第14章 「きぼう」与圧系システムの開発成果

~与圧システムの熱・流体系

1. 序論

有人宇宙開発における熱制御技術、とりわ け長期間にわたる滞在・実験運用を目的とし た宇宙ステーションの開発においては、宇宙 環境下での温度維持は勿論のこと、長期に渡 り安全かつ安定した運用状態を維持するた めのシステム/機器設計、運用コンフィギュ レーションの変化への対応性など、求められ る要求は非常に高度かつ複雑なものであり、 重要なキー技術のひとつである。

本稿では、我が国初、国際宇宙ステーショ ン(ISS: International Space Station)最 大の有人宇宙長期滞在対応モジュールであ る「きぼう」与圧系熱制御システムの構成及 び開発成果・運用実績を述べるとともに、日 本独自の設計思想、構成機器について紹介す る。

2. 与圧系熱制御システムの構成

「きぼう」与圧系は、船内実験室(直径 4.4m、長さ11m)及び船内保管室(同4.4m、 4m)から成り、ISSの船内キャビン空間(ク ルーの船内活動エリア)の一部を構成する。 熱制御システムに求められる機能は、船内ク ルー活動のためのキャビン空気温度維持 (18.3℃~26.7℃)、結露防止・クルー接触 温度からの与圧隔壁(構造殻)面を含む船内 機器表面温度コントロール(15.6℃~45℃)、 さらには内部発熱する電子機器の排熱・機器 温度維持である。これら機能を実現するため、 「きぼう」熱制御システムは冷却水循環系統、 ヒータ、多層断熱材 (MLI: Multi-Layer Insulation)から構成されている。

熱制御システムは、冷却水の強制循環による熱制御を行う系統と、MLI、ヒータによる
断熱・給熱を行う系統に大別され、前者を能動熱制御系(ATCS: Active Thermal Control System)、後者を受動熱制御系(PTCS:
Passive Thermal Control System)と称する。以下にそれぞれの系統について紹介する。

2.1 ATCS

ATCS は、「きぼう」船内実験室及び船外 実験プラットフォームに適用されており、搭 載電子機器及びキャビンエア熱負荷の冷却 のため、冷媒を循環させることで熱収集・移 送を行うシステムである。船内保管室は ATCS を有しない。(キャビンエアを介した 間接的な排熱方式を採っている。)

冷媒により収集した熱負荷は、「きぼう」 に隣接する米国モジュール(ノード2)にお ける熱交換器で最終排熱され、ここでは最大 で25kWの排熱が許容されている(第1図 参照)。

なお、ISS からの最終排熱は ISS 側に設 置されたラジエータ(深宇宙への放射)によ り行われる。船内実験室、船外実験プラット フォームは独立した冷媒循環ループを有し、 冷媒はそれぞれ調質水、フロリナート(FC72)
 である。船外実験プラットフォームの熱負荷
 は、曝露部熱交換器(EFHX: Exposed)

Facility Heat Exchanger) を介して搭乗員 が活動する船内実験室に移送される。本稿で は、船内実験室のATCSを中心に紹介する。

<u>第1図 ATCS による排熱の流れ</u>

以下に船内実験室 ATCS の主要機能を示 す。

(1) 熱交換機能

冷却対象(システム機器、実験装置、キャ ビンエア、曝露部熱交換器他)に対し冷却水 を配分し、収集した発生熱をノード2にお ける熱交換器に移送・排熱する機能を有する。

(2) 冷却水温度制御機能

システム機器、実験装置等の被冷却機器を 許容温度範囲に保つため、ATCS はこれらの 機器への冷却水供給温度と流量を一定に制 御する機能を有する。冷却水温度は熱制御系 装置 (TCA : Thermal Control Assembly) によりフィードバック制御され、実験装置等 の排熱量の変動に対する供給温度の安定化 を実現している。

