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Outline

* Liquid Rocket Engines — Challenges
* Modeling Challenges
* Numerical Algorithm Challenges
* Implementation and Computational Challenges
* Results and Observations
— Trans-critical mixing studies
— Trans-critical reacting studies
— Combustion Instability studies
* Conclusion and future outlook
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Liquid Rocket Engine

* LREs have been operational since 1950s but are still not
fully understood for a variety of challenges
— High pressure supercritical combustion
— Many small injectors, different types of injectors, complex
geometries including pre-burners and manifolds
* “Perfect storm” events lead to combustion instability
— Enormous heat release (> 10 GW/m?) in confined volume
— Coupling between acoustics-heat release- shear turbulence
— Catastrophic pressure oscillations can grow rapidly
— Small design changes can have large consequences
* Expensive testing needed to develop new engines
— Vulcain: 280+ test firings, 85,000 s of operational tests

Computational Combustion Lab B

Experimental Challenges

* High pressure environment makes measurements
difficult to obtain data inside the thrust chamber

— Typically, only wall heat transfer is obtained
— Some flow visualization, CH, OH-PLIF for some cases
* Laboratory LREs are not properly scaled real system

— Typically single injector in large combustor leads to
different kinds of flow physics — slow/large recirculation

— Limited understanding of injector-to-injector interactions
— Limited multi-injector studies at subcritical pressures
— Typically gas-gas or liquid-gas systems far from LRE

* Flight systems therefore still require extensive empirical
testing with limited in-situ assessment of combustion

This document is provided by JAXA



WHKYE 0oy bV rET Y7 TRT MY — (JAXA 2 R 0 RY T A 3
sy hZmoPry I ab— g OFRER., F L TEDKR~ %RIE

Computational Combustion Lab s

Modeling Challenges

High pressure conditions

— Supercritical conditions

— Real Gas Equation of State
— Trans-critical events

3D unsteady features

— Simple geometry but complex
physics in small narrow regions .

RANS cannot capture turbulent
fluctuations and interactions

DNS is too expensive
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Turbulence Modeling Approaches

Direct numerical simulation (DNS)

— Transient, 3-D, resolve all fluctuations, no modeling
Moment formulation (RANS/URANS-Models)

Comgutationa/ Combustion Lab 7

— Mean, variances, co-variance predicted

— Model the complete spectrum

Large-Eddy-Simulation (LES or VLES)

— Transient, 3-D, resolve large-scales, model ‘unresolved’

scale effect on the ‘resolved’ scale

— Only ‘energy-containing’ scales resolved in VLES

— Energy-containing and inertial scales resolved in LES
Hybrid Schemes: Detached Eddy Simulation, RANS-LES
— New hybrid terms appear that require new closure

This document is provided by JAXA
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Direct Numerical Simulations (DNS)

Increasing Cost

Computational Combustion Lab

Turbulent Signal and Modeling Strategy

i DNS URANS
ES RANS

A A

.
v
m

Mean from DNS or LES not same as
RANS prediction
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Modeling Strategy

* Compressible conservative formulation needed to
capture acoustic-vortex-flame interactions, shocks etc.

* Favre-filtered equations (with many assumptions)
— Gradient — filter commute, top-hat filter, etc.

dp , dpi,
_+_’:0
dt  ox,

i a —_—- o~ o — sgs sgs
7+a_xj(/3u,~uj+p(¢)5,~j—T,~,~+T,~jg +p™6,)=0

a —_~ o~ TN ~ ~ ~ — 52§ 5g8 5gs ~

—+a_xi(peTui+p(¢)ui+Qi,lK_ujTji+Hig +0,% +p* ”z’):O
aﬁf a v ~ T sgs sgs —~
7k+$(p T Y 40 ) =@, fork=1...N;

1

* Filtered Mass and Heat Flux (without cross-diffusion):

— Heat flux:

— Mass flux:

