第12章 「きぼう」与圧系システムの開発成果

~船内実験室と船内保管室の構造系

1. 序論

本章では、与圧系システムの船内実験室と 船内保管室の構造系について説明する。

日本実験モジュール「きぼう」(JEM: Japanese Experiment Module)の構造体は 軌道上運用時の各種荷重やスペースシャト ルでの打上げ時の荷重に耐えるように設計 している。また有人施設として軌道上では与 圧空間や隕石・デブリ防御の機能も必要である。要求に対して JEM の構造、特に、船内 実験室(与圧部)がどのように設計・検証さ れているかについて、実例を含めて概説する。

2. 各部構造概要

第1表にJEM 各構成要素の構造仕様の概 要を示す。

	船内実験室	船内保管室
主構造様式	・アルミ・アイソグリッドパネル	
	・溶接円筒構造	
	・シリンダ部 :	Al 2219
主な構造材料	・その他の部位 :	Al 7075
・トラニオンピン:ニッケル		ニッケル基合金 (INCONEL-718)
寸法 (m)	外径: 4.4	外径: 4.4
	内径: 4.2	内径: 4.2
	長さ: 11.2	長さ: 4.2

第1表 JEM (船内実験室/船内保管庫) 主な構造仕様

2.1 船内実験室(または与圧部)

2.1.1 1次構造

第1図に船内実験室の主構造外観写真を、 第2図に主構造概要を示す。船内実験室は、 内径4.2mでアルミ合金製のアイソグリッド パネル構造シリンダ部及び内部の搭載機器 の荷重を支えるためのフレームから構成さ れる。また、船内実験室支持荷重を適切に分 散するために、シリンダ部左右舷に外部ロン ジェロン(断面積の大きい縦通材)を取り付 けている。シリンダ端部のエンドコーンは、 国際宇宙ステーション(ISS: International Space Station)側と結合される右舷エンド コーンとロボットアームやエアロックなど が取付けられる左舷エンドコーンがある。右 舷エンドコーンは、モジュール共通結合機構 の取付インターフェースから形状が定まる 円錐形状となっており、左舷エンドコーンは、 機構系(エアロック、ロボットアーム、窓な ど)の構造取付の観点から、円錐とエンドプ レートを組合せた形状を採用している(第2 図)。左右舷の両シリンダ端部には、船内実 験室の内圧及びスペースシャトル搭載時の 荷重支持に十分な強度・剛性を有するエンド リングフレームが取り付けられている。また 中間部のキールトラニオンが位置する部分 にキールリングが取り付けられている。これ ら主構造は圧力容器を構成しており、気密性 の要求から溶接による一体構造となってい る(シリンダ与圧壁厚さ4.8mm)。このため、 使用材料は軽量・高強度で、且つ溶接性にす ぐれたアルミ合金2219材が採用されている。 またスペースシャトルに搭載されて打ち上 げ時の荷重を受ける構造には、より比強度の 高いアルミ合金7075材が使用されている。 シャトル結合部のトラニオンピンは、シャト ル搭載の要求1)により、ニッケル基超合金 (インコネル)を用いている(第1表)。

<u>第1図 船内実験室の主構造概観⁸⁾</u> (注記) 上下逆に支持された状態である。

2.1.2 2次構造

2.1.2.1 隕石・デブリ防御構造(バンパ)

主構体の周囲はバンパと呼ばれる厚さ 1.27mmのアルミ板からなる隕石・デブリ防 御構造で覆われている。ISSの進行方向には ケブラーなどで構成されたスタッフィング と呼ばれる繊維材をバンパ裏面側に、2段目 バンパとして追加して防御性能を向上させ ている(3.4項参照)。

第2図 船内実験室主構造構成(2次構造である隕石・デブリ防御構造を取り外した図)⁸⁾

2.1.2.2ラック取付構造

ラック取付構造とは、電力機器、熱・環境 制御機器、通信制御機器、軌道上実験装置(実 験ラック)、ワークステーション、ロボット・ 総数 23 個のラックが取付可能である。