(3) 冷却水系統圧力制御機能

TCA内のアキュムレータにより、冷却水 系の系統圧力を 100psia (690kPa)以下に 維持する機能を有する。

(4) 冷媒管理機能

冷媒管理機能として、冷媒補給機能、ガス 除去機能、微粒子除去機能を有する。

(5)ループ切換機能

「きぼう」管制システムの指示に基づき、 冷却水ループの切換を行い、故障時または保 全時に、片系電力の供給のみでシステムを維 持する機能を有する。

ATCS を構成する主要機器は第 1 表の通 りであり、システム構成は第 2 図及び第 3 図に示す通りである。

ATCS は、被冷却対象の必要とする温度要 求範囲に合わせ、中温冷却水系統(MTL: Moderate Temperature Loop)と低温冷却 水系統(LTL : Low Temperature Loop)の 二つの循環ループから構成される。 MTL/LTL の供給冷却水温度制御範囲は、 MTL: 16.1 $\mathbb{C} \sim 23$ \mathbb{C} 、LTL: 3.3 $\mathbb{C} \sim 10$ \mathbb{C} である。MTL 及び LTL はそれぞれが冷媒の 循環機能 (ポンプ)を有し、片系故障時には MTL/LTL の 2 ループ構成 (2WCL: 2 Water Cooling Loop)から、一方の系統のみで全体 の冷却水循環を行う 1 ループ構成 (1WCL: 1 Water Cooling Loop) への切り替えが可能 な冗長システムとなっている。

名 称	概 要	搭載台数
熱制御系装置	冷却水循環ポンプ、アキュムレータ、フィル	2 台
(TCA)	タ、ガストラップ及び各種センサから構成さ	
	れ、ATCSの主要機能を集約した装置である。	
流量調節弁/	ボール弁を有し、流体抵抗を変更することで	23 台
流量センサ	実験装置/その他分岐ラインへの冷却水供給	
	流量を調節する。また、冷却水流量/温度計	
	測機能を有する。	
ループ切替弁	8ポート弁2台が組み合わされ、2WCL/	1台(内部冗長あり)
	1WCLの切替を行う機能を有する。	
系統遮断弁	ボール弁開閉により冷却水流路の遮断を行う	7 台
	機能を有する。	
系統差圧センサ	系統差圧センサ:中温冷却水系統/低温冷却	系統差圧センサ:4台
/温度センサ	水系統の差圧をモニタし、冷却水流量の配分	温度センサ:11台
	状態を監視する。	
	温度センサ:系統各部の冷却水温度をモニタ	
	する。	

第1表 ATCS 構成品

第2図 船内実験室 ATCS 配管構成

2.2 PTCS

船内実験室/船内保管室の PTCS は、搭 乗員等からの内部発熱と断熱材による温度 維持、並びに発熱不足時はヒータ加熱による 温度維持を行うシステムである。以下に PTCS の主要機能を示す。

(1) 凍結·結露防止機能

断熱(不足時はヒータ加熱)により、構造 殻内温度をキャビンエアの露点以上に保ち 結露を防止する。また、モジュール内の水

(ATCS 系の冷却水、実験ラック内の水など)の凍結を防止する。

(2) 機器許容温度維持機能

断熱(不足時はヒータ加熱)により、船外 (与圧隔壁外)機器の温度低下を防止し、許 容温度以内に維持する。

(3) クルー接触許容温度維持機能

船体の構体外部表面温度を船外活動 (EVA: Extravehicular Activity)における クルーの接触許容温度要求内に維持する。ま た、構造設内部温度を船内活動(IVA: Intravehicular Activity)における接触許容 温度要求内に維持する。

PTCS を構成する主要機器を第2表に示 す。また、船内実験室/船内保管室のシステ ム構成をそれぞれ第4図、第5図に示す

名称	概 要	備考
HCTL	温度センサの信号を受けてヒータへの	船内実験室:2台
(ヒータコントローラ)	電力をコントロールする。	船内保管室:1台
ヒータ	保温必要箇所を温める。HCTL より給	船内実験室:346枚
	電される系統と、PIB(電力供給の	船内保管室:113枚
	ON/OFF 制御装置)から直接給電され	
	るものとの 2 種類ある。	
温度センサ	HCTLに接続されるものと、DIU(デ	—
	ータ送受信装置)に接続されるものが	
	あり、HCTL 接続のものは、ヒータ制	
	御用(構造殻及び機器温度モニタ)と	
	構造殻温度のモニタ用の2種類ある。	
	DIU 接続のものはモニタ用のみであ	
	る。	
MLI	バンパと構造の間に位置し、モジュー	モジュール構造のほ
(多層断熱材)	ルの放射断熱材として使用される。	ぼ全面を覆う形で艤
		装
表面コーティング	バンパ表面を適切な表面光学特性であ	_
	る表面処理(化学被膜処理等)とする	
	ことにより、宇宙熱環境からのモジュ	
	ールへの熱の授受を抑制する。	

