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Abstract

The molecular dynamics simulation of hard spheres was performed. The validity was confirmed
for the Speedy et al.'s formula of self-diffusion coefficient of hard spheres given as the compilation
of many data sources. Some discussions are given for the mechanism of diffusion of hard spheres
based on the back scattering factor as a function of packing fraction.

1. Introduction ,

The precise measurement of diffusion coefficient of melts is one of the most important themes
in the field of microgravity utilization. In molten materials, the existence of particular short range
order or chemical short range order is presumed. The diffusion behavior seems to be influenced
deeply by these particular features of short range order. Recently, much attentions have been
focused on the melts of alloys and semiconductors because these melts are regarded as complex
liquids with chemical short range order or particular short range order rather than simple liquids
with a random assembly of atoms. We have performed the molecular dynamics simulation of simple
liquid metals in order to clarify the mechanism of mass transport in liquids. In this paper, we report
the molecular dynamics simulations in which the validity is studied for the Speedy et al’s formula
for self-diffusion of hard sphere fluids and the mechanism of diffusion in hard sphere assembly is
discussed from the back scattering factor.

2. Numerical modeling and the method of simulations
In this study, the position, 1, and velocity, v, of the atom and time, t, are written in the
non-dimensional forms, R, V and 7 as below:

R=r/c, (1)

v=v/ kT m, @)

T =thBT/(mO‘2), 3)

In these equations ¢ and m are diameter and mass of a particle, respectively; T is the temperature of
the system, and k, is the Boltzmann’s constant. The order parameter of this non-dimensional system
is therefore only a packing fraction y, which is defined as below,
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In this equation, n(=N/V; N: number of particles; V : volume of the system) is the number density
of particles.
The diffusion coefficient D is written in the non-dimensional form as follows;

5= D,/m/(kBTcz). . (5)

Based on Eqn. (5), non-dimensional forms of Enskog’s formula and Speedy’s formula can be given
as the function of only the packing fraction, y, respectively.
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In Eqn.(6), g( ¢ ) is the radial distribution function at the hard sphere contact, 0.

In this study, we calculated the back scattering factor based on the diffusion coefficient(Eqn. (5))
and Enskog’s formula(Eqn (6)) in the non-dimensional form as a function of packing fraction. In the
fce grid 256 particles were placed. The periodic boundary condition was employed to avoid the
surface problem. The calculation was successfully carried out without any numerical instabilities.

3. Results and discussions

Equation of state
The hard sphere system behaves as a liquid(or fluid) or a solid depending on the packing

fraction. Previous MD simulation showed that it is a fluid in case of 0=y=0.49, and it is a solid in
y=0.549, respectively.

In case of 0.494=y=0.545, it is transition state and depends not only on y but also on the
initial conditions. It is well known that the equation of states for liquid region(0=y=0.49) follows
the Boublik-Nozbeda Equation.
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where Z is compressibility factor, that is Z=pV/Nk,T(P:pressure). The explicit values of these
coefficients in Eqn.(8) are respectively b=0.764314, b=0.151532, and b,=0.654551. Fig.1 shows
the compressibility factor calculated from the present simulation. The present results well agree
with the formula (8), and this agreement shows the validity of the present MD simulation.
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Fig.1 The compressibility factor calculated based on MD simulation

Structure of hard sphere system

The liquid structure of the hard sphere system was evaluated in the form of radial distribution
function, g(r) , as shown in Fig.2. As expected, the peak height increases with the increase of the
packing fraction. For the comparison with the results obtained by X-ray and neutron scattering
experiments, the structure factor, whish is the Fourier transform of radial distribution function, is
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Fig.2 Radial distribution function of hard sphere system

a more appropriate structural information. The structure factor, S(g), was obtained utilizing the well

known relation described below.

S(g) = 1+f4-;-rﬁ ["Hg) - 1}sin(gr)ar )
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Fig.3 Structure factors of hard-sphere system

In Fig.3 the obtained structure factors are shown. The structure of present hard sphere system
seems to be liquid like and there exists a specific oscillation as was often found in the liquid phase.
In the region where the packing fraction equals to 0.1, that is the low density condition, the second
peak of the structure factor does not appear and it shows a gas like characteristic.

Diffusion process of hand sphere system
Mean square displacements obtained by the present simulation are shown in Fig.4. It can be

found that, with the decrease of packing fraction, the longer crossover time is present between the
parabolic law(ideal gas behavior) and the linear law(Einstein’s relation of diffusive motion). This
longer crossover time may be derived from the longer mean free path of particles with the decrease
of the packing fraction. Fig.5 shows the velocity auto-correlation functions of hard-sphere system.
The rapid decay of the velocity auto-correlation function with the increase of time can be seen with
the increase of packing fraction y. This is derived from the frequent collisions of particles with
surrounding ones. Moreover, it is to be noted that in this high packing density the negative region
can be seen for the velocity auto-correlation function. This indicates the backward motion of
particles in the high density of liquids.

Fig.6 shows the dependence of the non-dimensional diffusion coefficient and the back scattering
factor on packing fraction calculated by the mean square displacement. The back scattering factor
was evaluated as the ratio /6. The diffusion agrees with the Speedy’s formula over the packing
fraction range 0.05 to 0.45. Their deviation was smaller than 4%.
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Fig.4 Mean square displacement of hard-sphere
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Fig.5 Velocity autocorrelation functions of hard-sphere
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Fig.6 Dependence of non-dimensional diffusion coefficient and back scattering factor

on packing fraction

4. Conclusions

In this study, the precise analysis of the structure and the dynamics of hard sphere assembly was
performed using MD simulation. The diffusion coefficient was also evaluated. Obtained diffusion
coefficients agreed very closely with the Speedy’s formula. It is known that the hard sphere model
is a good model for liquid alkali metals, that is, simple liquid metals. More complex models are
needed in case of complex liquids, for example Ge and Sn. Two(multi) component hard sphere
model is one of candidates for the analysis of more complex metals. We present the results of

computer simulations of hard sphere mixtures elsewhere.
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