Second International Workshop or CFD for SST 225

Anisotropic Cartesian Grid Adaptation

Paulus R. Lahur, School of Engineering, Nagoya University, E-mail: lahur@aero4.nuae.nagova-u.ac.jp
Yoshiaki Nakamura, Dept. of Aerospace Eng.. Nagoya University. E-mail: nakamura@nuae.nagoya-u.ac.jp

Furo-cho, Chikusa-ku. Nagoya 464-8603, Japan

Key Words: Anisotropic Cartesian Grid, Grid Adaptation

A grid adaptation method using anisotropic Cartesian grid in three dimensions has been developed to
improve the efficiency of an existing Cartesian grid adaptation by reducing the total number of cells
needed to resolve flow features. The method is capable of coarsening and refining a grid in such a
way that the cell aspect ratio can take an arbitrary value. Flow computations with the present method
for a supersonic flow around a cylinder and a transonic flow around an ONERA M6 wing are
presented here, which show good agreement with experiment. For the case of cylinder, the present
method produces about 67 times fewer cells than the isotropic approach. This dramatic saving is due
to the ability of the three-dimensional code employed here to treat cells without any limitation on
their aspect ratio. For the case of ONERA Me. the ratio of saving is about 2.5. Though the amount of
memory per cell is higher than that of the isotropic approach, the overall memory requirement
becomes lower, due to reduction in the number of cells. This means that the present method can

make flow computation more efficient.

1. Introduction

Recently, Cartesian grids have become popular in
computing the flow around a complex geometry due to
their tast and automati¢ grid generation. Furthermore,
they allow for simple local clustering of grid cells,
which is particularly advantageous in performing
solution adaptive for a realistic geometry. Grid
refinement on a Cartesian grid is usually achieved by
dividing a cell isotropically into eight sub-cells of equal
size in 3D.

However, isotropic refinement results in an exce-
ssive number of cells because flow features are usually
anisotropic in nature, as in the case of shock wave. To
overcome this weakness, a grid that allows for aniso-
tropic grid refinement should be employed.

Anisotropic Cartesian grid adaptation consists of two
main processes: grid refinement and coarsening. At
present, other researches in this particular area consider
either grid refinement, as in Refs. [1], [2], and [3], or
coarsening only, as in Ref. [4]. In the present study both
processes are carried out, where no restrictions are
imposed on the cell aspect ratio. The only restriction is
concerning the minimum length of cell side. Calculated
results of supersonic flow around a cylinder and
transonic flow around a standard ONERA M6 wing will
be described to evaluate the present algorithm.

2. Anisotropic Grid Adaptation

The main steps of the present method are shown in
Fig. 1. The procedure starts with a rough grid distribu-
tion, which is generated isotropically around a body.
First, on this grid the flow is solved up to a certain
degree of convergence, and then the grid is improved
based on the calculated result. Thus, one adaptation
cycle is completed. The grid adaptation process consists
of grid coarsening. refinement, and smoothing. The
following sub-sections discuss the main aspects of the
anisotropic grid adap-tation method proposed here.

2.1. Adaptation Parameter

The adaptation parameter employved here is a
modified second difference of selected components of
the flow solution vector, which is calculated for each
cell in the x, y and z directions. The computation is
actually carried out as in Egs. 1 and 2b, where only x
direction is shown for simplicity. Incidentally, Eq. 2a is
a common formula to compute second derivative.

However, for our purpose. Eq. 2a is modified to
Eq.2b. The first modification is the use ot length scale L.
Increasing its value will refine a large cell. but if its
value is too high, it will create too many cells in smooth
flow regions without sufficient cell clustering around
important tlow features. On the other hand, decreasing
the value of L will refine a small cell, but its too low
value will create a grid with abrupt spatial change in
cell’s relative size, which degrades solution accuracy. It
is found that the value of L between around 2 and 3
gives satisfactory results for the test cases presented
here.

The second modification is the use of a maximum of
first solution derivatives at the cell face. It is necessary
to increase the value of G for a cell with many
neighbors, so that it is more likely to be retined.
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where Q is the tlow solution. x and AX are the
coordinate of centroid and the cell size in a given
direction, respectively. Subscript i indicates the cell
under consideration, and j its neighboring cell. The
asterisk indicates cell face. L is a length scale that
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determines the balance of refinement between small and
large cells.

