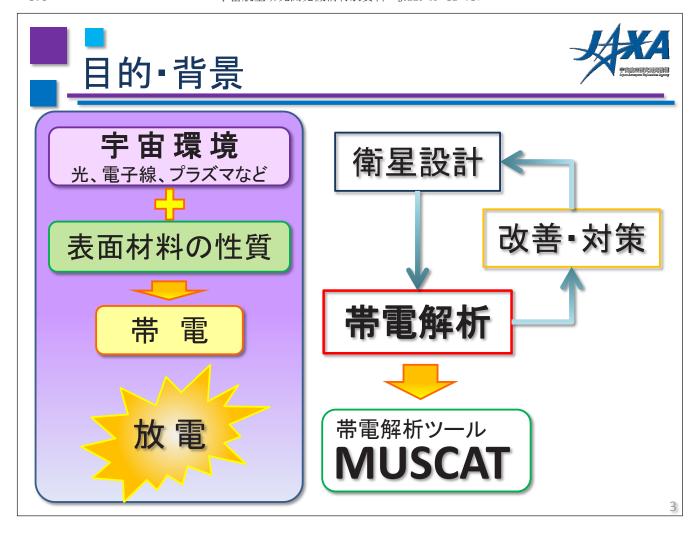


MUSCAT用誘電率測定方法

宇宙航空研究開発機構 研究開発本部 電源グループ 大平 正道

JAXA 奥村 哲平, 高橋 真人 奈良高専 藤井晴久, AES 萩原 洋介



- •目的•背景
 - •带電測定法
 - •実験による物性取得
 - •実験設備の紹介

目的•背景 -MUSCAT-

MUSCAT 日本が独自開発した汎用衛星帯電解析ツール (Multi-Utility Spacecraft Charging Analysis Tool)

- 極軌道衛星、低軌道衛星、静止軌道衛星に対応 ・詳細計算でも半日程度
- ・3次元衛星モデル作成・計算結果可視化用
- ・10分程度の簡易計算
- 扱いやすいユーザフレンドリーな仕様

Display eart V Grid P Contour Zoom In Zoom Out Rotate -1110 -1140

必要な物性パラメータ

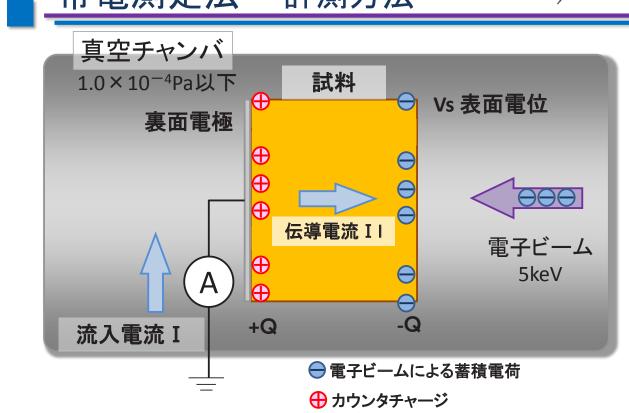
- •二次電子放出係数
- •光電子電流密度
- 体積抵抗率
- 誘電率

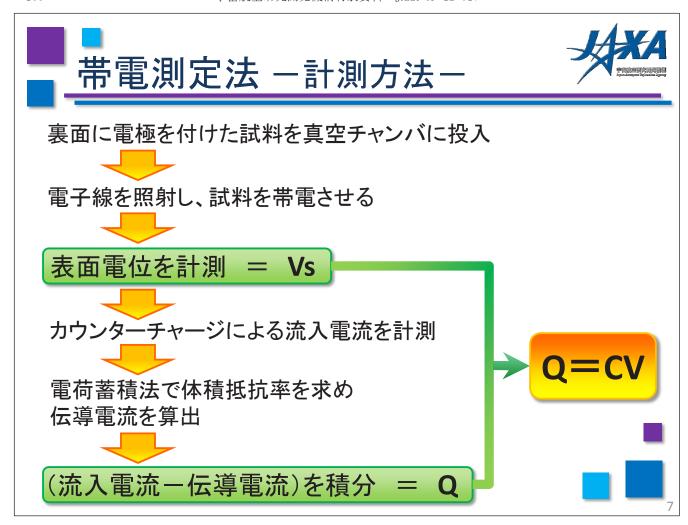
etc...

