

Computational Combustion Lab

Experimental Challenges

- High pressure environment makes measurements difficult to obtain data inside the thrust chamber
 - Typically, only wall heat transfer is obtained
 - Some flow visualization, CH, OH-PLIF for some cases
- Laboratory LREs are not properly scaled real system
 - Typically single injector in large combustor leads to different kinds of flow physics – slow/large recirculation
 - Limited understanding of injector-to-injector interactions
 - Limited multi-injector studies at subcritical pressures
 - Typically gas-gas or liquid-gas systems far from LRE
- Flight systems therefore still require extensive empirical testing with limited in-situ assessment of combustion

Georgia College of Tech Engineering 東京大学 ロケットエンジンモデリングラボラトリー (JAXA 社会連携講座) シンポジウム ロケットエンジンシミュレーションの最先端、そしてその次へ 後刷集

Computational Combustion Lab

Turbulence Modeling Approaches

• Direct numerical simulation (DNS)

Georgia

College of

Tech (Engineering

- Transient, 3-D, resolve all fluctuations, no modeling
- Moment formulation (RANS/URANS-Models)
 - Mean, variances, co-variance predicted
 - Model the complete spectrum
- Large-Eddy-Simulation (LES or VLES)
 - Transient, 3-D, resolve large-scales, model 'unresolved' scale effect on the 'resolved' scale
 - Only 'energy-containing' scales resolved in VLES
 - Energy-containing and inertial scales resolved in LES
- Hybrid Schemes: Detached Eddy Simulation, RANS-LES
 - New hybrid terms appear that require new closure

3

- Filtered Real Gas Equation(s) of State (EOS)
 - Peng-Robinson (PR) $p(\overline{\phi}) = \overline{\rho} \widetilde{Z} \widetilde{R} \widetilde{T} + p^{sgs}$
 - Soave-Redlich-Kwong (SRK)
 - Redlich-Kwong (RK)

ia College of Engineering	Computational Combustion Lab			
Subgrid Closure Terms				
Reynolds Stress	$\tau_{ij}^{sgs} = \overline{\rho} \left(\widetilde{u_i u_j} - \widetilde{u}_i \widetilde{u}_j \right)$			
Enthalpy Flux	$H_i^{sgs} = \overline{\rho} \left(\widetilde{Eu_i} - \widetilde{E}\widetilde{u}_i \right) + \left(\overline{pu_i} - \overline{p}\widetilde{u}_i \right)$			
Viscous Work	$\sigma_i^{sgs} = \widetilde{u_j \tau_{ij}} - \widetilde{u}_j \overline{\tau}_{ij}.$			
Convective-Species	$Y_{i,k}^{sgs} = \bar{\rho}[\widetilde{u_iY_k} - \tilde{u}_i\tilde{Y}_k]$			
Heat Flux	$q_{i,k}^{sgs} = \left[\overline{h_k D_k \partial Y_k / \partial x_i} - \tilde{h}_k \tilde{D}_k \partial \tilde{Y}_k / \partial x_i\right]$			
Species-Diffusive Flux	$\theta_{i,k}^{sgs} = \bar{\rho}[\widetilde{V_{i,k}Y_k} - \widetilde{V}_{i,k}\widetilde{Y}_k]$			
Filtered EOS	$p^{\text{sgs}} = \bar{\rho} \left(\widetilde{ZRT} - \widetilde{Z}\widetilde{R}\widetilde{T} \right) = \bar{\rho}R_u \sum \frac{1}{MW_*} \left(\widetilde{ZY_kT} - \widetilde{Z}\widetilde{Y_k}\widetilde{T} \right)$			
ypically gradient transport for momentum and energy				
ubgrid transport is	sused			
 Isotropic scalar 	eddy viscosity			
 Need length sca 	ale and velocity scale(s)			

東京大学 ロケットエンジンモデリングラボラトリー (JAXA 社会連携講座) シンポジウム ロケットエンジンシミュレーションの最先端、そしてその次へ 後刷集

Localized Dynamic Kinetic Energy

SGS Stress:

$$\tau_{ij}^{sgs} = -2\overline{\rho}\nu_t(\widetilde{S_{ij}} - \frac{1}{3}\widetilde{S_{kk}}) + \frac{1}{3}\tau_{kk}\delta_{ij}$$