第2表 PTCS 構成品

船内実験室の外部構造は、厚さ約 5mm の アルミ製グリッド構造殻(Structure Shell) 及びその外側に、デブリ防御のための厚さ約 1mm のアルミの外壁(バンパ)を有する。

構造全体・外部露出機器の温度レベルを適 切な範囲とするために、バンパ・機器表面に は特殊コーティングを施し適切な表面光学 特性を持たせることで、バンパ及び機器温度 の制御や、放射断熱性能を向上させている。

特殊な取付構造を採用した MLI は、モジ ュール外殻全体を覆う形でバンパと構造殻 との間に艤装され、外部環境とモジュール構 造殻を熱的に遮断し、構造殻を適切な温度範 囲に維持する機能を有する。 ヒータは、構造殻及び機器(特に船外露出 機器)の低温側温度を許容温度以上に保温す るためのものである。ヒータコントローラ (HCTL: Heater Controller)より給電さ れる系統と、電力供給の ON/OFF 制御装置 (PIB: Power Interface Box)から直接給 電されるものとの2種類がある。HCTL ヒ ータは構造殻全面と機器に設置され、冗長設 計として2系統の電力供給により運用され る。HCTLは、15ゾーン(15ch.)に分割さ れた構造殻の温度を個別に制御している。分 散ヒータは、HCTL ヒータの補助として、 構造殻にのみ設置され、ON/OFF コマンド により制御する。

第4図 船内実験室 PTCS 構成

船内保管室は、外部構造へのコーティング、 MLI の艤装は、船内実験室と同様である。 ヒータの機能も船内実験室と同様であるが、 船内保管室ヒータは HCTL に接続されるもの1種類のみである。

HCTL ヒータは構造殻全面と機器に設置

され、電力は一系統のみで運用されるが、故 障により電力供給が不可能となった場合で も、電源ラインの切替により他系統からの電 力供給をうけることが可能である。HCTL は、10ゾーン(10ch.)に分割された構造殻 の温度を個別に制御している。

143

第5図 船内保管室 PTCS 構成

3. 開発成果

「きぼう」熱制御系に関し、開発段階及び 軌道上運用を通じて得られた知見・技術につ いて、いくつかの事例を紹介する。

3.1 ATCS 関連の開発成果

(1) 冷却水管理

(a) 開発段階

「きぼう」冷却水システムは、配管総延長 220m、総容積は 200liter にもなり、このよ うな複雑な流路構成を持つ大型冷却水シス テムの管理は国内初の経験であった。

「きぼう」打上前、すでに軌道上運用中で あった他国の ISS モジュールでは、水質の 劣化が原因の不適合(析出物によるフィルタ の目詰まり、pH 低下による腐食の進行、微 生物殺菌能力の低下)が生じていた。そのた め、「きぼう」では 1999 年のモジュールへ の水充填以降、打上までの約 9 年間に渡り、 定期的な(約 6 ヶ月毎)水の入れ替え、水 質検査を繰り返しその水質を維持してきた。

また、冷却水ループへのエア混入防止も重 要な課題である。系統中に存在する気泡は、 熱交換器における滞留による熱交換性能の 低下、冷却水循環ポンプへの気泡噛み込みに よるポンプ損傷を招くリスクがある。

軌道上初期運用時、とりわけ打上後の初期 起動時においては重要な問題であり、いかに 地上での打上準備期間においてエアを取り 除き、混入させないかが開発上の課題となっ た。ポンプへの許容エア混入量はわずか 50cc/台であり、配管総容積の0.05%以下(水 充填率99.95%以上)に残留エア量を低減す ることを目標とした。

「きぼう」は、その大きさから、一旦エア が混入すると(特に地上では重力の影響もあ り)循環によってもエア除去は容易ではない。 モジュール全体を常に大気圧に対し正圧と なるよう加圧し、エアの混入を防止するとと もに、打上直前の準備作業では地上支援装置 (GSE: Ground Support Equipment)とし てエア除去装置(Vacuum Pump による溶存 気体の除去装置)を機体に接続しエア除去を 行った。

第 6 図に船内実験室の打上準備作業 (NASA 射場作業)でのエア混入量の推移 を示す。長期に渡るエア混入管理/エア除去 作業の結果、最終的には、系統内のエア混入 量を 100cc 以下まで低減することができた。 (100cc は 2 台のポンプの合計許容量。第6 図中の 2007 年 8 月の最終データ 370ml が

エア混入量 100cc 以下に対応する。) これら 9 年に及んだ地上での水質・エア 混入管理作業により、船内実験室の初期起動 及びその後の軌道上運用において、水質/エ

