perfect gas equation by

p=(r -1)[e—§p(u2 +v2)}

where v is the ratio of specific heats, usually as y =1.4 for air.

The components of stress tensor derived with the
assumption of linear stress-strain relation and Stokes’
hypothesis for bulk viscosity are

Man2e )

x Rem 3 2ux Vy)
M_u?2

o R:f;(zvy _ux)’

T, =T,= A;:” (uy +vx)

The elements of heat flux vector are expressed by the
Fourier law of heat conduction as
= ___M"’K £ ’

M. ot
S Re, odx %

Re, oy

®

where T is the temperature and « is the thermal conductivity.

The inviscid flux vectors are discretized using Roe's fiux
difference splitting (FDS) method?®. The flux difference
across a cell interface is divided into components associated
with each characteristic wave with third order accuracy using
TVD schemeP. Roe's approximate Riemann solver does not
satisfy the entropy condition and thus permits physically
inadmissible expansion shock. To remedy this problem,
entropy correction is applied

For time integration, Euler Backward Implicit Time
Integration was used with 2nd order accuracy using 3 point
Euler implicit method.

As a solution algorithm, Upwind Line Gauss-Seidai
Relaxation method was used. To simulate viscous turbulent
flow, Baldwin-Lomax Algebraic turbulence modeling was
used.

3. Results and Discussion
3.1 Validation
Test case for steady flow around RAE2822 airfoil has

Mach number equal to 0.73, Reynolds number equal to
6.5x10° at the angle of attack, a equal to 2.79 °.
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Figure 4. Multi-block grid system for RAE2822 airfoil

Figure 4 shows the two-block grid system with Zonal
boundary between fine and coarse grid for RAE2822 airfoil.
Near the surface, the density of grid was doubled to get a
more accurate solution. Figure 5 shows that the pressure
contours are connected smoothly along the Zonal boundary,
and C, curves, as shown in figure 6, show that this refined
grid can be used to get as good solutions as fine grid. The
pressure coefficient curve shows that calculation resuit
matches well with Cook's experimental datal”, and when
using more grids, the results are shown to become better.
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Figure 5. Pressure contours
{M=0.73, Re=6.5x10°%, a =2.79 °, RAE2822 airfoil)
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Figure 6. Pressure coefficients along the airfoil surface
(M=0.73, Re=6.5x10°%, o =2.79 °, RAE2822 airfoil)

Flowfields around a NACA0012 airfoil with pitching
and/or plunging motions were analyzed by solving two-
dimensional  unsteady  compressible  Navier-Stokes
equations. An unsteady flowfield of the oscillatory airfoil was
given to be the followings: free stream Mach number,
M=0.755, Reynolds number in inflow, Re=5.5x10%. The
oscillatory angle of attach is a =0.016° +2.51 ° x sin{2Mkf)
with the reduced frequency of oscillation, &, which is defined
as,

k=% _00814
U

where ¢ is the chord length, w is the angular velocity of
oscillation, and U is the inflow velocity.

Figure 7 shows pressure contours at various angles of
attack in pitching motion, and figure 8 shows typical
unsteady hysteresis of the lift and pitching moment
coefficients around oscillating airfoil, which was compared
with experimental data'® .

Figure 7. Pressure contours at various angles of attack
{M=0.755,0=0.016°+2.51°xsin(2Mk1),k=0.0814,Re=5.5x10°%)
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Figure 8. Hysteresis of lift and pitching moment coefficients
around a pitching airfoil
(M=0.755,0=0.016°+2.51°xsin(2Mk),k=0.08 14, Re=5.5x105)

3.2 Pitching/plunging airfoil

Plunging motion was solved with the vertical
displacement analogous to pitching motion. The mean angle
of attack was given to be 10°, and the maximum effective
angle of attack by plunging motion can be calculated from
equation of the plunging motion by

tan(a, ) = (%) ’

h=h, xcos(wt), h= -h,wsin(wt) »

h, =gtana”l

w
where g _is the magnitude of pitching oscillation, 4 _is the
magnitude of plunging motion, and # is the first derivative
of h. The angular velocity of oscillation, w, was set to be
identical with  that of pitching oscillation. With above
relation, j can be expressed with reduced frequency of

oscillation, &, after non-dimensionalization,

m

h, = itan a,
2k

In this case, h,, was set in order to make a, =10 °,

Figure 9 shows the hysteresis of the normal force
coefficients and pitching moment coefficients as the
amplitude of vertical displacement varies. Like the results of
pitching airfoil, lift coefficients shows typical unsteady
hysteresis. Lift coefficients become lower during angle of
attack increase (nose-up) on account of decrease of
effective angle of attack, and become larger during angle of
attack decrease (nose-down) on account of increase of
effective angle of attack. Navier-Stokes solver makes higher
amplitude of oscillation in hysteresis of lift coefficients, which
means viscous effect makes higher unsteadiness in plunging
motion.
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Figure 9. Hysteresis for plunging cases
(M=0.3,0=10°, h_=1/2k tan10° k=0.1, Re=4.6x10°)