Jix = ﬁ?km

* Filtered Real Gas Equation(s) of State (EOS)

— Peng-Robinson (PR) (@)= ;_)ZRT +p*
— Soave-Redlich-Kwong (SRK)
— Redlich-Kwong (RK)

This document is provided by JAXA
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Thermodynamics and Transport
properties for Real Gas Applications

* Corresponding state principles: _

— Peng-Robinson EOS : 1Y

— Chung’s method for viscosity,
thermal conductivity

Peonity (kgmi

14
)

._‘R

— Fuller’'s method for diffusion o ————
Coeﬁ|C|ent im 200 y::m,\;::l'..s," 0 00
. 02, P=60 bars
* Proven good compromise 1250
1,2 P . < ;
cost/accuracy el [
* Fully conservative formulation §osr Yy oBREOS
requires optimized non-linear E so0r 3
solver L
r TR ennaacaeadk
— Use density and internal energy to % 5 i o

Temperature (K)

CH4, P=100 bars

1J. C. Oefelein. Combustion Science and Technology, 178:229—-252, 2006.
2A. Congiunti, C. Bruno, and E. Giacomazzi. AIAA 2003-478, 2003.

obtain pressure and temperature

Computational Combustion Lab ‘
Subgrid Closure Terms

Reynolds Stress Ty = P (i — uy)
Enthalpy Flux H = p(Eu; — Ew;) + (pu; — piy)
Viscous Work o9 = 5Ty — T
Convective-Species |Yik = plui¥s — w;¥x)
Heat Flux @3 = [hDidYi/0xi — hix DydYy /0]
Species-Diffusive Fluy 0k = AlVisYi = Vix¥a]

Filtered EOS s = 5 ( 7RT - Zfch) —iRY ﬁ (Z/Yva - Z?,j)

* Typically gradient transport for momentum and energy
subgrid transport is used

— Isotropic scalar eddy viscosity
— Need length scale and velocity scale(s)

This document is provided by JAXA
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Impact of Filtering on Turbulence

Energy decays too rapid -
before cutoff — teoo much Energy piles up at tbe
dissipation :: Error cutoff scale - too little
dissipation :: Error
/
f

A/\E,&\)/\ k-S/S
Acceptable beyond
_4

= (K) \\ cutoff

D (K)
\ D (k)

/ o
s "N N log (k)
- = -
Energy inertial dissipation
containing range range
scales

Localized Dynamic Kinetic Energy

SGS Stress: T29% = _Qﬁut(g';- - %5:1\) + %Tkkdi_j

tJ

Characteristic length provided by the local grid spacing
* Smagorinsky algebraic model for the subgrid stress

vy = CA2|§| S| = /255

One-equation model tor subgrid kinetic energy (Schumann)

This document is provided by JAXA
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Compressible Subgrid Kinetic Energy
0pk™ N dpuk*

ot 0x;

=T .+pd.+P,.-D.—-B

k388 k388 k388 k588

— Production Pksgs —Tisjgs_]
L 0X, \
et Ju. _ Ju.
D|SS|patIOn Dksgs = LTij a : _le a ZJ
X; X
— Pressure-Dilatation Correlation | pdj:s: = Pal_, _Pé)('-
— Diﬁusiog/Transport
Thogs = —- <(/_)K ui —p K — ;%) + (wi P — @ P) — (w;7i; — 1 ﬁ)>
£y
— Pressure gradient — density gradient B - alnﬁa_]?
T ox, ox,

Génin and Menon (AIAA-2009, Comp. FI., 2010; J. Turb., 2010)

Computational Combustion Lab ‘
Localized Dynamic Closure

* Scale similarity is extended to test filter level and a
model is assumed for

test
T, =CL;
* Does not employ Germano’ s identity

~~ [ 7S, 1PSu
‘Cz_] — —20,,V A?tE'Stﬁ.-A /): S §p,_\U‘JZJ — —EMOIJ
p p
M, L - = 1= , 1 -
C,, = ——9 v, J \/Iij ./‘Mij = VEktestA (ﬁS,-j — §ﬁskk(\,jj) ‘cij = ‘Cij - §‘Ckk()ij
2 M5 M .

