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Background & Motivation BEEie]s) SN @IEE

The physical phenomenon of interest is high-speed gas dynamics

Physics Numerics
® The compressible Navier-Stokes ® Discretization of the conservation law
equations describe fluid flow for all form of the Navier-Stokes equations is
Mach numbers. required for convergence to physically

. ) valid solutions.
e For aerospace applications of interest

the Reynolds number is almost always ® Convective terms must be treated with
such that the flows are convection some form of upwinding.
dominated. ® Shocks are treated with some form of

® Multiscale phenomena appear in the limiting or shock capturing, both of
form of shock waves, boundary layers, which amount to artificial diffusion
and shear layers. ] which regularizes the problem. )

@
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Background & Motivation BEEie]s) (SN @IER

Aerodynamics
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...1s concerned with predicting acrodynamic forces and moments on a vehicle
which result predominantly from the surface pressure distribution, but also
from viscous shear stress.

Properly characterizing the aerodynamic performance of reentry vehicles is
critical for optimal trajectory design.

@
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Aerothermodynamics

Heat Transfer Coefficient

...1s concerned with predicting the instantaneous total heat transfer rate and
integrated heat load into a vehicle.

Properly characterizing this environment is crucial because it provides the
design conditions for the thermal protection system:

heat transfer rate — thermal protection material selection
heat load — thermal protection material thickness @’
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Background & Motivation Problem Class
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R SINGRCAV GEEIEN  Reacting Flows

e When chemical kinetic timescales are approximately equal to flow
timescales, the chemical composition of a flowfield must be determined
as part of a simulation procedure. Such flows are in chemical
nonequilibrium.

T : :
¢ e Molecules and atoms can store energy in various

modes.

e At hypersonic conditions these modes may not be
in equilibrium, resulting in thermal
nonequilibrium.

e The physical models and governing equations for flows in
thermochemical nonequilibrium have been simulated previously with
finite difference and finite volume techniques.

¢ In this work we review the physical models and implement a SUPG finite
element scheme for hypersonic flows in thermochemical nonequilibrium.
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Background & Motivation Surface Ablation

At hypersonic entry conditions, surface temperatures may exceed
capabilities of reusable thermal protection system materials.

» Reusable materials typically limited to 7 < 2, 000 K.
» It is necessary then to consider ablative materials.

Ablative materials respond to high temperatures through pyrolysis,
decomposition, blowing, and surface recession.

Typically, ablation analysis is decoupled from the external flowfield, but
we hope to do better.

Additionally, accurately characterizing ground test facilities requires
increased fidelity.

As we will see, however, more accurate numerical modeling results in
unique numerical challenges, necessitating novel numerical algorithms.

@

Kirk et al. (NASA/JISC) Fully Implicit Methods for Hypersonics September 26, 2012 10/85

This document is provided by JAXA




40 FHMTZEWFTE B AR AR RIS B JAXA-SP-12-014

Physical Modeling
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Physical Modeling Governing Equations

Governing Equations

¢ Extension from a single-species calorically perfect gas to a reacting
mixture of thermally perfect gases requires species conservation
equations and additional energy transport mechanisms.

dps :

8[; + V- (psu) =V - (pDsVcg) + w;
%—l—v-(puu):—VP—l—V-T

OpE ns

W—i—V-(pHu) =-V.-q+V-(tu) +V. thstVcs

s=1

e Problem class may also require a multitemperature thermal
nonequilibrium option.

+ V- (peyu) = -V -4, + V- pZevstVcs + wy

@
v
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IGVATEIBYOLBIEES  Governing Equations

Turbulence Modeling
e We model the effects of turbulence using the Spalart-Allmaras
one-equation turbulence model:
0, o ,__ _ _ [ Vsa\ 2
E(pysa) + 8_xj(puj7/sa) :Cblssapysa - Cwlpr <§)
1 0 L\ Ovg Cpy _OVsy OVgy
* o Ox [(M + Pva) Oxy, ] + o P Ox; Oxy
with closure terms
_ _ X X _ Va
Hr = PVsafvla fvl = 3 T 13)1a fv2 1+va17 - 3 )
1+, /6 . Do
fw:g(m) e=rten (), =g
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Physical Modeling Governing Equations

