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Transition prediction of three-dimensional boundary layer is numerically investigated by the use of a modified

6N

method. Main idea is the corporation of a complex ray theory into the e method so as to uniquely determine

a wavenumber which corresponds to a most amplified disturbance wave. From the calculation for a flow around
a yawed circular cylinder with sweep angle 50°, it is found that the results agree well with a theoretical one

obtained by N.Itoh (1986) excepting the N factor.
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1 Introduction

The prediction of laminar-turbulent transition is
one of the most interesting subjects of aeronautical
engineering. NASA developed a numerical predic-
tion code with the e method called SALLYY) and
it is available for relatively inexpensive calculation of
the N factor. However the SALLY code and some
other prediction codes?) have a crucial shortcoming
that some of the unknown values can not be deter-
mined in principle. Thus, the user must arbitrarily
determine the value of wavenumber or wave length of
disturbance.

In order to overcome this unreasonable procedure,
we developed a improved prediction code on the basis
of a complex ray theory, which can determine a prop-
agation path of a disturbance wave. From the com-
parison of the present result with a theoretical one,
it is found that both results agree well, especially for
wavenumbers.

2 Complex ray theory

This theory is proposed by N.Itoh?) on the basis of
the extended kinematic wave theory, and its outline
is given as follows.

Firstly, it is assumed that a disturbance is written
in a wavy form

u(X) = @(Z) exp(10/e), (1)

where © is a phase function, and the coordinates
X,Y and Z denote the chord wise, the span wise and
normal-to-the-wall directions, respectively. Then,
complex chord wise wavenumber «, complex span

wise wavenumber 3 and complex frequency w are de-
fined by

0 _ao 00_p 20 u
X T A Yy — A’ T = Ay
Then, these quantities satisfy

w = Qae, 8; X), (3)

where €y, A1, Ag are

€0 = vV Vls/Uoo/lsv Ay = 6/50, Ag = Al/(QE/Qoo),
(4)
and [, is the surface length, and boundary layer thick-
ness 6 and é, are

6§ = /vz/Ug, 8o = Vvl Uy. (5)

These quantities must satisfy the compatibility con-
ditions

o a. 8 B
W(A_l) = ﬁa)» (6)
0 «a J  w
ﬁ(zl—) = “3x A—2)7 (7)
a,0 _ J  w
ﬁ(A—l) = _W(A_z)' ‘ (8)

When we consider a wedge-shaped disturbance
originating from a point source, imaginary part of w
and differentiation with respect to T are 0, namely

0 o 0 9)
w; = U, —_— = U.

oT
With these restrictions and the compatibility condi-

tions (6)-(8), we can derive an equation

d ﬂ wg o ﬁ _
ﬁ(A_l)+w_.y-é?(K1_) =0. (10)

This equation means that

“ 3/A, does not change on %X = 2 = C »,
1 dx Va

Then imaginary part of C must satisfy a condition

X1
n:/ C; dX =0, (11)
Xo

where Xy and X, correspond to a source point of the
disturbance and an observation location, respectively.

Consequently, from this realizable condition (11)
and dispersion relation (3), the wavenumber of distur-
bance can be uniquely determined with the input of a
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frequency : although the growth rate of disturbance
on the span wise direction remain as a parameter, this
value is initially determined by physical demand.

Then the total amplification N between Xy and X,
is defined as

X3
N=-5 [a; + B:C,] dX, (S:const.), (12)
Xo

which represents the value of log(A; /Ap).

3 Results and discussion

We examined the instability of a 3-D boundary
layer around a infinite yawed circular cylinder with
the sweep angle 50° as shown in Fig.1. Reynolds
number, which is defined with a uniform flow velocity
and the chord length, is 0.5 x 10%. In the linear sta-
bility analysis, the Orr-Sommerfeld equation is used
and the velocity profiles of the boundary layer are
obtained from a similarity solution®).

Figure 2 shows the variation of the wavenumber
and the N factor with frequency ( rigid lines : present
results, broken lines : theoretical ones®) ). In this
case, (3; and w; are 0. This condition means that the
disturbance waves can not amplify in time and in the
span wise direction. A quite large difference of the N
factor between the theoretical and the present result is
found in this figure, although the wave numbers show
good agreement. This difference probably originated
from the difference in the stability equations used. It
is interested that the peak value of N appears at non-
zero frequency. This means that a stationary wave is
not dominant in this case.

The variation of N factor with the change of the
observation points X; from 0.15 to 0.40 is shown in
Fig.3. The N factor of each disturbance increases as
the move of X; toward the downstream. This means
that the disturbances are always unstable at least in
this observation range. Furthermore, at each obser-
vation locations, the value of frequency correspond-
ing to the most amplified disturbance is always about
w, =~ 0.8. This fact shows that the disturbance wave
being dominant at the upstream location is always
dominant at each downstream location.
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Fig.1 The flow field.
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Fig.2 The variations of wavenumbers and N factor
with frequency ( 3; = w; = 0.0 ).
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Fig.3 The variation of N factor with frequency at sev-
eral observation points ( 3; = w; = 0.0).
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