- Denominator is well defined at the test filter level and non-zero
» Approach is stable and robust without averaging in complex flows
* Model is available in many commercial codes (e.g. FLUENT, OF)

This document is provided by JAXA
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The Filtered Reaction Rate Closure

* Most difficult to close even without real gas effects
* Many alternate strategies developed to avoid the closure
* Critical to understand the application requirements

— Assumptions valid in one flow may not work in another

* Mixed premixed-partially premixed-non-premixed regimes

* Scale Separation implicit or explicit in ALL closures

— Turbulence and combustion scales separated in the inertial
range

— Mixing process in the inertial range independent of
chemistry and simplify modeling considerable

— Kolmogorov scaling laws are not modified by molecular
mixing and heat release at the (even) smaller scales.

— Reasonable but is this true at high Re or for Real Gas?

Computational Combustion Lab B

Turbulent Combustion Models in Terms of
Chemistry and Mixing
(Modified from Peters, pg 64)

Premixed Nonpremixed

Combustion Combustion
Infinitely Fast Bray-Moss-Libby Conserved Scalar
Chemistry Coherent Flame Equilibrium Model
Finite-rate w/o PDF Transport PDF Transport

Molecular mixing

Finite-rate with Flamelet Model Flamelet Model
filtered or modeled | o .\ tion, G-z, ATF | Z, ATF, CMC, PaSr...

reaction rate
EBU, FSD, PaSR...

Finite-rate with Linear-Eddy Model Linear-Eddy Model
Molecular mixing

This document is provided by JAXA
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Flamelet or Finite-Rate?

* Flamelet concept is cost effective but may not be valid in
LRE everywhere in the thrust chamber

* Non-premixed burning requires proper treatment of
turbulent and Molecular (including differential) mixing

* Combustion instability can change flame structure

* Unsteady heat release coupling may require proper
estimate of partially burned effects and radical chemistry

— Multi-component diffusion needed
— Finite-rate kinetics needed
* Flame structure may be much more complex

Computational Combustion Lab 15

Turbulence-Flame Interactions

Flame Surface

)  Embedded
’ / adaptive grid for
| | { reaction physics
DNS LEMLES modeling

» Localized dynamic closure for subgrid kinetic energy

» Scale similar closure that is stable in complex flows
»  Grid-within-grid approach

« Simulate large-scales on the LES grid

« Simulate molecular processes: subgrid turbulent mixing,
molecular diffusion and finite-rate at the SUBGRID level

This document is provided by JAXA



HERKF vy b VT VU7 IRT U — (JAXA RESE ) R YT L 11
oy Ny Py Ialb—a O, FLTEDTR~ %RlE

—W@_a/ Combustion Lab ': :7;%‘ -
Species Equation: Two Scale Solver ™

* Resolved Species Equation

a(pY,) A puY,) 0 oY, . :
T, ATTd T pp k= o, + S
at axi axi axi Chemical source Spra;’s-(;urce
——~——— h T term term
(Resolved+Unresolved) scale Molecular diffusion

convection
* Two scale procedure is used: ;= (ﬁ,- + uggs)R + Uy
— Unresolved Scale

o n noyn n .
(p%.) ~(pY,) =_a(p i )+ 0 p"D, W, o, + S
At ox, ox, ox, -

L
! Chemical source  Spray source
v . e
Convection Molecular diffusion

— Resolved Scale

pY, )" =(pv,) O wfm 1\ oo
| k)AtLES( S _ax,.[p (@ +1,), ]

v .
Convection

Comgutation_al Combustion Lab 5%
LEMLES Processes

* NO filtering of the species equations
— Eulerian-Lagrangian solver for species equation
* Reaction-Diffusion processes
— Evolves in a “grid” inside the LES grid
— Full multi-component and differential diffusion included
— Finite-rate kinetics included without needing closure
* Turbulent stirring by eddies smaller than LES grid
— Stochastic process that is based on Kolmogorov scaling
* Volumetric expansion of subgrid field due to heat release