Next, combined pitching and plunging motion was solved
to show wake characteristics of the 2 different types of
oscillating motion of the airfoil. Figure 10 shows the
hysteresis of the lift force coefficients and pitching moment
coefficients as angle of attack and vertical displacement vary
including the comparison with those of the case of pitching
motion only. Compared with case of pitching motion only, the
plunging motion played a role to reduce an unsteadiness of
the oscillatory airfoil in this case.
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Figure 10. Hysteresis for combined pitching and plunging
(M=0.3, a=10°+10°sin(2Mk1), k=0.1, Re=4.6x105,

h, =1/2k tan10’)

3.3 2D BWI Model

In the second part, flow interaction between wake and
airfoil was solved with two-dimensional compressible
unsteady Navier-Stokes solver. Figure 11 shows diagram of
interaction between shed vortex and following airfoil. The
shed vortex induced from the oscillating airfoil was applied
as inflow condition of the following airfoil using periodic
boundary condition, which is the simplified two-dimensional
model of helicopter rotor blade at the mid-span section.
NACAD012 airfoil |
a =0.016 °+2.51 x SIN(2MKY)
M-06 :

Re - 55 x10*
k = 0.0814

- 2 blade airfoll - -4 blade airfoil -

Rotor model

Distance between
two blades

05x3taxr=-11c!

e f—>| 1

Computational 10c
domain

Figure 11. Diagram of interaction between vortex and airfoil

First, successive three NACA0012 airfoils was composed
to make one whole computational domain as shown in figure
12. Free stream inflow condition was given to the first airfoil
and normal exit condition was applied to the third airfoil.
Then for comparison, one airfoil was used to solve the

periodic boundary cases. The exit flow was given to the
inflow condition repeatedly to simulate periodic boundary
condition. For the actual rotor, the movement of two airfoil
will be differed according to the azimuth angle, but in this
calculation, airfoils were simplified to be synchronized to
have the same oscillation movement.

£ n
P T off oW o 1 16 i@ &

Figure 12. Grid system of successive NACAQ0012 airfoils

The flow conditions are set to be Mach number equal to
0.6, Reynolds number equal to 5.5x10° the oscillatory angle

- of attack in pitching motion, a, equal to 0.016° +2.51° x

sin(2Mkt). The reduced frequency was set to be equal with
experiment, £k=0.0814.

3 succensive airfol [La5c]

At airdosl

(a) successive 3 airfoils (b) periodic
Figure 13. U-velocity contours

(M=0.755,0=0.016°+2.51° xsin(2Mkf) k=0.0814, Re=5.5x10°)

Figure 13 shows u-velocity contours for successive 3
airfoils and airfoil with periodic case. The disturbed effects
by wake interaction were shown in the 2" airfoil, the 3
airfoil, and the periodic case shows much stronger effect.
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Figure 14. Hysteresis of lift and pitching moment coefficients
around a pitching airfoil for single and periodic conditions
(M=0.755,a=0.016°+2.51° xsin(2Mk{) k=0.0814, Re=5.5x105)

Figure 14 shows the comparison of the hysteresis of lift
and pitching moment coefficients around a pitching airfoil for
single airfoil with normai flow field condition (single) and
periodic boundary condition. In the case using periodic
boundary condition, the wake which was caused by the
former blade altered the following airfoil. The induced wake
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of the pitching airfoil, which was effected by the following
airfoil, with various grid systems was used to show that grid
refinement method can be available in reducing the
numerical dissipation.

2=1.1358 (nose up) a=2.1844(nose up) __a=1.7752(nose down) a=0.2758(nose down)
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(b) L=10c
Figure 15. Comparison of pressure coefficients for 3 airfoil
and periodic airfoil at various angles
(M=0.755,0=0.016°+2.51° xsin(2Mk1) ,k=0.0814, Re=5.5x105)

Figure 15 shows comparison of pressure coefficients for
3 airfoil and periodic airfoil at various angles. The whole
tendency of pressure coefficients is similar, but as interaction
goes on (starting from first airfoil with no interaction to
periodic airfoil with enough interaction), the peak point of
pressure coefficient decreases.

