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Abstract The effective pair potentials of liquid germanium and tin are calculated
from the experimental structure factors by an inverse method. The resultant ef-
fective pair potentials reproduce the experimetal self-diffusion coeflicient with high
accuracy.

1 Introduction

To investigate the structure of liquid metals using the molecular-dynamics (MD) simulation, we
need first the information of the interaction between atoms. For the liquid alkali metals near
the melting point, the pseudopotential perturbation theory, which is based on the nearly-free-
electron (NFE) model, is used for calculating the effective pair potential. On the other hand, for
the liquid silicon, germanium and tin, the NFE model may not be an appropriate approximation,
since covalent bonds may remain even in the liquid states. However there is no reliable theoretical
method for calculating the interatomic potentials for these liquid metals. In this case, the inverse
method, in which the effective pair potential is derived from the experimental static structure
factor, is one of the best methods to obtain the effective pair potential. In the present paper we
apply the inverse method to the liquid germanium and liquid tin for obtaining the effective pair
potentials. The purposes of this paper are as follows: (i) To derive the effective pair potential
&(r) of liquid tin and liquid germanium from experimental structural data near the melting
points. (ii) To calculate the self-difusion coeflicients of these liquid metals, the MD simulations
are performed.

2 Predictor—corrector method for the inverse problem

We[1] showed that the predictor—corrector method originary proposed by Reatto et al.[2] is an
accurate method for solving the inverse problem. This method is based on the integral equation
theory and the computer simulation. In the integral equation theory, the effective pair potential
&(r) multiplied by 8 = 1/kgT is given in the following,

Be(r) = g(r) — c(r) —Ing(r) - 1+ B(r), (1)

with the radial distribution function g(r), the direct correlation function ¢(r) and the bridge
function B(r). To calculate 3¢(r) from the experimental structure factor Sexp(k) using equa-
tion (1) we need the experimental radial distribution function gexp(r), the experimental direct
correlation function cexp(r) and the experimental bridge function Bexp(r). The pair distribution
function gexp(r) can be obtained from Sexp(k) by the Fourier transformation

Jexp(r) =1+ / ” (Sexp(k) — 1) ksin(kr)dk, ()

2r2nr Jo

where n is the number density of ions. Using the Ornstein—Zernike relation,

g(r) ~1—c(r) = n/(g(lr — 7)) — De(r)dr’ (3)
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together with equation (2), the cexp(r) can also be obtained from the Sexp(k),

1 o0 1 .
Cexp(’f') = m]{; (1 - SeTp(k—)) ksm(kr)dk:. (4)

The bridge function Bexp(r), however, cannot be obtained directly from Sexp (k). In the predictor—
corrector method, we employ the bridge function of the hard sphere system Bys(r,7) as an initial
estimate for Bexp(r), where the packing fraction 7 is determined so as to minimise the free energy
as is usually done in the modified hypernetted-chain(MHNC) approximation[3]. The condition
[4] for the minimum free energy in the case of the inverse method is given by

dBys(7,
[ o) qstrm) 2D g —o, ©)
where gus(r,n) is the radial distribution function for the hard sphere system with the packing
fraction 7. Thus the zeroth approximation for the effective pair potential is given by

18¢0(7') = gexp(r) -1- Cexp(r) - lngexp(r) + BHS(T: 77)- (6)

This approximation is called the predictor, and then ¢o(r) or Bys(r,n) are improved by the
following iterative procedure, which is called the corrector: (i)The simulation is performed with
@i(r)(= ¢o(r) for the first run) and g;(r) is obtained, where i stands for ith step. (ii)S;(k) is
obtained by Fourier transforming g;(r). (iii) ¢;(r) is obtained by using eq.(4), where the subscript
exp is replaced by i. (iv) The revised bridge function B;(r) is given by

Bi(r) = B¢i(r) — gi(r) + 1+ ci(r) + Ingi(r). (7)

An important point is that this bridge function B;(r) must be exact for the input effective pair
potential ¢;(r), and if this condition is not satisfied, this iterative procedure would not converge.
(v)The revised effective pair potential ¢;41(r) is then given by

Bipa(r) = gexp("') -1- Cexp(r) - 1ngexp(r) + Bj(r). (8)

The iterative process (i)-(v) is repeated until the difference |¢iy1(r) — ¢i(r)| becomes smaller
than the desired accuracy and an accurate estimate for ¢(r) can finally be obtained.

To carry out this predictor—corrector method, we must take into account foliowing points.

1. In general the experimental structure factor Sexp(k) is available only in the limited &
region. The radial distribution function obtained by Fourier transform of the original
experimental data of Sep(k) is nonzero in the small 7 region, where the gexp(r) should
be zero physically. Therefore in order to obtain gex(r) accurately, we have to extrapolate
Sexp(k) both to larger and to smaller & region. For the smaller k region, we extrapolate the
experimental data smoothly using spline functions to Sexp(0) obtained from the isothermal
compressibility. As for the larger k region, we perform the Fourier transform repeatedly
between Sexp(k) and gexp(r) until the unphysical structure of gexp(r) in the small r region
is removed. In this way, we can get the ‘experimental’ structure factor for a whole k range.
Since gexp(r) and cexp(r) are obtained from the same Sexp(k), these gexp(r) and cexp(r)
satisfy the Ornstein—Zernike relation.