* Computational more expensive than flamelet but no
need for a priori choice of flame type

— Parallel optimization techniques can reduce cost

This document is provided by JAXA



* Stirring in a freely propagating premixed flame

x 10"
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Y, in freely propagating
premixed turbulent
CH,/Air flame

Schematic

Interaction between Stirring, Diffusion and

Reactions
0.00025, Stirring Only
Snrn‘ng and Diffusion
B} 0.00020‘_ Stir, Diff and Reac
Initial Profile § '
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| | $ 1
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* Acetone spray Chen et al., 2006; Srinivasan et al. (DLES, 2010)

Comgutationa/ Combustion Lab 7

Numerical Challenges

* Many solver strategies in existence but not all will work
for Real gas and supercritical combustion

— Very large density gradients and shear turbulence both
need to be captured in a complex geometry

* Central and compact schemes require local or explicit
artificial filtering or dissipation to stabilize
* DNS high order algorithms will not work in stretched and
body conforming grid
* Hybrid solvers are being developed to capture both
large-gradient interface and shear turbulence
— Hybrid WENO - Central
— Hybrid HLLC/E — Central/Predictor-Corrector

This document is provided by JAXA
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Comgutational Combustion Lab >
Hybrid central-HLLC scheme

* Locally adaptive sensor switches between schemes
* Shu-Osher test at Mach 3 with and without Real Gas

Compressed air,
Z = 0.85 pre-shock,
Z = 1.15 post-shock

Standard airZ =1

Computational Combustion Lab <
Other Numerical Challenges

* Influence of boundary conditions very critical
— Characteristic based inflow and inflow turbulence
* Constant mass, reflected, semi-reflected?
— Choked outflow or characteristic outflow?
— Wall heat transfer — coupled fluid-structure interactions

Perfect Reflecting Inflow Non-Reflecting Inflow

This document is provided by JAXA
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PSU LOXGOX coaxial injector at 57.5 bar

* Trans-critical injection with a single species

* Grid independence study with 3 grids:
- coarse (600K), baseline (3.5M), refined (5.5M)

|| Composition | T (K)| U (mis)

Round jet 02 105 23.3
Annular jet 02 269 115
Coflow 02 262 =6

LOX-GOX Studies

* Redlich-Kwong equation of state
* Toroidal recirculation with trans-critical layer
P

B Vel comatat pressure GAgK)

FEVELD

Nadial srance (M)

Cp (J/kg/K)
3500
i

This document is provided by JAXA
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Computational Combustion Lab
LOXGOX Jet Mixing

* |nstantaneous comparison
— Backlit image
— Slice vs line-of-sight

* Time-averaged comparison
— Processing raw data

— Reaches stationary state - : |
|n 10'1 5 ms ove Lo s0L/D

Time of averaging 1 ms

Time of averaging 10 ms

Comgutationa/ Combustion Lab

LOX-GOX Jet Mixing

p-p" _ p=85 _
p’—p” 1080-85 "

* Main metric is dark core length 03<p” =
— Similar to spray penetration
— Important quantity for combustion instability [1]

[1] Chehroudi, B., “Physical Hypothesis for the Combustion Instability in Cryogenic
Liquid Rocket Engines,” Journal of Propulsion and Power, 2010.