T 5 T 3

(b) L=10c
Figure 16. Unsteady hysteresis of lift, drag and pitching
moment coefficients around a pitching airfoil
(M=0.755,0=0.016°+2.51° xsin(2Mk1) ,k=0.0814, Re=5.5x105)

Figure 16 shows unsteady hysteresis of lift, drag and
pitching moment coefficients for successive three airfoils for
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2 blade (L=10c) and 4 blade (L=5c) and periodic case.
Interaction with wake affects on maximum/minimum angles
of attack, then the hysteresis were altered to be irregular,
and finally became quite different for periodic case.
Considering the length of the wake region, the case with 5
chord length shows 1o be much affected by interaction and
makes more disturbed shapes. Figure 17 shows time history
of pressure value at 2 points above/below the trailing edge
for the case of successive 3 airfoils and case of periodic
boundary condition. Sampling points are iocated upper and
lower points very near the surface and trailing edge.
Compared with the fact that 1st airfoil has quite simple
sinusoidal wave form, the 2™ and the 3" airfoils show more
disturbed wave form, and the case of periodic boundary
condition shows much complicated waves with higher
frequencies.

Sucessive 3 airfoil (L=5¢)

Sucessive 3 airfoil (L=10c)

with periadic boundary condition (L=5c]
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Figure 17. Time history of pressure near trailing edge points
{M=0.755,0=0.016°+2.51° xsin(2Mk1) k=0.0814, Re=5.5x10°%)

By doing Fast Fourier Transform (FFT) analysis, these
higher frequencies can be seen in spectrums. Figure 18
shows FFT results for same pressure histories at upper point.
As shown here, compared with basic frequency of airfoil
oscillating in sinusoidal wave, twice and three times higher
frequencies appear, and these higher frequencies become
stronger as interaction repeats itself. The case of periodic
boundary condition shows that higher frequencies become
more dominant. Figures 18 (a) and (b) show FFT analysis
for lift coefficient for L=5c, 10c. As flows encounter the
interaction from first airfoil, the higher frequency
characteristics occur, and the effects become stronger in the
periodic conditions and in the case of L=5c. Figures 18 (c) to
(f) show drag and pitching moment coefficients for L=5c¢, 10c.
Figures 18 (g) and (h) are the FFT results for pressure at
one point near trailing edge.
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(b) Lift coefficient for L=10c
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(d) Drag coefficient for L=10c
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(e) Pitching moment coefficient for L=5c
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(f) Pitching moment coefficient for L=10c

1stairfoil 4 2nd airfoil Ten 3rd airfoil il periodic

d
,__LUMIL_.

| |

d— % ”.l. [ * o) Cd

o " o

i

Oscillation
frequency

“J‘ ey

1stairfoil 2nd airfoll P 3rd airfoil

|
W Oscillation
[ frequency

T
T
L
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(h) Pressure at a point near trailing edge for L=10c

Figure 18. Hysteresis of lift and pitching moment coefficients
around a pitching airfoil for single and periodic condition
(M=0.755,0=0.016°+2.51° xsin(2Mk{) ,k=0.0814, Re=5.5x10°)

4, Conclusions

As a step to develop the solution technique for the
flowfield around a helicopter rotor blade, two-dimensional,
steady Navier-Stokes equation were solved using grid-
refined multi-block system in parallel computing. Flow
analysis of RAE2822 airfoil shows effectiveness of this
method in computation cost with equal accuracy by
comparing several aerodynamic coefficients  with
experimental data.

Flowfields around a NACAO0012 airfoil in pitching and
plunging motion were analyzed by solving two-dimensional
compressible Navier-Stokes equations. In analysis of the
oscillatory pitching airfoil, the unsteady characteristics such

as hysteresis of aerodynamic coefficients can be
successfully simulated. Grid clustering in wall region was
found to have a quite large effect on the numerical accuracy.
In the analysis of plunging motion, a simitar unsteady
hysteresis of aerodynamic coefficients was shown, which
caused by the variation of the effective angle of attack. The
flow solution of the combined pitching and plunging motion
shows the effect of 2 different types of oscillating motion of
the airfoil, where plunging effect on aerodynamic
characteristics is comparably small but worthy to be
considered.

Blade-Wake Interaction (BWI) was simulated with simple
2D model to show the effect of wake interaction with the
following airfoils. Three successive airfoils and an airfoil with
periodic condition were used to show that as interaction
goes on, higher frequency in flow characteristics was
produced and became stronger.

With the above research, we can conclude the followings.
(1) grid refinement method is effective in reducing the

numerical dissipation using relatively small computing

power.

(2) the interaction with the blade and its wake produced
high-frequency fluctuation and wake itself was highly
disturbed.

(3) three successive airfoils, even they show the effect of
wake interaction, is not enough to get periodic solution
as those in helicopter rotor. It means that undisturbed
vortex (wake) is insufficient to account for BWI analysis
and that wake interaction should be well-considered in
helicopter rotor noise problem.

To increase the efficiency of computation, research on
the domain decomposition and Zonal boundary should be
carried out together with research on paraliel computation.
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