Turbulence Modeling

e We model the effects of turbulence using the Spalart-Allmaras
one-equation turbulence model:

0 - 9 - ~ _(Vsa)?
E(pysa) + 8—xj(pujVsa) =Cp1SsaPVsa — CwifwpP <7)
_|_li ( + pv. )% +c£—aysa aVsa
o Ox fr P Oxy o Ox; Oxi

and source term .
sa
Ssa = + Sm; SmO — Wf\&

where
S0, Smo 2> —¢2§2
Sm = Q(C‘%ZQ —+ Cv3Sm0)
((CV3 - 26‘1}2)Q - SmO) ,

otherwise.
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ISWEEIBYGEENTEES  Thermochemistry

Thermodynamics & Transport Properties

e Thermochemistry models must be extended for a mixture of
vibrationally and electronically excited thermally perfect gases.

emt — etrans 4+ erot 4+ ev1b 4 eelec 4+ hO

ns
=3 el (1) + 3 e (T) +
s=1

s=mol
ns ns
vib elec 0
E csey” (Ty) + E cses s (Ty) + E csh;
s=mol s=1 s=1

Here we have assumed that 7" = 77 = T and 7V = 7 = T,

e Additional transport property models are required. In this work we use

species viscosity given by Blottner curve fits,

species conductivities determined from an Eucken relation,

mixture transport properties computed via Wilke’s mixing rule, and
mass diffusion currently treated by assuming constant Lewis number.

vV v.v .y
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Physical Modeling Thermochemistry

Chemical Kinetics & Energy Exchange

Kinetics:
e we consider r general reactions of the form

No4+M=2N+M
N +O=NO-+N

e When combined with forward and backward rates, these reactions
produce the species source terms wy

e Presently, we use either CANTERA or an in-house library to provide
these source terms.

Energy Exchange:

e Equilibration between the energy modes is modeled with a typical
Landau-Teller vibrational energy exchange model with Millikan-White
species relaxation times.

e Provides the vibrational energy source term wy

o
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IGVSTEIBYOLDIEEN  Thermochemistry

Chemical Kinetics

® We consider r general reactions of the form

No+M=2N+M

N, +0=NO+N

® The reactions are of the form
ns p Bsr ns p Osr
7?/r =k r = —k 7 —
A1) -+ 11(3)

where - and S, are the stoichiometric coefficients for reactants and products

® The source terms are then

(l)s = Ms Z (asr - 5sr) (Rbr - Rf’)

r=1
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IGWVATEIBYOLDIEEN  Thermochemistry
Energy Exchange

wy = Oy + Otransfer
We adopt the Landau-Teller vibrational energy exchange model
5vib ib
ey” —ey
7-svib

tr-vib
QSI‘VI = 9

where ¢''* is the species equilibrium vibrational energy and the vibrational

relaxation time 7)'° is given by Millikan and White

—1
Lvib Dot Xr Y, = crﬁ M — - Cs
- ) r — 5 —
’ Z:ls:1 Xr/ TP M, —1 M;
and
o1
T = = exp [Asr (T—1/3 . 0-015u§r/4> - 18.42]

MM
Ay =1.16 x 1073 1/204/3 ="
Sr 8 SR M + M, @

o
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Thermochenity

Vibrational Energy Production and Energy Exchange

wV — Qv + Qtransfer

When molecular species are created in the gas at rate wy, they contribute
vibrational/electronic energy at the rate

st _ ws ( e;/ib + eglec)

so the net vibrational energy production rate is
ns
_ Z s ( e;qb + eglec)
s=1
Combining terms yields the desired net vibrational energy source term

ns ns

. Atr-vib . vib elec

wV:E 0O, —|—E ws(es + e )
s=1 s=1
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IGWVATEIBYOLBDITEEN  Quasi-Steady Ablation

Ablation Processes

Pyrolysis Gas Ablating
Surface

Char Zone

Decomposition

ak AN
/

Sub-Structure

ST,

Schematic of ablation processes

e Ablation is a multi-scale, multi-physics phenomenon

¢ Sometimes amenable to simplification for predictive simulations @
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Quasi-steady State Ablation Hypothesis