This document is provided by JAXA
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LEMLES and LES of LOX-GN2 Jet

( oarse LES-LEM

-

Foalse LES

Comgutational Combustion Lab

MASS FRAC N2

1.0

DENSITY (kg/m3)

X=20D L().‘-&T

l

s

1080.0
-
0.1 85.0

— —~——»
--&\r

Similar flowfields
but scalar mixing
shows some
differences at the
small scales

LEMLES predicts
closer to gradient
diffusion as
expected for this
non-reacting
mixing case
Reacting cases
under study

Non-dimensional dark core length

30

25 |-

20} -

15F s @ L

SRS,
Wide Scatter in Trans-Critical Mixing Data

LES can provide useful trends with correct physics
LES can access flow conditions beyond sub-scale rigs

Survey of coaxial, non-reacting supercritical flows
— Main parameter: momentum flux ratio

fa

F o e
"im,
.....
Ta,

fre,
EXS
.
Sia
- [ ——

Fevs,
nnnnn
AAAAA

(pu2) gas

J=
(p U ) liquid

Rehab with VR = 50

Rehab with VR = 2 / Davis 1-phase

'+ Davis 2-phase

Baseline LES

Baseline LES with doubled velocities
Locke

Experimental data without recess
Experimental dara

Momentum flux ratio
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Trans-critical Combustion

* Peng-Robinson EoS instead of Redlich-Kwong

* Inflow boundary conditions and their influence

* Role of acoustics at inflow and outflow

* Turbulent combustion closure
— Finite rate chemistry (influence of kinetic mechanism)
— Laminar chemistry vs LEM closure

* LOX-GH2 and LOX-GCH4 combustion studies
— Experiments at Penn State, Mascotte (France) and JAXA

* Combustion instability in high pressure subcritical GCH4-
GOX combustor at Purdue

Computational Combustion Lab B

Chemistry modeling for H2-02
combustion

* Baurle & Girimaji (2003) - reaction kinetics for H2
including 7 steps and 6 species. Radical species include
OH, H and O.

* Conaire et al (2004) - reaction kinetics including 21
steps and 8 species. Addition of H202 and HO2
radicals.

* Shimizu et al (2011) - kinetics including 29 elementary
reactions and 8 species. High-pressure effects better
accounted for. (For H2-Air combustion 5 additional steps
include N2, He and Ar effects)

ALIX31dINOD

\ 4

This document is provided by JAXA
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Chemistry modeling for H2-O2 System

* Opposed diffusion flame at high pressure

* Good agreement between 21-step and 7-step
H,-O, opposed diffusion flame, 55 bar

T =700K,V =1m/s,T. =811K,V_  =3m/s, strain rate estimate: 200 1/s
ox ox fuel fuel
4
T T T T T T

~

—— Conaire - Temperature (kK)
—— Conaire - O, mass fraction

3.5| — Conaire - H, mass fraction
—— Conaire - H,0 mass fraction
X  Conaire - Absolute velocity (m/s)
3= Baurle - Temperature (kK)
— — Baurle - O, mass fraction
— — Baurle - H, mass fraction

2.5

— — Baurle - H,0 mass fraction

O  Baurle - Absolute velocity (m/s)

2 2
1.5 1.5
1 1
'3 J
0.5 0.5
0 I ! L OX@ ¥ X 5t o RIS 0

0.7 0.725  0.75  0.775 0.8 0.825 085 0.875 0.9 0.925

Distance (cm)
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Comgutationa/ Combustion Lab

Chemistry modeling for H2-02

* 1D-laminar flame at T=298K and p=1atm
* 21-step (Conaire et al.), 29-step (Shimizu et al.)