- Characteristic length provided by the local grid spacing
- Smagorinsky algebraic model for the subgrid stress

$$\nu_t = C\Delta^2 |\widetilde{S}| \qquad |\widetilde{S}| = \sqrt{2S_{ij}S_{ij}}$$

One-equation model for subgrid kinetic energy (Schumann)

$$\nu_t = C_{\nu} \sqrt{k^{sgs}} \,\overline{\Delta}$$

$$\begin{aligned} H_i^{\text{sgs}} &= \overline{\rho} \left[\widetilde{e_T u_i} - \widetilde{e}_T \widetilde{u}_i \right] + \left[\overline{p u_i} - \overline{p} \widetilde{u}_i \right] &\approx -\overline{\rho} \frac{\nu_t}{\Pr_t} \frac{\partial n}{\partial x_i} \\ Y_{i,k}^{\text{sgs}} &= \overline{\rho} \left[\widetilde{u_i Y_k} - \widetilde{u}_i \widetilde{Y_k} \right] &\approx -\overline{\rho} \frac{\nu_t}{\operatorname{Sc}_t} \frac{\partial \widetilde{Y_k}}{\partial x_i} \end{aligned}$$

ลโ

Turbulent Combustion Models in Terms of Chemistry and Mixing (Modified from Peters, pg 64)					
	Premixed Combustion	Nonpremixed Combustion			
Infinitely Fast Chemistry	Bray-Moss-Libby Coherent Flame	Conserved Scalar Equilibrium Model			
Finite-rate w/o Molecular mixing	PDF Transport	PDF Transport			
Finite-rate with filtered or modeled reaction rate	Flamelet Model G-equation, G-Z, ATF EBU, FSD, PaSR	Flamelet Model Z, ATF, CMC, PaSr…			
Finite-rate with Molecular mixing	Linear-Eddy Model	Linear-Eddy Model			

東京大学 ロケットエンジンモデリングラボラトリー(JAXA 社会連携講座)シンポジウム ロケットエンジンシミュレーションの最先端、そしてその次へ 後刷集

Computational Combustion Lab

The second

LEMLES Processes

- NO filtering of the species equations
 - Eulerian-Lagrangian solver for species equation
- Reaction-Diffusion processes
 - Evolves in a "grid" inside the LES grid
 - Full multi-component and differential diffusion included
 - Finite-rate kinetics included without needing closure
- Turbulent stirring by eddies smaller than LES grid
 - Stochastic process that is based on Kolmogorov scaling
- Volumetric expansion of subgrid field due to heat release
- Computational more expensive than flamelet but no need for a priori choice of flame type
 - Parallel optimization techniques can reduce cost

Numerical Challenges

- Many solver strategies in existence but not all will work for Real gas and supercritical combustion
 - Very large density gradients and shear turbulence both need to be captured in a complex geometry
- Central and compact schemes require local or explicit artificial filtering or dissipation to stabilize
- DNS high order algorithms will not work in stretched and body conforming grid
- Hybrid solvers are being developed to capture both large-gradient interface and shear turbulence
 - Hybrid WENO Central
 - Hybrid HLLC/E Central/Predictor-Corrector

東京大学 ロケットエンジンモデリングラボラトリー (JAXA 社会連携講座) シンポジウム ロケットエンジンシミュレーションの最先端、そしてその次へ 後刷集

東京大学 ロケットエンジンモデリングラボラトリー(JAXA 社会連携講座)シンポジウム ロケットエンジンシミュレーションの最先端、そしてその次へ 後刷集

Wide Scatter in Trans-Critical Mixing Data

- LES can provide useful trends with correct physics
- LES can access flow conditions beyond sub-scale rigs
- Survey of coaxial, non-reacting supercritical flows
 - Main parameter: momentum flux ratio