Initial Ablating
surface  surfagg —x 3
T=T. "
S
—=1/ CHAR [PYROLYSIS VIRGIN SUBSTRUCTURE
t e
5{) L‘-ﬂ“) _kﬂy e = 0

@ Steady state in reference frame fixed to the receding surface
® Time variations solely due to motion of the material domain

® Time scale for surface motion (§ &~ 0.1 — 1 mm/sec) much larger than
characteristic time scale of unsteady processes

® 1-D, semi-infinite medium @/
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IGWVATEIBYOLBDITTEN  Quasi-Steady Ablation

Quasi-steady Ablation
m=m) Energy
=) Mass
VCS VCS vCS VCS
N, e e e e
pvwz Ci pchvcs I I
T s aaden o
i n‘,lc e v ch)Ves I pvvcs
ya— I
~ e— V. Chemjcally
TR |
k or = I
ay gas \ oT I I
g — [ kgl |
e R
Ny N
v, hC, —w——ta— I I - 0
P WIZ:; i~ / m ; Ci,ghi | | pvvcshf,v
N B — B — B — B —
Z Jihi VCS vcs
i=1 Char Pyrolysis Virgin
Zone Material
e Assumes ablation timescale < trajectory timescale @
e Assumes negligible substructure conduction
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IGVATEIBYOLBITTEN  Quasi-Steady Ablation

Ablation Interface Conditions
Recession:
Py = M, + M,
Mass: 3
Ji|gas + pv,,Ci = N;i(C;, T) + I’;’Lg Cig; (i:1..Ny)
Energy:
oT A
— k—- o Z hl(TW) Ji‘gas + mc hC(T) - vahW(T)
9 | gas i=1
& oT
+O‘Qr - UETW4 + Z mg Ci,ghi(Tw) + ksa_y|solid,w =0
i=1
e Nonlinear Robin Boundary Conditions
e Enables quasi-steady solves, restarts @
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Finite Element Formulation

@ Finite Element Formulation

@
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Stabilized Finite Element Scheme

oU oUu 0 oU :
E +Ai(‘9_xi = 8_x, (K”é?_x]) + S8

Find U satisfying the essential boundary and initial conditions such that

oUu . ow oUu |
Lo (o) 22 (02
- OW oU U  0G;
/ TSUPG— Ag [(‘% +A; il

ow  ,oU
/VDCO<8x,- g' axj) dQ—in—(g—f) dl' =0

df2

nel

for all W in an appropriate function space.

@

Kirk et al. (NASA/JSC) Fully Implicit Methods for Hypersonics September 26, 2012 24/ 85

Finite Element Formulation

Stabilization Parameters

Discontinuity capturing operator:

ou ou 0 ou
HW Alax Oxi (KU@XJN

T 4— i [ O 0
(AUy) AOIAUh—I—g’J( aﬁfﬁ') Ay

D) 11/2

A—l

VDco =

SUPG stabilization matrix:

0o; 0pi . 0;
1 , il 4
TSUPG a z_%):des <| 8XjAJ 8)6]' K]k 8xk>
where -

8xj

o

@
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Fully-Implicit Navier-Stokes (FIN-S) Overview

e Fully-Implicit Navier-Stokes (FIN-S) Overview
@ Verification
@ Parallelism

@
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Fully-Implicit Navier-Stokes (FIN-S) Overview

Fully-Implicit Navier-Stokes (FIN-S)

Implementation Highlights

e C++ application code built on top of the 11ibMesh library.

» 1ibMesh provides all requisite finite element data, parallel domain
decomposition details.

» Inherits PETSc preconditioned Krylov iterative solvers.

» CANTERA used for kinetic rates, in-house thermodynamics, transport

properties.
» Only ~ 30K SLOC

e Fully-coupled (monolithic solves), fully-implicit discretization.
e Rigorous verification using MASA-provided manufactured solutions.

e Testbed for intrusive VV/UQ schemes applied to hypersonics.