3.5} ]
3.0
i\éi 2.5F
® 20k
2 2.0
id ® XP Dowdy
g 1.5 ~—CHEMKIN SIMULATIONS—— |
& —— CONAIRE muxture
- = SHIMIZU mixture
1.0 SHIMIZU Mult Soret
: —LESUE SIMULATIONS (TPG / Mixture)—| |
® Cantera - GRimech
—4— CONAIRE
0.5 ~4- SHIMIZU 7]
1 L 1 1 L 1
0.5 1.0 1.5 2.0 2.5 3.0

Equivalence ratio
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Scaling from Lab to Sub-scale to Full-scc

Sub-Scale

Lab Scale

Re (LOX) 1.38E+06 5.53E+05 6.18E+04

Re (Fuel) 4.38E+05 1.83E+05 4 .87E+05
Velocity Ratio 4.99 16.93 18.06
Momentum flux ratio 3.15 1.53 11.64
Equivalence ratio 1.28 1.36 13.09
Da 2.63 1.87 58.0

Lab Scale

* Sub-scale multi-injector test case (83 injectors):

— Chamber pressure: 138 bar, far from p, (02, CH4)

— LOX: U =20-40 m/s, T =100-120 K

— CH4: U = 130-250 m/s, T = 240-300 K, $=1.1-2

— Flow speeds much higher than lab-scale single injectors
* Can LES be used to study scaling issues?

Comgutationa/ Combustion Lab

LOX coaxial injector rig

* Developed after NASA CUIP study [1]
* Square chamber for better optical access [2]
* Grid influence study with 4 grids:

* Coarse (600k), baseline (3.5M), I-refined (5M) and IK-
refined (7.5M)

D, ox=2.05
mm
L,=0.35m

[1] Tucker, Menon, Merkle, Oefelein, and Yang. In 44t JPC, AIAA 2008-522, 2008
[2] J. M. Locke. PhD thesis, The Pennsylvania State University, May 2011

This document is provided by JAXA



HRRKF ary by ET V7 TRT 8 — (JAXA AL EEERIE) Ry T A 21
ulry hmoP oI al—3 g ORE. FLTEFDOR~ #%ilE

1.5 ms

TEMPERATURE (K) MASS FRAC N2 \

* 21-step Conaire et al., 8.5 M grid points
e Strong sinuous and helicoidal modes

LOX-GH2 Flame Structure

* Pure diffusion flame in the near-field @ x/D =1
* Radial profile @ x/D=1, flame structure clearly defined

DENSE LOX CORE
BOUNDED BY RECIRCULATION
TRANSCRITICAL LAYEN

m<>r-m

GH2

POTENTIAL /

LOX CORE

This document is provided by JAXA
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—Comwgombuﬁion Lab A
LOX-GH2 Flame Structure

* Pure diffusion flame in the near-field
* Premixing present once dense core narrows
* Another reason to use Finite-Rate Kinetics

TEMPERATURE (K)
| 5 ms
'5'3’»00 000

120.000

* New interest in Liquid Rocket Engines (LRE) operating
with methane as propellant.

* Important differences with hydrogen physics:
— CH4 can be injected under both trans-critical and
supercritical states’.
—Pcn, > P2 large range of flux momentum ratio can be
applied in LOX/CH4 injector, which allows different
hydrodynamic and combustion regimes

— Complex chemistry requires to revisit methods
developed for H2/02 combustion (mechanisms, LES
closure of the reaction rate...)

' Singla et al. (Proceedings of the Combustion institute 2005)

This document is provided by JAXA
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Reduced mechanism for O2/CH4 |
combustion

* Lack of reduced mechanism for oxy-combustion of CH4 at
high pressure: at least 12 steps and 16 species’
— Too expensive for real gas LES at this time!!
* Use global 1-step and 2-step kinetics with modified rates to
match conditions at high pressure
* Computation of laminar premixed flames with Cantera:
— Stoichiometric equivalence ratio
— Pressure: 5.6 MPa
— Real gas replaced by thermally perfect gas assumption.
— Mechanisms: comparison of WD12 with GRIMECH.