ア混入に起因する不適合は発生していない。 (b)軌道上運用

運用開始以降、水質管理のため、冷却水の 一部を定期サンプリングすることによる冷 却水水質のトレンドモニタや、実機テレメト リによる冷却水量のトレンドモニタを行っ ている。

これらの結果、長期間の運用における水質 の変化傾向や、系統からの冷却水の定常的な 減少レートに関し、いくつかの知見が得られ ている。

第7図及び第8図に、軌道上冷却水のサ ンプル分析結果に基づく水質トレンドを示 す。特徴的な傾向として、長期間の運用によ る冷却水の腐敗を防止する目的で添加され ている防腐剤(オルトフタル酸アルデヒド) の濃度が、時間の経過とともに減少し、徐々 にその効果が下がってくることが判った。こ のため、2~3年に1回程度の定期的な防腐 剤の軌道上での追加を実施する必要が生じ ている。また、船内の二酸化炭素の影響と考 えられているが、pH値が徐々に下がる傾向 があることが判っている。pH値の低下は、 金属配管・熱交換器フィンなどの腐食を進行 させる環境因子となるため、従来より低下抑 制対策(pH緩衝材の添加)が取られて来た が、なお低下を完全に抑えることはできてい ない。

また、冷却水の量は、第9図に示す様に、

特に冷却水の抜き取りや、リークなどの異常 がなくとも、定常運用状態で一定の割合の減 少がある。これらは、系統中の配管継手部や、 テフロンチューブなどからのごく緩やかな リークによるものと考えられるが、仕様値・ 解析値のみではなく、実運用による実力値が 得られたことは、今後の宇宙機のシステム設 計にとって大変有意義である。

第6図 船内実験室エア混入量推移

注)系統内のエア量は直接計測できないため、系統を一定 圧力で加圧し、圧力を降圧した際に排出される水の量(プ リード量)で評価している。なお、ブロード量には系統配 管(フレキシブルホース)の圧力変形量も含まれており、 上記図で約290mlがフレキシブルホースの変形量である。

3.2 PTCS 関連の開発成果

(1) ヒータの共通化

PTCS は、スペースシャトルによる打上ミ ッションから宇宙ステーション本体への組 立て、その後の軌道上運用の全てのフェーズ においてモジュールの温度環境を維持する 必要がある。この時、温度維持のために使用 するヒータの電源供給条件は、それぞれ以下 の通りである。

打上時:シャトル電源

ISS への組付け時:ステーションロボットア ーム (SSRMS : Space Station Remote Manipulator System)

定常運用時:ノード2(米国側モジュール)

このうち、打上時及び ISS への組付け時用 の電源インターフェースは船外に設置する 必要があるため、他国のモジュールは、ヒー タ及び ON/OFF 制御機器をこれらのフェー ズ専用に船外に艤装し、定常運用時用のヒー タを船内に有している。

これに対し、「きぼう」のヒータシステム は、第10図に示すように船内への貫通コネ クタを設置することで、打上時/定常運用時 に使用するヒータ及び制御機器を共通化し た設計となっている。これにより、ヒータの 搭載枚数及び制御機器搭載台数の削減が可 能となり、重量リソース削減、系統の簡素化 による信頼性向上、開発コスト低減などのメ リットが得られた。

*2): SSRMSからの電力供給完了後, IVAにより切り離す

*3): A系のみ示す

第10図 ヒータ電力系統図

(2) 部分熱試験による検証

PTCS の性能検証は、実機が曝される実環 境模擬の困難さ、対象構造物の複雑さ、コン フィギュレーションの多様さから熱数学モ デルによる解析によっているが、この熱数学 モデルの精度(確からしさ)の検証には実機 での熱平衡試験が不可欠であり、他国モジュ ールも含め開発における基本コンセプトで ある。しかしながら、「きぼう」船内実験室 は、ISS 最大のモジュールであり国内最大の スペースチャンバでも実機での熱平衡試験 の実施が困難であった。そこで、熱設計がほ ぼ類似の船内保管室での熱平衡試験(第 11 図)の結果に基づき、普遍的なコリレーショ ンを行うことで熱数学モデルを標準化/共 通化し、船内実験室での試験を省略した。具 体的には、結果にモデルを合わせる係数調整 ではなく実機と整合する詳細化/修正など を実施し、試験ケース以外でも適用が可能で あるものとした。

第11図 船内保管室 熱平衡試験

2008年の船内保管室及び船内実験室の打 上時及び打上後の軌道上運用データは、事前 の熱解析結果と良く一致している(第12図、 第13図参照)。 ルが妥当であったことを示しており、部分熱 試験により大型構造物の熱性能を予測・検証 することが可能であることを示す実績とし て大きな成果である。

これらのデータは、PTCS 設計・解析モデ

第12図 Stage1J (2008/9/01-2008/11/30) におけるヒータ消費電力

第13図 Stage2J/A (2009/9/01-2009/11/30) におけるヒータ消費電力

構成機器紹介 4.