コンソール及び保管ラックというシステム 機器をラック単位で組み込んで船内実験室 壁に取り付ける構造である。船内実験室には 軌道上でのラック構造取付の概要を第 3 図、第4図に示す。打ち上げ時には、打ち上 げ荷重に耐えるために、ラック前面上部と後 面下部の四隅に 2 本づつ設けられた固定ピ ンが船内実験室内の受け金具と結合される。 軌道上では、クルーによるラック交換作業を 容易にするために、打ち上げ用拘束を解除し、 新たにラック前面上部に取り付ける 2 本の ピン(K-BAR)とキャビン内受け金具(キ ャプチャー・メカニズム)を結合し、ラック 前面下部のスロットに 2 本のピボットピン を差し込むことで結合・固定される。

このように取付状態を打ち上げ時と軌道 上で換装することにより、軌道上の船内実験 室内のクルーは上部結合を手動で解除し、下 部のピボットピンを中心にラックを動かす ことで、保全作業のためにラックを容易にキ ャビン側に倒すことができる。但し、ラック 下部の接続ケーブル類の長さに注意が必要 であり、軌道上実装と異なる古い図面によっ てラックチルト解析を行い、その結果に基づ きケーブルを接続状態のままでラックチル トした結果、ケーブルに大きなテンションを 掛けてしまい破損したケースがある。

ラックのモジュールへの取付インターフ ェースは国際標準実験ラック(ISPR: International Standard Payload Rack)の 規格要求により標準化されている。

2.1.2.3 機構系などの取付構造

右舷エンドコーンとラジアルポートには 国際宇宙ステーションのモジュール共通結 合機構とハッチを有する。左舷側のシリンダ 端には、2つの窓組立、ロボットアームの取 付部船外実験プラットフォームとの結合部 である曝露部結合機構、及び船外実験プラッ トフォームへ実験装置や試料の出し入れを 行うエアロックがある。船内実験室はロボッ トアームを取り付けた状態でスペースシャ トルで打ち上げられた。

2.2 船内保管室(または補給部与圧区)

船内保管室は、船内実験室と同じく内径 4.2mのアルミ合金製アイソグリッドパネル の溶接構造により構成される(第1表)。軌 道上では船内実験室上部にモジュール共通 結合機構により結合される。船内実験室と同 様に隕石・デブリ防御のためのバンパ構造を 持つ。また、船内保管室にも、8個のラック が取り付け可能である。シャトル打上重量制 約より、船内実験室では一度に運べないラッ ク8個を船内保管室に搭載して、「きぼう」 の第1便としてスペースシャトルで打上げ られた。

3. 設計要求と設計検証概要

JEM 構造には、スペースシャトルに搭載 されるペイロードとしての要求 2) と有人施 設としての要求がある。主な設計要求 1)、3) としては、質量/質量中心、荷重、剛性、強 度、隕石・デブリ防御/断熱性能、寿命、及 びエンベロープ(シャトルカーゴベイとのク リアランス)がある。以下ではこれらの内い くつかの設計要求を JEM 構造開発、主に船 内実験室においてどのように設計に反映し、 検証されているかについて概説する。

3.1 質量/質量中心

スペースシャトルの打ち上げ性能から、ペ イロードには上限質量が割り当てられてい る、さらに、打ち上げ時や緊急帰還時におけ るシャトルの姿勢制御性や空力安定性確保 のために質量中心位置も制限されている。

JEM にはスペースシャトルによる 3 回の フライトに対して質量が配分されている。 JEM 構造設計においては、2 項で説明した ように主として軽量で且つ高い強度を有す るアルミ合金を使用し、軽量化を図っている。

各モジュールの質量/質量中心は製造時 や出荷時に計測されており、これらのデータ に基づき、実験装置や各種機器を搭載した打 ち上げ形態での質量/質量中心位置を解析 し、検証している。射場であるケネディ宇宙 センター(KSC: Kennedy Space Center) でもスペースシャトルカーゴベイ搭載前に、 最終的な質量/質量中心計測を実施し、要求 範囲内であることを確認した。

3.2 荷重

JEM 構造は自重を支えるとともに搭載し ている実験装置や機器からの荷重に耐える 必要がある。これらの荷重には大きく分けて、 a) スペースシャトルによる打ち上げ飛行時 に負荷されるもの、b) 軌道上で負荷される ものの2つがある。以下の項では、この両者 について説明する。

