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Possibility of N2-induced erosion of fluoropolymer was discussed based on the ground-based experiment and flight data.  
Multiple composition beams with velocity of 8 km/s were formed with Ar+O2 target gas by the laser detonation source. 
The energy and composition of the beam, thus formed, were analyzed by time-of-flight measurements with a 
quadrupole mass spectrometer.  It was found that atoms in different masses, O-atom and Ar, are accelerated to similar 
velocities, i.e., different translational energies (4.5 eV O-atom and 9 eV Ar).  This is suitable for simulating sub-low 
Earth orbit neutral gas environment.  Erosion yields of fluoropolymer by O-atom and by Ar were evaluated individually.  
It was found that the erosion yields of fluoropolymer by 9 eV Ar in the ground-based experiment and those by 9 eV N2 
in LEO measured by MISSE-2 showed good agreement.  In contrast, erosion yield of fluoropolymer by 5 eV O-atom in 
the ground-based experiment and that in the orbit were not consistent.  These results strongly suggested that the erosion 
of fluoropolymer is due not by O-atom, but by Ar and N2. 
 
       
1. INTRODUCTION 

 
Materials used at the exterior surface of a 

spacecraft encounter severe space environment which 
includes high vacuum, thermal cycling, ultraviolet and 
radiation exposures, and collision with neutral atoms.  
It is well known that many polymeric materials, which 
cover spacecraft for thermal control purposes, are 
eroded in space especially by the collision with atomic 
oxygen.  After this phenomenon was discovered by 
early space shuttle mission, effect of O-atom collision 
on material erosion has been studied intensively [1].  
However, effect of other neutral gas components in 
upper atmosphere such as N2, Ar, O2 and He has been 
ignored for the last 30 years.  This is reasonable since 
more than 95% of the gas atoms/molecules collide 
with spacecraft surface is O-atom at the altitude of 
400-500 km where STS and ISS are orbiting.  The 
development of very low altitude satellites (for 
example GOCE by ESA or SLATS by JAXA), which 
are orbiting the altitude of 200 km or below, requires 
the knowledge of material response in the 
environment of simultaneous hyperthermal collisions 
both of O-atom and  N2.   

Recent understanding of the fluorinated polymer 
erosion suggested that the fluorinated polymer is more 
sensitive to the collision energy of gas molecules even 
they are chemically inactive [2-5].  If N2 collision 
owed a part of fluorinated polymer degradation in 
LEO, it would be remarkably increased with 
decreasing altitude because of the N2 density increased 
more rapidly than that of O-atom density.   

In this study, we present data/discussions 
regarding the fluoropolymer erosion in a neutral gas 
environment in sub-low Earth orbit (LEO) region.  

Origin of fluoropolymer degradation in space is also 
discussed based on the experimental results.  
 
2.  EXPERIMENTS  
 

Figure 1 shows the laser-detonation O-atom beam 
source used in this study.   This hyperthermal beam 
source has been developed at Kobe University in order 
to study material degradation in LEO at 400-500 km 
[6-8].  This type of the source is known as a Physical 
Sciences Inc. (PSI)-type source [9], and uses pulsed 
supersonic valve (PSV) and carbon dioxide laser (10.6 
µm, 5-7 J/pulse).  The laser light was focused on the 
nozzle throat with a concave Au mirror located 50 cm 
away from the nozzle.  The PSV introduced target gas 
into the nozzle and the laser light was focused on the 
gas cloud in the nozzle.  The energies for the 
dissociation and acceleration were provided by the 
inverse Bremsstrahlung process.  The hyperthermal 
beam, thus generated, was characterized by a time-of-
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Figure 1  Laser detonation beam source used in this
study.  Time-of–flight mass spectrometer was used to
analyse a beam. 
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flight (TOF) distribution measured by the quadrupole 
mass spectrometer with scintillation detector which is 
installed in the beam line.  Translational energies of the 
species in the beam were calculated using TOF 
distributions with the flight length of 238 cm.  A high-
speed chopper system was not used in this study [8].    

Three types of mixed gases were used in this study; 
50%N2+50%O2, 50%Ar+50%O2, and 70%Ar+30%O2.  
100%O2 gas was also used as a reference.  
Hyperthermal multiple composition beams were 
formed by the conditions as follows; high voltage for 
piezoelectric actuator: 900 V, PSV opening duration: 
0.4 ms, pressure in the target gas supply line: 0.3 MPa, 
and laser power 5-7 J/pulse.    

Material degradation was evaluated by real-time 
measurement of mass loss by a quartz crystal micro-
balance (QCM) [10].  5 MHz polymer-coated QCM 
sensors were equipped at the bottom of the rotatable 
mount in order to measure the flux of the beam.   
Samples used in this study are two types of polymers; 
polyimide and fluorinated polymer.  A polyimide 
amide acid was coated on a quartz crystal and curing 
treatments at 150 °C for 1 hr. and 300 °C for 1 hr. were 
carried out in order to form the polyimide structure 
with a thickness of approximately 0.1-2.0 µm.  In 
contrast, fluorinated polymer was prepared by the 
plasma-assisted physical vapor deposition technique 
developed at the Technology Research Institute of 
Osaka Prefecture [11].  The resonant frequency of 
QCM was recorded in every 10 seconds with the 
frequency resolution of 0.1 Hz.  All beam exposure 
experiments were carried out at room temperature with 
normal incidence. 
  