2. As mentioned above, we must get the exact bridge function B;(r) in each step of the itera-
tive procedure. To do so, we need first to obtain the data of ¢;(r) and S;(k) very accurately
and then to get the ¢;(r) from thus obtained S;(k). The values of S;(k) in the region where
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Si(k) < 1 should be known very accurately to obtain the accurate values of ¢;(r), since as is
seen from equation(4) ¢;(r) is the Fourier transform of (1—1/5;(k))/n, which contains the
term 1/S;(k), so that the region where S;(k) < 1 contributes substantially to the Fourier
integral. Note that, near the triple point, S;(k) in the small k region are much smaller
than unity. For this reason, we need the accurate data of g;(r) in the large r region, and
therefore we must perform the simulation for a large system. Of course, at a low density
near the critical point, the system size of the simulation must also be large, since the long
range correlation is important.

3. Since g;(r) is obtained only for r < L/2 , L being the side of the cubic cell used in the
simulation, the data must be extrapolated to larger distances. We employ the Verlet ex-
trapolation method(5}, in which the Ornstein—Zernike relation is solved with the conditions
that g(r) = g;(r) for r < rc and ¢(r) = cpy(r) for r > rc, where cpy(r) is the direct cor-
relation function in the Percus-Yevick(PY) approximation and 7. is the cutoff distance of

gi(r).

3 Results and discussion
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Figure 1. Structure factor of liquid Sn at 523 K

Figure 2. Structure factor of liquid Ge at 1253 K.
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The experimental structure factor Sexp (k) of liquid tin at 523 K [6] and that of liquid germanium
at 1253 K [6] are shown in figures 1 and 2, respectively. The effective pair potentials derived
from these structure factors by the inverse method are shown in figures 3 and 4, respectiveply.
Unlike effective pair potentials of simple liquids, a small hump exists in the core repulsive region
of ¢(r) for both tin and germanium. Though the existence of a hump is expected from the
pseudopotential perturebation theory, this characteristic feature is confirmed by the inverse
method. Note that, since the shape of ¢(r) is very sensitive to the experimental structure factor,
we do not discuss the details of ¢(r).
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Figure 3. Effective pair potential of liquid Sn at 523 K.

-1

5 10 15
r(A)

Figure 4. Effective pair potential of liquid Ge at 1253 K.

It is obvious from the character of the inverse method that ¢(r) derived from this method can
reproduce the experimental static structure factor accurately. In figures 1 and 2, we show the
structure factors calculated by the MD simulation using the effective pair potentials in figures
3 and 4. On the other hand, though it is not evident that such an effective pair potential can
also reproduce the dynamic structure of liquid metals, Munejiri et al. 7] have shown that the
effective pair potential of liquid rubidium derived from the experimental structure factor can
reproduce the experimental dynamic structure factors.

The MD simulations are performed for liquid tin at 523 K and for liquid germanium at 1253
K. We use 4096 atoms in the cubic MD cells with periodic boundary conditions. The number
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densities and L are 0.0352 A=3 and 48.8 A for the liquid tin and 0.0461 A3 and 44.6 A for the
liquid germanium. The temperature is controled by Nosé thermostat(8]. The cut-off distances of
the pair potentials are 17.5 A and 14.0 A for liquid tin and for liquid germanium, respectively.
To obtain the self-diffusion coefficient D, the maen square displacements of atoms and the
velocity autocorrelation function are calculated. The calculated value of D for liquid tin and
liquid germanium are compared with experiments and other calculations in table 1. Our results
are in good agreement with the experimental data.

4 Summary

The effective pair potentials ¢(r) of liquid tin and liquid germanium are derived from the ex-
perimental structure factors. we have shown that ¢(r) reproduce the self-diffusion coeflicients
for liquid tin and even for liquid germanium. In spite of these good results of the self-diffusion
coefficient, we cannot judge whether many-body correlation functions and dynamic structures in
the real liquid system are also reproduced or the self-diffusion coeflicients happen to be good re-
sults. To investigate the validity of the effective pair potential, we have to compare the dynamic
structures or many-body correlation functions obtained with the effective pair potentials with
those obtained by first-principles MD simulations or neutron inelastic scattering experiments.

Table 1. The self-diffusion coefficient D of liquid tin and liquid germanium.

D (107 cm? s71)

Sn Ge
Present 2.5 (523 K) 12 (1253 K)
Experiment(pg) 2.5 (526 K) [9] 7.8 (1243 K) [11] _
Experiment(1g) 2.2 (543 K)[10] 7.8-12.1 (1253 K) [12]
MD (ab initio) 12 (1250 K) [13], 10 (1230 K) [14]
MD (Empirical potential) 4.4 (1250 K) [15]
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