3.2.1 スペースシャトルによる打ち上げ 飛行荷重

3.2.1.1 打ち上げ時/着陸時の過渡振動

シャトル打上時/非常着陸時の荷重は、ス ペースシャトルの構造数学モデルに打上モ ジュールの構造数学モデルを結合し、シャト ルの外力条件を入力とする過渡振動応答解 析 (柔結合解析: CLA=Coupled Load Analysis)を行い算出している。算出された 設計荷重に対して、静荷重強度試験による確 認を実施している。

また柔結合解析に使用する構造数学モデ ルの検証のためにモード試験を実施し、構造 数学モデルを試験結果に対して合わせ込む こと(コリレーション)が求められている。 このためJEMの各構成要素についてモード 試験を実施した。

3.2.1.2 準静的加速度及びカーゴベイの 熱・圧力変形

スペースシャトルの上昇/下降時には、機 軸方向の加速度と共に、ウインドシア(風速 の高度変化)によりピッチ/ヨー方向の加速 度が負荷される。また同時にスペースシャト ル・カーゴベイの熱変形およびシャトル上昇 に伴うカーゴベイ内与圧変形により結合部 であるトラニオンを通してシャトル搭載ペ イロードに荷重が負荷される。打ち上げ時/ 着陸時と同様に、スペースシャトル構造数学 モデルにJEM 構造数学モデルを結合し、ト ラニオン部などで、これらの荷重を評価して いる。

3.2.1.3 カーゴベイ内音響

スペースシャトル打ち上げ時にはメイン エンジンや固体ロケットからの噴流による 音響がカーゴベイ内のペイロードに負荷さ れる。主構体に対しては問題にならないが、 音響の影響を受けやすい搭載機器やその取 付構造に対しては、上記カーゴベイ内音響に より励起されるランダム振動荷重を考慮し て設計を行っている。また JEM 構造の開発 においては、音響試験を実施し、機器に負荷 されるランダム振動環境の測定を行ってい る。

3.2.2 軌道上荷重

3.2.2.1 振動/衝撃荷重

軌道上振動/衝撃荷重としては、国際宇宙 ステーションへ、プログレス無人貨物船がド ッキングする際に生じる衝撃荷重、宇宙ステ ーション運用時に軌道高度を上げるために 増速(Re-boost)する際の加速度荷重及び宇 宙飛行士の船外活動(EVA: Extravehicular Activity)によるキック荷重などが存在する。 JEM 構造においてはモジュール共通結合機 構、曝露部結合機構及び装置交換機構などに 加わるこれらの結合部荷重やエンドコーン 構造に対してこれらを考慮した設計を行い、 強度試験を行っている。

3.2.2.2 圧力荷重

軌道上では船内実験室および船内保管室 内は1気圧に保たれており、船外との間に差 圧が生じる。

船内実験室の開発においては、強度試験用 の供試体を用いて降伏圧力で有害な変形を 生じないこと及び破壊圧力で破壊しないこ とを確認している。またフライトモデルに対 してプルーフ圧力を負荷し強度が確保され ていることを確認している。

3.3 剛性

JEM 構造には様々なインターフェース規 定からの剛性要求が存在する。

スペースシャトルの飛行制御の観点から、 スペースシャトル搭載形態での最低次の固 有振動数が規定されている。JEM 構造は打 ち上げ形態でトラニオンが支持された状態 で上記要求を満足できるように設計されて いる。またJEM は軌道上でスペースシャト ルあるいは宇宙ステーションのマニピュレ ータにより組み立てられる。このためマニピ ュレータとの結合部である把持部 (GF: Grapple Fixture) と呼ばれる部位を支持し た状態での最低次固有振動数も規定されて いる。これらの部位についてはチタンなどの 高剛性材料を使用するなど、剛性を配慮した 設計を行っている。

このほか機器搭載構造に対しては最低次 固有振動数が 35Hz 以上になるように設計 を行っている。スペースシャトル搭載時の最 低次固有振動数はモード試験の結果をもと に解析で確認を行っている。