Having obtained adaptation parameter G for all cells,
its mean value and standard deviation (sdev) are
calculated to determine threshold values for grid
coarsening and refinement, T, and Thign» TESPEC-

tively, as shown in Eqs. 3 and 4. A cell with G < T,

in a certain direction is a candidate for coarsening in
that direction, while that with G >T,.,,, is a candidate

for refinement.

Tiow =mean(G) = R joy, -sdev(G) 3)
Thigh = mean(G) + Ry, -sdev(G) 4)

where R and R gy AT€ the parameters defined by

Users.

2.2. Grid Coarsening

Grid coarsening is performed by removing the inter-
face between cell i and its neighbor j if the following
conditions are satistied.

(Gi )n < Tlow and (Gj )n < Tlow )

where n is the direction normal to the interface.

In general, a cell may also be a candidate for coarsening
in several directions, in which case priority is given to
the direction where the value of G is the lowest. It
should be noted that the actual coarsening is carried out
only when the two faces match exactly with each other.
This is necessary to preserve the concept of Cartesian
grid cell.

2.3. Grid Refinement

A cell is refined by dividing it into two parts in a
direction where the value of G is higher than the upper
threshold value, Thigh in that direction. As a result, a

cell can be refined in several directions, as shown in Fig.
2. For practical reasons, there are limitations on the
minimum cell size and the maximum number of cells in
this study.

2.4. Grid Smoothness

After the coarsening and refinement mentioned above,
the cell size and orientation are not smoothly distributed.
Of particular concern is the cell size relative to its
neighbors, because large variation in size may degrade
solution accuracy. Hence, it is necessary to smooth out
the grid. The smoothing process, however, is rather
time-consuming, due to the. problem of neighbor
searching in unstructured grid. Thus, it is preferred that
the grid is already reasonably smooth before imple-
menting the smoothing process, so that computational
effort is kept to minimum. This is obtained by setting
Ry,wand Righ in Egs. 3 and 4 to high values, so that

only cells which definitely have to be refined or
coarsened are modified. However, setting the parameter
to a too high value may cause insufficient grid
adaptation, which requires more adaptation cycles. A
reasonable balance is found when the values of R

and R hioh is set to 0.5.

The grid smoothness is defined in this study that the
number of neighboring cells is limited to a maximum of
two in each of two directions along the cell face. If this
condition is violated, the cell is divided into two cells in
the direction with too many neighbors. The division is
made in such a way that the cell boundary matches that
of its neighbors. Thus, this method can successfully
generate a reasonably smooth grid.

2.5. Data Structure

In generating a grid. where its cell has an arbitrary
value of the aspect ratio, an unstructured approach is
adopted in this study. Here each cell stores the integer
coordinates to locate its vertices. Unlike floating point
value, the integer representation is accurate, so that a
cell can find its neighbors easily.

A problem of this approach is that the cell searching
process is linear, which takes excessive time for the case
of a large number of cells. To overcome this problem,
an ADT (Alternating Digital Tree) is employed at grid
genera-tion and adaptation.” ADT is particularly suitable
for storing and searching a finite-sized object in multi-
dimensional space. A well-balanced ADT can reduce
the searching task to a log N process, where N is the
number of cells

3. Grid Generation and Flow Solver

The Cartesian grid generation and the flow solver
employed here are basically the same as those reported
previously by the authors (see Ref. [6]). The Euler
equations are solved to calculate inviscid. compressible
tlows. The flow solver is based on a cell-centered finite
volume scheme, where the numerical flux is computed
using Hinnel’s flux-vector-splitting scheme.” The
MUSCL method is used to compute the tlux with
second order accuracy. Time integration is carried out
with a 3-stage Runge-Kutta method, where local time
stepping is applied to accelerate the convergence rate.
To make the time step size as large as possible, an
extremely small cell at the solid boundary is merged
with the largest of its neighbors.

4. Test Cases
4.1 Cylinder in Supersonic Flow

The first test case is a circular cylinder with a unit
radius in a supersonic flow of M=3.0. The objective is
two-fold. The first is to test applicability of the present
3D method to a 2D flow problem. since such 2D tlow
corresponds to a kind of anisotropic grid. where it is
uniform in the spanwise direction. That is. all cells
extend to the whole span region. The second objective is
to examine whether the method can efficiently capture
flow features of shocks and wake, as well as smooth
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flow regions.

First, an isotropic grid is generated around half of the
cylinder. which contains 46.480 cells. This is quite a
large number for this kind of 2D computations. The
initial grid used in this test case is obtained by merging
all cells of the isotropic grid in the spanwise direction.
which results in 1,643 cells. The upstream, downstream
and upper boundary conditions are set to free tlow,
whereas at the left, right and lower boundaries
conditions are imposed.