@
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Fully-Implicit Navier-Stokes (FIN-S) Overview Verification

Manufactured Analytical Solution Abstraction Library

e Dearth of exact solutions necessitates method of manufactured solutions

e Some manufactured solutions exist for the calorically perfect Navier-Stokes
equations

» Developed in large part by Sandia National Labs
» Specific solutions for field, boundary condition order-of-accuracy verification

e Existing solutions provide a necessary but not sufficient test suite

» Will need to develop many more solutions to verify reacting flows with complex
transport models

e Manufactured solutions are a valuable resource that should be accessible to
anyone

e PECOS is developing the Manufactured Analytical Solution Abstraction
(MASA) library to provide well-defined manufactured solutions and source
terms for a range of physics applications

o

Manufactured solutions are being constructed and will be incorporated into the @
FIN-S regression test suite
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Fully-Implicit Navier-Stokes (FIN-S) Overview Verification

Manufactured analytical solutions (used by Roy, Smith, and Ober) for each
one of the primitive variables in Navier-Stokes equations are:

a
p(x,y) = po+ pysin (a"xm> + py cos ( pyﬂy) ,

L L
a
u(x,y) = ug + u, sin (duzwx) + uy cos ( ”yLWy) :
a
v (x,y) = v + vy oS <av27rx> + vy sin < V)ZT)/) :

p(x,y)=po+px<:08( T )+pysin( 3
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Fully-Implicit Navier-Stokes (FIN-S) Overview Verification

The method of manufactured solutions applied to Navier-Stokes equations
requires modifying the governing equations by adding a source term to the
right-hand side of each equation:

9p , Opu | Opv

o T ox Ty T
Opu 8pu2 +p— T | Opuwy — Ty
ot + Ox + oy = O
Opv . Opvu — Ty, Opv* + p — Ty _
ot + Oox + Oy =0
Ope;  Opue; + pu — UTee — Vg + qx . Opve + pv — UTye — vy + gy
+ + - Qt’z

ot 0x dy

so the modified set of equations has a known, analytical solution.
Symbolic representations of requisite source terms and C-source code have
recently been generated for 2D and 3D calorically perfect gas flows.

@
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Fully-Implicit Navier-Stokes (FIN-S) Overview Verification

@

Kirk et al. (NASA/JISC) Fully Implicit Methods for Hypersonics September 26, 2012 31/85

This document is provided by JAXA



WHKYE 0oy bV rET Y7 TRT MY — (JAXA 2 R 0 RY T A 51
0y Fmr Py al—a rOEE. FLTEDR~ %IE

Fully-Implicit Navier-Stokes (FIN-S) Overview BRYSEIilzi ()i}

Kirk et al. (NASA/JSC) September 26, 2012 32/85
Fully-Implicit Navier-Stokes (FIN-S) Overview Verification

250 20 ‘ ‘
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16 ) J
;
14 i 1
! k7
12 1 J
Q >
£ +,3 10 .1 ]
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8 ; :
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6 p g
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Fully-Implicit Navier-Stokes (FIN-S) Overview Verification
Spalart-Allmaras Perfect-Gas Verification
107 107 107
N
10 il 1.52 10 10 ?I 152
;; 10° :ji 10° %‘ 10°
N ; il 1.97 =
10° il 1.8 10° 10° il 198
17— ‘ : ‘ : 107 —— ‘ : : 107 —— ‘ : :
0 ﬁ:gz(ho/rS ¢ ° 0 fogz(ho/h§ ° 0 fogz(ho/rS °
107 107 107
107 107 107
=107 ?: 107 f: 10°
= 10 2 0 a0
10° 1.96 10° 198 107 196
107 . : . 10° . : : 10° . : : . : .
0 2 |ng(h:/h) 4 5 6 0 2 |092(h:/h) 5 6 0 2 |ng(h:/h) 4 5 6
P pu PVsa
https://red.ices.utexas.edu/projects/software/wiki/MASA @
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Parallelism

Fully-Implicit Navier-Stokes (FIN-S) Overview

Need for Parallelism

Large Problem Size

e [arge numbers of unknowns.
» For a Lagrange nodal basis:

# DOFS = (NS + NDIM 4+ NE + NT) x # NODES
» Specifically, for our 13 species ablation model in 2D with turbulence

#DOFS = (13 4+ 2 +2 4 1) x # NODES

e For our implicit scheme, both storage and computational cost scale like

(# DOFS)?
v
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Fully-Implicit Navier-Stokes (FIN-S) Overview Parallelism

Need for Parallelism

Complex Physical Models

e Chemical Kinetics, transport properties for NS species inherently
expensive.

e Temperature is a nonlinear function of species concentration, internal
energy for a mixture of thermally perfect gases.

e Quasi-steady ablation boundary condition is also nontrivial.