3.4 隕石・デブリ防御/断熱

JEM は有人宇宙施設であり、隕石・デブ リの衝突/貫通による構造破壊や急減圧か ら搭乗員を保護する必要がある。このため船 内実験室および船内保管庫に対しては隕 石・デブリ防御の要求が非貫通確率(PNP: Probability of No- Penetration)という形で 与えられている。これは10年間宇宙ステー ションを運用した場合に隕石・デブリにより 与圧壁に貫通穴が生じない確率を規定した ものである。宇宙ステーション全体の安全性 を考慮し、船内実験室および船内保管室を合 わせた非貫通確率要求は0.9738以上と規定 されている。

隕石・デブリ防御のために船内実験室およ び船内保管室は2項で述べたように隕石・デ ブリ防御構造が実装されている。バンパ構造 にはWhipple Bumperと呼ばれるバンパ/ 与圧壁と、Stuffed Whipple Bumperと呼 ばれるWhipple Bumperにケブラー(アラ ミド繊維)とNextel(セラミック繊維)か らなるスタッフィング部材を追加し防御性 能を向上させたものがある。両タイプのバン パの内側には、モジュールの断熱性能向上の 為に、バンパ/与圧壁間に多層断熱材

(MLI: Multi Layer Insulator) が設置さ れている。これらバンパの設計は、秒速 3~ 7km の模擬デブリをバンパ/与圧壁供試体 に衝突させる試験も実施しその性能を評価 している^{4)~6)}。

第5図に Stuffed Whipple Bumper 供試体 を示す。

第5図 バンパ/与圧壁供試体⁸⁾

3.5 寿命

ステーションの運用は 10 年が計画されて いるが、構造に対しては 15 年の寿命が求め られている。寿命を評価する際には打ち上げ 荷重および軌道上荷重だけではなく、地上で の輸送時、プルーフ試験時の荷重を考慮する ことが必要である。NASA 提供の亀裂進展解 析コード FLAGRO⁷⁾を用いて寿命を解析評 価し、要求を満足することを確認している。

3.6 エンベロープ

JEM 構造に対するエンベロープ要求としては、

- a. スペースシャトルカーゴベイに対す るもの
- b. ロボットアームに対するもの
- c. 船内実験室内壁と実験ラック間

などが挙げられる。いずれも干渉を避けるためのものであり、JEM 構造設計時にはこれらを考慮して設計を行ってきた。JEM では

早期に外部エンベロープ要求を製造図面に 盛り込むとともに、3次元 CAD モデルを作 成し NASA に提示して、前述 CLA により変 位を算出し、干渉解析を行ってきた。特にス ペースシャトルカーゴベイとペイロードの 厳しい規定クリアランスを確認するために、 船内実験室および船内保管室については実 機ハードウエアの3次元寸法計測を実施し、 詳細クリアランス評価に供した。

主な苦労した点

船内実験室の開発にて苦労した主な点に つき、最近の事例を以下に示す。尚、船内実 験室の構造開発時に解決したその他の主要 課題は、参考文献⁸⁾に示されている。

4.1 NASA とのインターフェース

3.2.1.2 項に示したように、JEM 構造数 学モデルの必要情報を NASA に提出し、 NASA でスペースシャトル構造数学モデル にJEM 構造数学モデルを結合し、トラニオ ン部などでの荷重が算出されそれを、日本側 でも評価するという流れであるが、NASA 側スケジュール都合で、こちらの望む時期に なかなか結果が出てこない時もあり、MHI から JAXA を通じて適宜、強力にフォロー した結果、丁度良い時期にアウトプットが出 てくるということが再三あり、国際プロジェ クトの難しさを知らされた。この事象は、ス ペースシャトルとのインターフェースに限 らず全般的に該当することであった。

4.2 窓組立

船内実験室の左舷エンドコーン部には 2 つの窓組立が取り付けられている(2.1.2.3 項)。この窓組立は、国際宇宙ステーション (ISS)に先に結合されている米国実験モジ ュール(US-LAB: United States Laboratory Module)の窓組立と基本的に同じ ISS 共通 品で、米国製造メーカからの購入品である。 源泉の図面や取扱要求・手順文書は英文であ るため、微妙なニュアンスが分かりにくいと ころについては、米国製造メーカに何度も確 認し、最終的には射場であるケネディ宇宙セ ンター(KSC)で直接説明も受けて理解に齟 齬の無いことを確実に確認した上で、船内実 験室に取付けた。