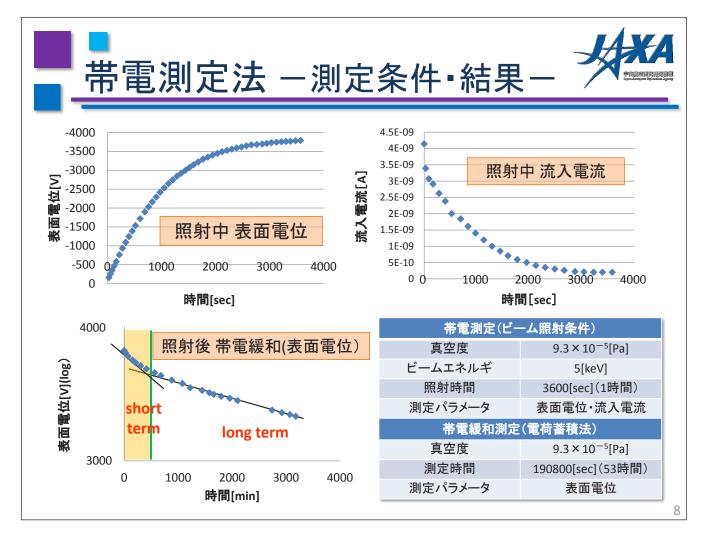
目的・背景 一計測の必要性一

一般的な誘電率測定方法

· 電極 - 試料 ` 電極 周波数を変えながら 信号を印加し、振幅・ 位相データ等から算 出する。


帯電解析


宇宙空間における Q = CV の関係が欲しい


宇宙に近い環境下での測定方法の確立

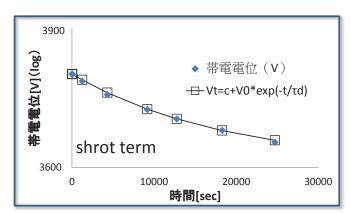
带電測定法 一計測方法一

带電測定法 -計算方法-

比誘電率の算出式

$$\varepsilon_r = \frac{Q_B}{\frac{A\varepsilon_0}{d} \left\{ \Delta V + \frac{1}{\tau_d} \int V_S(t) \, dt \right\}} \qquad \dots (1)$$

QB:バルク電荷 A:面積 d:試料厚 td:減衰時定数


Vs(t):表面電位 △V:照射前後の表面電位差

指数減衰モデルの近似式

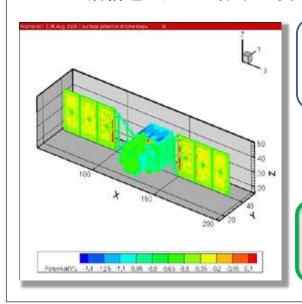
$$V_{(t)} = C + V_0 \exp\left(-\frac{t}{\tau_d}\right) \dots (2)$$

体積抵抗率の算出式

$$\rho_v = \frac{\tau_d}{\varepsilon_r \varepsilon_0} \qquad ...(3)$$

带電測定法 -計算結果-

試料	short term	long term	カタログ値
Kap(127um)	τd: 18000 εr: 3.13 ρν: 6.50 × 10 ¹⁴ [Ωm]	τd: 420000 εr: 2.68 ρv: 1.77 × 10 ¹⁶ [Ωm]	εr:3.4 ρv:1.0 × 10 ¹⁵ [Ωm]
Kap(50um)	τd:9000 εr:3.56 ρv:2.86 × 10 ¹⁴ [Ωm]	τd:150000 εr:2.62 ρv:6.45 × 10 ¹⁵ [Ωm]	εr: 3.4 ρv: $1.0 \times 10^{15} [Ωm]$
FEP(127um)	_	τd: 425000 εr: 1.87 ρv: 2.57 × 10^{16} [Ωm]	εr: 2.1 ρv: $1.0 \times 10^{16} [Ωm]$


実験による物性取得

表面材料の層構造を考慮した帯電解析は困難

- ・計算機にハイスペックを要求
- ・層構造の入力が非常に手間 etc...

層構造の影響も含めた パラメータを実験で取得し データベース化してユーザに提供

- ・計算時間が短縮される
- 入力が楽でユーザフレンドリー

ナニナミレ...

新規材料の測定要求に即応 出来る体制・設備が必要

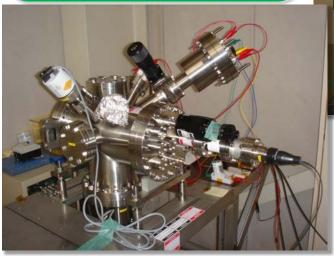
11

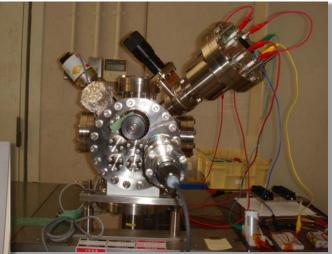
- ・シュラウドの直径1m、奥行き1.4m
- •1×10-6 Paオーダの真空
- •-190℃~80℃まで温度制御可能
- •50keVの電子銃

小型衛星やコンポーネント単位ならば 熱真空試験も出来る。

試験検証用チャンバ

This document is provided by JAXA


実験設備



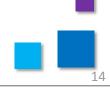
- •直径15cm、奥行き30cm
- ·1×10-5 Paオーダの真空
- ・3keVの電子銃
- ・現在構築中(FY24中に運用開始予定)

帯電物性専用のチャンバで、

測定要求に即応出来る。

帯電物性チャンバ

連絡先



大平正道

筑波宇宙センター 研開本部 電源G

tel: 050-3362-3970

e-mail: ohhira.masamichi@jaxa.jp