The anisotropic grid adaptation is carried out using
density and mach number as sensor parameters. The
length scale L in Eq. 2b is set to 0.3. The initial.
intermediate and final grids are shown in Fig. 3. and the
corresponding flow solutions are shown in Fig. 4. The
number of adaptation cycle is 9. beyond which the grid
and solution change little.

It is observed that the grid adaptation quickly and
sharply captures flow features such as shocks by
refining the cells in these regions. At the 6th adaptation
cyele, the finest cells at the main shock already stretch
all the way to the downstream computational boundary.
which is placed at a distance 10 times as large as the
radius from the center of the cylinder. Cell refinement
also takes place in the regions of small variation, such
as behind the main shock, but at a slower pace, i.e. at
the 9th adaptation cycle in this study. It is observed that
no grid modifications are made in the spanwise
direction throughout the whole adaptation process. This
means that the grid and flow solution remains two-
dimensional. Grid coarsening in the constant flow
region upstream of the bow shock is carried out in one
cycle. All grids show a reasonably smooth transition
between large and small cetls, which can be seen clearly
in the regions around the shocks.

Figure 4c shows the final result, where the main
shock. the shear flow behind the cylinder, and the
shocks interacting with the wake are sharply captured.
The main shock standoff distance is 0.7 for the unit
radius, which is quite reasonable when compared with
the empirical data of 0.65 for a wedge with a cylindrical
head.® Moreover, the density jump across the shock is
3.878, which compares well with a theoretical value of
3.857.

Comparison of the number of cells between aniso-
tropic and isotropic grids shows that even the final
anisotropic grid contains considerably fewer cells than
the initial isotropic grid. As the grid becomes more
refined. the ratio of the number of cells in the isotropic
grid to that in the anisotropic grid becomes even larger.
In the final grid with 14,431 cells, the ratio reaches 67.
which means that the equivalent isotropic grid contains
about 970,000 cells.

The advantage of the anisotropic grid is evident in the
requirement of the total memory. which in this study
consists mainly of solution vector. flux vector, cell
volume, cell face area. and face-based database. Even
though the amount of memory per cell is 400 bytes for
the anisotropic grid. the total memory is only 5.8MB for

the final grid. On the other hand, the isotropic grid
requires only 344 bytes per cell. but the total memory is
333MB, which is about 57 times larger. Thus. the 3D
anisotropic grid adaptation method can compute a 2D
flow far more efticiently than the isotropic approach.

4.2 ONERA M6 Wing in Transonic Flow

The second test case is transonic flow over ONERA
M6 wing.” The objective is to apply the present method
to a 3D transonic flow. The wing has ONERA D profile.
with an aspect ratio of 3.8 and a taper ratio ot 0.362.
The leading and trailing edges sweep back at an angle of
30° and 15.8° respectivelyv. The flow condition is
M=0.84 and 0=3.06°, which is widely used for CFD
validation.

Density is used to compute the adaptation parameter.
The length scale L in Eq. 2b is set to 2.0, which enables
us to capture two shocks on the upper surface of the
wing quickly. Setting L to 3.0 as in the cylinder case
will take more adaptation cycles to capture the shocks.
As mentioned before. an isotropic grid is used as a
starting grid. The adaptation is carried out twice. beyond
which the solution on the wing changes little. The initial
and adapted grids are shown in Figs. 6 and 7, where the
grid is clustered in the regions of shocks on the upper
surface and the leading and trailing edge regions.

The pressure distribution on the upper surface of the
wing for each grid is shown in Fig. 9, which clearly
depicts a lambda pattern of the shock. As the grid adap-
tation cycle is repeated. the pattern becomes more
distinct. A more detailed view of the pressure distribu-
tion on the wing is shown in Fig. 8 at selected cross
sections. It is evident here that the pressure distribution
changes little after the second adaptation cycle. The
final solution shows a good agreement with the
experimental data. except for differences in shock
locations and sharpness. due to the inviscid nature of the
flow solver employed here.

As an additional comment, it is observed that when
an anisotropic Cartesian grid is coupled with a first
order flow solver, as in our previous study, the shock
near the leading edge fails to appear. even on a fine grid.
Therefore. it seems that at least a second-order scheme
is required to capture the pressure jump near the leading
edge.