 Shimizu et al (2011) → kinetics including 29 elementary reactions and 8 species. High-pressure effects better accounted for. (For H2-Air combustion 5 additional steps include N2, He and Ar effects)

eorgia College of	Computa	tional Combu	stion Lab 😽		
Scaling from	Lab to Sub	o-scale to	Full-scale		
	Sub-Scale	Lab Scale	Lab Scale		
	LOX/GCH4	LOX/GH2	LOX/GCH4		
Re (LOX)	1.38E+06	5 53E+05	6 18F+04		
Re (Fuel)	4.38E+05	1.83E+05	4.87E+05		
Velocity Ratio	4.99	16.93	18.06		
Momentum flux ratio	3.15	1.53	11.64		
Equivalence ratio	1.28	1.36	13.09		
Da	2.63	1.87	58.0		
 LOX: 0 = 20-40 m/s, T = 100-120 K CH4: U = 130-250 m/s, T = 240-300 K, φ=1.1-2 Flow speeds much higher than lab-scale single injectors Can LES be used to study scaling issues? 					
Georgia College of Computational Combustion Lab					
LOX	coaxial in	njector r	g		
 Developed after 	r NASA CUIP	study [1]			
Square chambe	er for better op	tical access	[2]		
 Grid influence study with 4 arids: 					
 Coarse (600k), baseline (3.5M), I-refined (5M) and IK- refined (7.5M) 					
Every	other grid point shown	D _{LOX} =2.05 mm L _{ch} = 0.35 m	٥		

[1] Tucker, Menon, Merkle, Oefelein, and Yang. In *44th JPC, AIAA 2008-522, 2008* [2] J. M. Locke. *PhD thesis, The Pennsylvania State University, May 2011*

- New interest in Liquid Rocket Engines (LRE) operating with methane as propellant.
- Important differences with hydrogen physics:
 - CH4 can be injected under both trans-critical and supercritical states¹.
 - $-\rho_{CH_4} > \rho_{H_2}$: large range of flux momentum ratio can be applied in LOX/CH4 injector, which allows different hydrodynamic and combustion regimes
 - Complex chemistry requires to revisit methods developed for H2/O2 combustion (mechanisms, LES closure of the reaction rate...)

¹ Singla et al. (Proceedings of the Combustion institute 2005)

- Error on the adiabatic temperature < 5%
- Nearly perfect correction of the flame speed

	T_{ad} (K)	$s_L (m/s)$
GRIMECH	3584	2.317
WD1	5051	11.11
WD1ox	3755	2.283

東京大学 ロケットエンジンモデリングラボラトリー(JAXA 社会連携講座)シンポジウム

Fraction Stew D.4

- **Diffusion flame**
- Combustion regime close to the laminar infinitely fast chemistry

Mixture Fraction a

26

In-sync

Out-of-sync

Time (s)

29

LES of Combustion Instability

• Purdue Subcritical P=1.34MPa

Injectors	Composition	Flow rate (kg/s)	Temperature (K)
Oxidizer	Y ₀₂ =0.42 Y _{H20} =0.58	0.32	1030
Fuel	Y _{CH4} =1	0.027	400
O w	FUEL Ci 40 0.12 XIDIZER INLET ith a sonic throat H20+O2 1000K 0.98 lbm/s Variable length (89mm - 190mm)	INLET H4 lbm/s CHAMBER	NOZZLE Pexit = 1.7MPa

- Velocity field: long recirculation zone, supersonic flow in the nozzle and high velocity core along the center line
- Anchoring of the flame at the step corner.
- Stabilization of the flame in the mixing layer between the high velocity flow and the recirculation
- Distributed heat release: the flame is not compact (L_f ~8cm)

Georgia College of <u>Computational Combustion Lab</u>

Summary Comments

- LRE modeling and simulation are very challenging due to real gas effects, finite-rate kinetics, flame-turbulence-acoustic interactions and complexity of the geometry
- LES compressible solver with real gas and subgrid closures developed to address these challenges
- Application to trans-critical mixing experiments shows good agreement with data
- Application to trans-critical reacting experiments show much more is needed to reduce cost of kinetics
- Application to combustion instability in subcritical reacting cases shows ability of LES to capture dynamics
- Still a lot of studies needed to develop predictive capability for multi-injector applications