@
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Fully-Implicit Navier-Stokes (FIN-S) Overview Parallelism

Opportunities for Parallelism

Multiple Types of Parallelism

©® Domain Decomposition: We use a standard non-overlapping domain
decomposition approach provided by 1ibMesh. Local computations are perfectly

parallel, and the resulting implicit system is solved using preconditioned Krylov solvers
from PETSc.

® Multithreaded Computation: The relatively large element matrices resulting for
reacting flows are well suited for threaded assembly. 1ibMesh provides a convenient
interface to Intel’s Threading Building Blocks which can provide further parallelization

on multicore architectures.

© Vectorization: Remember vectorization? While no longer the de facto paradigm for
high-performance computing, modern microprocessors offer vectorized instructions
worth exploiting. We are using Eigen for dense linear algebra and inherit its SSE

optimizations.

v

@
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Fully-Implicit Navier-Stokes (FIN-S) Overview Parallelism

Domain Decomposition
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Fully-Implicit Navier-Stokes (FIN-S) Overview Parallelism

Domain Decomposition
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Fully-Implicit Navier-Stokes (FIN-S) Overview Parallelism

Speedup — Domain Decomposition
10° =
B Ideal
| ——8—— Scaled-Size (Weak) Scaling
- ——&—— Fixed-Size (Strong) Scaling
10° =
o i
3 B
2
=¥
n
10' -
100 | | | @
10° 10' 107 10°
Number of Processor Cores

Kirk et al. (NASA/JSC) Fully Implicit Methods for Hypersonics September 26, 2012 40/ 85

Fully-Implicit Navier-Stokes (FIN-S) Overview Parallelism

Multithreading

e Modern Parallel systems often contain 12—16 (or more) on-node cores
connected via low-latency network.

¢ On-node multithreading allows an additional parallel mechanism that
can extend scalability in certain circumstances.

e libMesh provides a clean interface to Intel®’s Threading Building
Blocks (TBB) which is we have access to.

e TBB is a C++ template library consisting of

» Algorithms

» Containers

» Mutexes

» Timing routines

» Memory allocators

designed to help avoid low-level use of platform-specific (e.g.
pthread) implementations. @,
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Fully-Implicit Navier-Stokes (FIN-S) Overview Parallelism

Intel®’s Threading Building Blocks

e Requires more work than OpenMP but

» Has better type-safety
» Easier to reuse code
» More natural for use with C++

e Once a standard for loop is selected for parallelization its components
are abstracted as C++ Range and Body objects

e In FIN-S we parallelize matrix assembly, primitive variable computation,
and other operations in this way.

» Some operations perfectly asynchronous — e.g. computing primitive
variables.

» Other operations require locking shared objects — e.g. inserting local
contributions to a global matrix.

» Special care needed when interfacing with 3™ party libraries.
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Speedup — Multithreading
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© Results
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@ Modeling Arcjet Flows
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Background — AEDC Sharp
Double Cone

® A sharp 25°-55° double cone was tested
in N, at CUBRC.

® [t was discovered that freestream
vibrational nonequilibrium must be
properly modeled for CFD to match
experiment (Nompelis & Candler).

e The AEDC Hypervelocity Wind Tunnel
No. 9 also uses N as its test gas.

® A series of tests were conducted at
AEDC using the same model to
investigate the presence of vibrational
nonequilibrium in the freestream.
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Observations

® Four Reynolds numbers were tested in the nominally Mach 14 nozzle.

[Run || 2890 2891 2893 2894
Moo 13.6 13.17 12.73 12.63
Rep 1.12 x 10° 411 x 100 8.44 x 10*  5.86 x 10*
poo || 7.81x1073  296x107%  590x10~* 3.98x10™*  ke/m?
Uso 2006.6 1949.8 1763.5 1682.6 Wsec
Too 52.3 52.7 46.1 42.7 K

® No appreciable vibrational nonequilibrium effects observed.
e Highly unsteady flow observed for all Reynolds numbers tested.