尚、参考までに、第7図の写真中に見える 窓組立の脇に取り付いている四角の箱状構 造物は、「窓フレキ配管保護ボックス」と呼 ぶ後付けしたものである。これは、既存の US-LAB の窓組立で構成部品であるフレキ 配管をクルーが誤ってハンドレールのよう に掴んだことで漏洩が発生する可能性があ ったため、掴むことのないように箱でカバー したものである。US-LAB では部品を軌道上 に打上げて軌道上でクルーにより組み立て て取付けたが、船内実験室では、US-LAB からの展開情報があったために、事前に新た に設計製作し、打上前に、ケネディ宇宙セン ター(KSC)にて取付けた。

第6図 船内実験室の窓からの眺め

第7図 窓フレキ配管保護ボックス

4.3 スタンドオフリンクの位置精度

船内実験室、船内保管室ともにラックを搭 載し打上げて、軌道上でのクルー作業のため にラック取付状態を換装する(2.1.2.2 及び 第3図参照)。モジュール内におけるラック 取付インターフェースについては、NASA の要求文書により、隣接ラックインターフェ ース間距離や平面度などの位置精度が要求 されている。位置精度は隣接ラック間の相対 関係で規定されるため、連鎖的に全てのラッ ク箇所で要求を満足しなければならず、その 位置調整には苦労を要した。大型溶接構造物 では、溶接による微小な熱歪 (変形)が存在 し、また軌道上での圧力・熱変形も考慮しな ければならない。それらを整理評価した上で、 各ラック箇所のスタンドオフリンク(第3 図、第4図参照)はその場所毎に個別にシム とともに最適な位置調整を実施し取付けた。 しかし、位置精度を調整し取付けた後、その 後の作業干渉回避のために、取付けたスタン ドオフリンクとシムはセットで取り外して おく必要があった。従って、その後の日本か ら KSC への輸送や機体内作業の影響などを 受けていないことを確認するために、地上で は打上直前に最終取付けを実施する前段階 に再度スタンドオフリンクとシムをそれぞ

125

れの場所に取付けて位置精度確認を実施し、 問題無いことを確認した。

そして、船内保管室に搭載されて先の便で 打ち上げられた 8 個のラックが、クルー作業 により、問題なく船内保管室から取り外され 運ばれて船内実験室に取付けられた(第 8 図、第9図)。この際、TKSCの管制室から のラック起動によって「きぼう」ロボットア ームの温度データ確認を行うため、ロボット アーム・コンソール(操作卓)が最初に移設 された。

第8図 船内実験室の地上での最終状態

第9図 船内実験室の軌道上での<u>ラック取付後状態</u>

2012年12月現時点において、船内実験室 には、細胞実験ラック、流体実験ラック、勾 配炉ラック、多目的実験ラックの4台が搭載 され、運用中である。

5. まとめ

開発開始から二十数年かかったJEM、「き ぼう」の与圧モジュールである船内保管室と 船内実験室であるが、現在、軌道上で順調に 運用されている。

スペースシャトル搭載時の荷重としては 最も厳しいメインエンジン点火、固体ロケッ ト着火などのタイミングを問題なく終え、ま た、軌道上で国際宇宙ステーション (ISS) に結合後、船内保管室から船内実験室へのラ ックの移設もクルーにより難なく完了でき たことは、入念な検証の成果である。また機 体製造時には多くの苦労があった窓組立に ついては、その窓組立からの地球の眺めが JAXA/NASA のホームページで公開されて、 多くの人々に美しい地球の姿を伝えている。

また、「きぼう」で獲得した与圧構造技術 も生かして開発した HTV (H-II Transfer Vehicle)も、H-IIB ロケットによる 2009年 9月11日の初打上げ以降、2012年7月のミ ッションに至るまで連続して成功裏に終え ている。今後は、「きぼう」や HTV で培っ た技術を絶やすことなく技術蓄積・継承して、 将来の有人宇宙活動の発展に尽力していく。