Sung et al. Int. Symp. Comb. (1998), 2Westbrook & Dryer (CS&T 1982)

Comparison of WD1_, with GRIMECH
— GRIMECH o ——GRIMECH | P garaeaa ot ot e, -
gt;{ s --------- } :g 1 E
= =1 :
o
* Error on the adiabatic Tog (K) | sz (m/s)
temperature < 5% GRIMECH | 3584 2.317
* Nearly perfect correction WD1 5051 11.11
of the flame speed WD1ox 3755 2.283

This document is provided by JAXA
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LES of Mascotte test case

* Coaxial LOX/CH4 injector (G2)': P=5.6 MPa, ¢g =

* 24 million grid points

|| Composition| T fol s

Round jet 02 3.70
Annular jet CH4 288 63.2

1 Singla et al. (Proceeding of the Combustion institute 2005)

Comgutationa/ Combustion Lab

Turbulent Flow structure

* Strong coherent structures in the shear layers:
entrainment of gas in coaxial jet and dense core wrinkling

* Good recovery of the Kolmogorov -5/3 spectrum

This document is provided by JAXA
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Comgutational Combustion Lab
Flame structure

Experimental flame : Visualization * Good agreement
Short flame: L~6 cm.
Anchored on the LOX tip.
Expansion angle:

— Initial part : a<10°

— Blooming angle : a~20°

LES (MAX): iso surface T=1700K

Computational Combustion Lab 7]

Combustion regime
" : Fama i * Flame index:

00E+04 4300404

FI=VY,, *VY,
FI <0 : Diffusion flame
FI >0: Premixed flame

Mass Froction

* Diffusion flame

* Combustion regime close to the *
laminar infinitely fast chemistry
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Comgutationa/ Combustion Lab

3D v/s Axi vis 2D LOX-GH2 Studies

* 3D is essentially the only proper way to do LES but is
computationally very expensive

e Strategy needed for parametric study of unsteady flame-
turbulence interactions that is cost effective

— Axisymmetric, 2D or sector 3D
— Pros and Cons for each approach

* Axisymmetric and 3D sector with centerline injector will
always result in an artificially long LOX core

— Off-center injector may avoid centerline effects but artificial
e 2D avoids centerline issues but no 3D relieving effect,
choking is artificial and energy/volume may be too high
* LES closure is invalid for axisymmetric of 2D but
unsteady effects can be captured

Comgutationa/ Combustion Lab

3D v/s Axisymmetric

* Liquid core length is too long in axisymmetric case

Axisymmetric

3D

This document is provided by JAXA
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Comgutational Combustion Lab 7

A 2D Evaluation Configuration

* 2D simplification of a shear coaxial injector including a
convergent-divergent throat (injector studied by Nunome
et al., 2011 and Daimon et al., 2011)

* Baseline mesh, total ~270,000 points, PR-EOS

* Effect of kinetics, Hydrogen temperature, recess all can
be studied in a cost-effective manner

* Precursor simulations before doing full 3D

Comgutationa/ Combustion Lab 7

Boundary Conditions

* H, inlets are part of the same injector and would react
identically to longitudinal pressure fluctuations

* In 2D pressure waves in inlet lines are not in phase
— BC react differently in the two H, inlets

* H2 inlet BCs linked so that the same inflow conditions
are applied at all times

— The incoming waves are out-of-sync in the long inlets,
the effect is limited

p/ pref
1.23

Out-of-sync

This document is provided by JAXA
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Comgutationa/ Combustion Lab

Effect of Kinetics for T, =50 K

Baurle : 7-step 6-species

Pousee ot b

Shimizu: 29-step 8-species

N — .é_‘;\ - vm...
o T - Sl

1 -

-
MALTE AT
|
- .
¢ b

Comgutationa/ Combustion Lab

Implication of 2D Geometry

* High energy release to chamber volume ratio produces
increase in mean pressure to 140 bar (design = 100 bar)

* Results similar with or without outflow choked conditions
* 2D simulations do not have the 3D relieving effect

[— Downstream|

('mk, PRESSURE
e - Shear layer | - -—
2s5M My 0E+06
Averaged TEMPERATURE (
200M ) » Oms