The change in the number of cells during the adap-
tation process is shown in Fig. 10. The final anisotropic
grid contains 171,753 cells, which is equivalent to an
isotropic grid with 430,260 cells. This is 2.5 times as
large as that of the anisotropic grid.

[n terms of the total memory required, although
not as dramatic as the cylinder test case, the anisotropic
grid is still significantly better than the isotropic grid.
For the final grid, the total memory for the case of
anisotropic grid is 68.7MB. whereas that of the isotropic
grid is 148MB, which is 2.2 fimes as large as that of the
anisotropic grid.
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5. Concluding Remarks

An anisotropic Cartesian grid adaptation method has
been developed in this study to improve the efficiency
of an existing Cartesian grid adaptation. 1t has
capabilities to both coarsen and refine a Cartesian grid
in any direction without any limitation on cell aspect
ratio, while keeping the grid smooth.

The present method was validated for 2D and 3D test
cases: a supersonic flow around a cylinder and a
transonic flow around ONERA M6, respectively. The
method successfully captured the flow features and
improved the solution with significantly less number of
grid cells, as compared to the corresponding isotropic
grid. The 2D flow was computed with very high relative
efficiency, since the number of cells are as few as those
needed by a 2D method. This is achieved by imposing
no limitations on cell aspect ratio, so that a cell can span
the whole computational domain in the spanwise
direction. In the final grid, the number of cells in the
isotropic ‘grid is 67 times as large as that of the
anisotropic grid, whereas the total memory is 57 times.

For the ONERA M6 test case, the number of
isotropic cells is 2.5 times as large as that of the
anisotropic grid, whereas the total memory is 2.2 times.
From the above-mentioned, a flow containing more
anisotropic  features will benefit more from the
anisotropic adaptation.

For future research, extension of the current method
to more complicated situation such as moving boundary
is being considered. For this purpose, the adaptation
strategy as well as the data structure will have to be
reorganized to improve their efficiencies.

Make Isotropic
Grid Distribution

[sotropic grid \ . . Grid
distributi New (anisotropic) Adaptation
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Fig. I  Grid adaptation cycle.

References

(1) Aftosmis, M.J., “Solution Adaptive Cartesian Grid
Mehods for Aerodynamic Flows with Complex Geo-
metries,” von Karman Institute for Fluid Dynamics.
Lecture Series 1997-02 (1997).

(2) Welterlen, T.J., “Store Release Simulation on the
F/A-18C using Splitflow,” AIAA paper 99-0124
(1999).

(3) Wang, ZJ., Cphen, R.F., Hariharan. N., Przekwas,
AJ., and Grove, D., “A 2" Tree Based Automated
Viscous Cartesian Grid Methodology for Feature
Capturing,” ATAA paper 99-3300 (1999).

(4) Deister, F., Rocher, D., Hirschel, E.H., and Monno-
yer F., “Three-dimensional Adaptively Retined Carte-
sian Grid Generation and Euler Flow Solutions for
Arbitrary Geometries,” Proceeding of the 4th Euro-
pean CFD Conference, Vol. I, Part | (1998), pp. 96-
101.

(5) Bonet, J. and Peraire, J., “An Alternating Digital
Tree (ADT) Algorithm for 3D Geometric
Searching and Intersection Problems,” Int. J. for
Num. Methods in Eng., Vol. 31 (1991), pp. 1-17.

(6) Lahur, P.R., and Nakamura, Y., "A New Method for
Thin Body Problem in Cartesian Grid Generation?
ALAA paper 99-0919 (1999).

(7) Hannel, D., Schwane, R., Seider, G., “On the
Accuracy of Upwind Schemes for the Solution of
the Navier-Stokes Equations,” AIAA 87-1103.
Proc. AIAA 8th Computational Fluid Dynamics
Conference (1987), pp. 42-46.

(8) Ambrosio, A. and Wortman. A.. “Stagnation Point
Shock Detachment Distance for Flow around
Spheres and Cylinders,” ARS J. 32, 281 (1962).

(9) Schmitt, V. and Charpin, F., “Pressure Distributions
on The ONERA-M6-Wing at Transonic Mach
Numbers,” Experiment Data Base for Computer
Program Assessment, AGARD AR-138 (1979).

|

Fig. 2 Possibilities of grid refinement.
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Fig. 6  Grid distribution around ONERA M6 wing at Fig. 7  The same captions as Fig. 6 except at 80%
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Fig. 8 Pressure distribution around ONERA M6 wing: (a) 44% span, (b) 80%.
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