4.  RESULTS & DISCUSSION 
4.1 TIME-OF-FLIGHT SPECTRA 

In order to simulate the high-energy collision of N2 
in sub-LEO environment, Ar, which is monoatomic 
molecule, is mixed to O2 gas on behalf of N2.  This is 
due to avoid the unexpected decomposition of N2 
molecules into N atoms.  Figure 2 shows TOF spectra 
of m/z=16, 32 and 40 compositions in the beam formed 

by the target gas consist of 50%Ar+50%O2.  It is 
obvious that O2 signal is very weak and hardly detected 
whereas O-atom and Ar peaks are clearly observed.  
The promotion of O2 decomposition is suggested in the 
target gas of Ar+O2.  Promotion of the decomposition 
reaction in the Ar+O2 target gas is due to the high-
energy collision between O2 and Ar.  Average energies 
of these components are 4.5 and 9.0 eV for O-atom and 
Ar, respectively.  This is ideal for the sub-LEO 
simulation from the viewpoint of collision energy. 
 
4.2 MASS-LOSS MEASUREMENTS 

Real-time mass-loss measurements of polyimide 
and fluoropolymer under the simultaneous exposure to 
O-atom and Ar beams were carried out.  The 
experiment was performed using two QCMs, which are 
coated by polyimide and fluoropolymer.  Spatial 
distribution of O-atom flux was compensated using 
two polyimide-coated QCMs at both positions (L- and 
R-positions).  It was measured that O-atom flux in the 
R-position, where polyimide-coated QCM locates, is 
1.28 times greater that that of the L-position.   On the 
other hand, spatial distribution of Ar flux, which could 
not be measured by polyimide, was assumed the same 
of O-atom distribution.  

Erosion yield (Ey) of fluoropolymer by 4.5 eV O-
atom and 9 eV Ar were calculated by the following 
equation; 

 
[ ] [ ]dFACSEy ×××= /         (1) 

 
where S is the slope of frequency change (Hz/s), C is 
the constant for 5 MHz QCM (-2.002E-8 g/Hz), A is 
the area of sample (cm2), F is the flux (atoms/cm2) and 
d is the density of the material (g/cm3).  O-atom flux 
was measured from the erosion of polyimide with 
standard erosion yield of 3.0E-24 cm3/atom with 
100%O2 target gas (translational energy of the O-atom 
in the calibration was 4.5 eV).  In contrast, Ar flux was 
measured with TOF spectra intensities with a relative 
sensitive factor of AO, 3.76.  Densities and area of the 
materials are 1.4 g/cm3 and 0.28 cm2 for polyimide and 
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Figure 2  Time-of-flight spectra of m/z=16, 32 and 40 compositions in the beam formed by the target gas consist of 
50%Ar+50%O2.   With higher energies, O2 component becomes weak. 
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2.1 g/cm3 and 0.38 cm2 for fluoropolymer.  From the 
slope of polyimide at R-position, flux of O-atom is 
measured to be 7.8E+13 atoms/cm2/s.  The O-atom 
flux at the position-L, where the fluoropolymer QCM 
was located, was estimated to be 6.1E+13 atoms/cm2/s.  
On the other hand, the Ar flux was estimated to be 
3.8E+13 atoms/cm2/s.  By using equation (1), Ey of 
fluoropolymer by 9 eV Ar was calculated to be 2.8E-24 
cm3/atom, which is close to the Ey of polyimide by 4.5 
eV O-atom.  On the other hand, Ey of fluoropolymer 
by 4.5 eV O-atom is calculated to be 1.7E-24 cm3/atom. 
 
4.3 COMPARISION WITH MISSE-2 DATA 
The Ey data measured in this study was compared with 
the MISSE-2 flight data.  A fluorinated ethylene 
propylene (FEP) specimen was exposed to space 
environment from August 16, 2001 to July 30, 2005 by 
MISSE-2 PEACE polymer experiment (Figure 3).  
Following data on the FEP erosion was reported by de 
Groh; mass loss: 0.01248 g, density: 2.144 g/cm3, 
exposed area 3.447 cm2, Kapton equivalent O-atom 
flux: 8.43E+21 atoms/cm2 [12].  As a result, erosion 
yield of FEP is calculated to be 1.9E-25 cm3/atom. 
However, N2 fluence during the exposure was not 
reported.  Therefore, N2 fluence was estimated by the 
MSIS-E90 atmospheric model in this study.  The N2 
fluence during MISSE-2 exposure was calculated to be 
6.1E+20 molecules/cm2.  The accuracy of this 
estimation was confirmed by the comparison of O-
atom fluences calculated in the same condition and 
actually measured during the MISSE-2 mission.  The 
O-atom fluence calculated by MSIS-E90 was 8.8E+21 
atoms/cm2, which is within the error of 5 % from the 
measured value in the MISSE-2 mission with Kapton-
H.  With this N2 fluence, the erosion yield of FEP by 
N2 was calculated to be 2.8E-24 cm3/atom, which is the 
same value of the ground-based data obtained in this 
study described in the section 4.2 (Table 1).  This result 
strongly suggests that the erosions of fluoropolymer 

and FEP are due not by the 5 eV O-atom but by the 9 
eV N2 or Ar.  The consistency of erosion yields also 
suggests that the N2 effect in LEO could be simulated 
by Ar in the ground-based simulation.   
 
5.  CONCLUSIONS 
 
Possibility of N2-induced erosion of fluoropolymer was 
discussed based on the ground-based experiment and 
flight data.  It was found that the erosion yields of 
fluoropolymer by 9 eV Ar in the ground-based 
experiment and those by 9 eV N2 in LEO measured by 
MISSE-2 showed good agreement.  In contrast, erosion 
yield of fluoropolymer by 5 eV O-atom in the ground-
based experiment and that in the orbit were not 
consistent.  These results strongly suggested that the 
erosion of fluoropolymer is due not by O-atom, but by 
Ar and N2. 
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Table 1  Erosion yield of fluoropolymer calculated in
this study (on ground and in orbit). 
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