. 175M 0
&
%‘ 1S0M AVELOCHTY (m
: |
£ 125M 100
10.0M ¢

MACH NUMBER

1.00
-
I5M 0.00

0.027% 0.03 00325 003§ 00378 (OS]
Thirse (s)
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Computational Combustion Lab s

Energy/Volume ratio assessment

* Increase on chamber dimensions to reduce (energy/
volume) ratio with same injector configuration

* Pressure now at design 100 bar but flow field has larger
recirculation at the corner

— Downstream
Center |
Shear layer

== Comer
Averaged

ISOM

125M ¢

100M

Pressare (Pa)

T T —— A-tla_li. 4.1 -
0 00025 0005 00078 001 00128 oS

Thirse (5)

Comgutationa/ Combustion Lab 7

Pressure Spectra

* Both chambers show peak
at the transverse mode
frequency

— Narrow case = 50 KHz
— Wider case = 20 KHz

* Wider chamber has lower
pressure amplitude

This document is provided by JAXA
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Effect of Recess

No-Recess

Recess

LES of Combustion Instability

* Purdue Subcritical P=1.34MPa

m Flow rate (kg/s) Temperature (K)

Oxidizer  Yp,=0.42 Y,,0=0.58 0.32 1030
Fuel Yopa=1 0.027 400
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Computational Domain
* Axisymmetric and 3D studies
* Full combustor geometry with supersonic outflow nozzle
* LEMLES with two-step chemistry

— flame speed correction for rich combustion regime.

Axisymmetric v/s 3D

* Boundary condition on the axis center does not
allow transverse jet flapping

* Flame anchoring identical but long oxidizer core
even for gas-gas case

Axi LEM-LES

TEMFERATURE (0
275000 2175000

3D LEM'LES 1350.000 7000000
-~ - H’

B
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Computational Combustion Lab
3D LES Mean Results

Velocity

T=2000 K ‘I m | Temperature
1500 2100

* Velocity field: long recirculation zone, supersonic flow in the
nozzle and high velocity core along the center line

* Anchoring of the flame at the step corner.

* Stabilization of the flame in the mixing layer between the
high velocity flow and the recirculation

* Distributed heat release: the flame is not compact (L; ~8cm)

Comgutationa/ Combustion Lab

Resonant mode Structure

Pressure Amplitude

gx 10’ Heat Release

- © 1% mode
92, ~-2"9 mode
Q <3 mode

Q

=)

mod(P’) (Pa)
phase(P’) (rad)

41}

Heat Release (W
w

\
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Two Standing Acoustic modes in the combustor

-
1 )% 1104 e2m
1000008 1308000 1ot ecn
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Flame Holding: A Complex Triple FIam

Triple point
B h 1 T m 10 ="' Branch 3
ranc - p—
+00 2E+10 4E+10
\
N —
z=z_=0.095 T=2000 K
(black line) (white line)

Branch 1: rich premixed flame anchored at the step corner
Branch 2: lean premixed flame

Branch 3: diffusion flame (stoichiometric mixture fraction)
Triple point : intersection of the three branches

— Location of Maximum Heat Release

Comgutation_al Combustion Lab 5%

Triple Flame Structure

Black line: Stoichiometric mixture fraction
Heat release (W/m?)

White line: T=2000K (progress variable)

tF,=1/6

flame. Start of a new cycle with the generation of a new triple point
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Pressure Signal and Spectra
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Experiment LES

—mm_a/ Combustion Lab

Summary Comments

* LRE modeling and simulation are very challenging due
to real gas effects, finite-rate kinetics, flame-turbulence-
acoustic interactions and complexity of the geometry

* LES compressible solver with real gas and subgrid
closures developed to address these challenges

* Application to trans-critical mixing experiments shows
good agreement with data

* Application to trans-critical reacting experiments show
much more is needed to reduce cost of kinetics

* Application to combustion instability in subcritical
reacting cases shows ability of LES to capture dynamics

e Still a lot of studies needed to develop predictive
capability for multi-injector applications
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