「きぼう」熱制御系における構成機器は、 軌道上での互換性またコスト低減の観点か ら、ISS を構成する他モジュールとの共通品 (あるいはモディファイ品)を多く採用して いるが、一部の機器については日本で独自で 開発している。本項では、熱制御システムを 構成する主要機器の中から、特に日本独自で 開発した機器について、その概略仕様を紹介 する。

(1) ヒータコントローラ (HCTL)

本装置は、120VDC、1系統(入力インタ ーフェースは2系統)の電力を受電し、内部 構成品の半導体スイッチを ON/OFF するこ とにより、下流に接続された最大 20ch.のヒ ータへ 120VDC 電力を分配供給するもので ある(第14図参照)。

電力特性	入力電圧:103.5~127.5Vdc	
	最大入力容量:1.2kW×1系	
	統	
	出力系統:定格 0.5A(最大	
	1.0A×20 系統)	
	ヒータ制御精度:±2.0℃	
	ヒータ制御周期:100msec	
外形寸法·	$610 \times 300 \times 300$ (mm)	
重量	30.23kg 以下	
消費電力	最大 22.2W	
筆 14 図 HCTL		

ヒータの ON/OFF 制御は、HCTL に接続 された温度センサの入力に基づき、予め各 ch.に設定されたヒータ ON/OFF 設定温度に 基づき自身の持つソフトウェア処置により 実行される。なお、シャトル打上から初期起 動までは、外部からのコマンド指示・テレメ トリモニタなしに自律的にヒータの ON/OFF 制御を行う機能を有している。

HCTL は船内実験室に2台、船内保管室 に1台搭載されており、排熱は機器取付面か ら与圧構造への伝導及び機器表面からの放 射による。

(2) MLI

MLIは、20層のアルミ蒸着したカプトン シートを積層した放射断熱材である。構造殻 外部全体を包み込むように艤装し、外部環境 の熱的変化の影響を最小化するものである。 一部船外活動で取り付けるものを除き、軌道 上での取付・取外しは実施されない。

MLI はバンパ側に取り付けられており、 故障時の交換はバンパアセンブリとして一 体で交換される。なお、このような特殊な取 り付け方法を採用しているのは、MLI の取 り付け方でその断熱性能が大きく変わるた めである。

MLI の部品点数は船内実験室/船内保管 室で合計約 1,100 点である。クルーの船外活 動により軌道上取外し・取付を行う MLIの うち、一部についてはクルー要望により軌道 上での運搬性を重視した設計(折りたたみを 考慮した設計)となっている(第15図参照)。

<u>第15図 MLI</u>

(3) 小型アキュムレータ

本装置は、「きぼう」ユニークな ATCS コ ンポーネントであり、打上時/軌道上保全時 にのみ使用される。打上中は冷却水の温調/ 循環が行われないため、本装置により環境温 度変化による冷却水の体積変化を吸収し系 統内圧力を設計上の許容範囲(キャビンエア 圧力~689kPaA) に維持する。また、打上時の加速度変化による圧力変動を吸収し、負 圧が生じることによる冷却水系統内へのエ アの吸込みや、系統の低圧力化による空隙の 発生・消滅に伴う水撃の発生を防ぐ重要な役 割を果たしている(第16図参照)。

機器打上用/保全時用

船内実験室打上用

第16図 小型アキュムレータ

5. まとめ

本稿で紹介した事例に限らず、「きぼう」 開発/軌道上運用を経て、様々な知見や経験 を獲得することができた。

大型有人滞在モジュールの熱制御系技術 は、冒頭でも述べたとおり重要なキー技術の ひとつである。「きぼう」与圧系熱制御シス テムの開発を通じて得られた成果は、ISS に とどまらず、月面基地、有人推進モジュール など、将来の有人宇宙活動に活かされるもの と期待する。