® For a uniform freestream, CFD predicts steady flow for the two lowest Reynolds

numbers.
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Steady states, runs 2893 and 2894
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Time Convergence, run 2894
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High speed schlieren, run 2890

@
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Computed schlieren, run 2890

@
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Possible Mechanism for Observed Unsteadiness

For a uniform inflow, CFD converges to a steady—state for the two lowest
Reynolds numbers tested.

This is in contrast to the experimental results.

e My conjecture is that freestream noise drives the unsteady behavior at
these low Reynolds number.

Remaining analysis is focused on testing this theory.

e
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Noise Characterization
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Noise Characterization
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Results — Flowfield
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Results — Surface Pressure
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25 kHz, 6% RMS Pitot Pressure Fluctuation
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Frequency Influence
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2D Extended Cylinder
e Laminar flow in thermal equilibrium
e Chemical nonequilibrium, 5 species air (N3, O, NO, N, O)
e 5 reaction model with Park 1990 rates
CN27OO = 0.78, COQ,OO =0.22
U = 6,731 m/sec
Poo = 6.81 x 10™*ke/m?
T =265K
e Blottner/Wilke/Eucken with constant Lewis number Le = 1.4 for
transport properties
e Mesh, iterative convergence
e FIN-S/DPLR comparison
v
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REBI  Viscous Thermal Equilibrium Chemical Reacting Flow
Nitrogen
Temperature Mass Fraction
T(K) w2
9500 0.74
9000 0.72
8500 0.70
8000 0.68
7500 4 0.66
7000 0.64
6500 0.62
6000 0.60
5500 0.58
5000 0.56
4500 0.54
4000 0.52
3500 0.50
3000 0.48
2000 . U.=6,731 m/s
1500 6 8110 kg/m’ p.= 6. 8110 kg/m’
1000 J T_=265K
Nitric Oxide
Pressure Mass Fraction
P (N/n’) Cro
28000 0.06
26000 0.05
24000 0.05
22000 0.04
20000 0.04
18000 0.03
16000 0.03
14000 0.02
12000 0.02
10000 0.01
8000 0.01
6000 0.00
4000
2000
U,=6.731 m/s
p.= 6. 81x10* kg/m’
T =265K @
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Iterative Convergence
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Ablating Boundary Experiments

Mass Fraction
=)
Mass Fraction

TR ST T T O Y N MO IR SN RVEN | M1
0 0.05 0.1 0.15 0.2

Distance from Stagnation Point (m) Distance from Stagnation Point (m)

e Turbulent flow in thermochemical nonequilibrium, 13 species air (N,
0,,NO, N, O, C3, C,, C, CN, CO, H,, H, C,H), 18 reaction model with
Park 2001 rates

e 5 Meter-scale domain, millimeter-scale chemical boundary layer

]
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Viscous Reacting Flow with Quasi-Steady Surface Ablation
Ablating Boundary Experiments
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Arcjet Flowfields

Motivation

e Arcjets are uniquely suited to perform high enthalpy, long duration
material response testing.

e Modern computational techniques are required to adequately
characterize the freestream properties.
e Analysis complicated by multitude of scales, physical phenomenon:

» Very low speed, high pressure plenum,
» very high speed, low pressure nozzle exit,
» highly nonequilibrium flow about test specimen.

e Adequately treating these phenomenon simultaneously is challenging for
numerical methods.

v

@

Arcjet Flowfields

@
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Arcjet Flowfields
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Viodeng Avee Fiow

Arcjet Flowfields
JSC TP2
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Viodlng ArtFlows

Arcjet Simulations — Enabling Boundary Conditions

Implicit, Characteristic Boundary Conditions for Thermochemical
Nonequilibrium Flows

Consider the transformation from conserved variables to characteristic
variables:

where 60U is a pertubation in the conserved variables, ¢ Uisa pertubation in
the conserved variables, and M~ ! is the transformation matrix given by the
left eigenvectors from the inviscid flux Eigendecomposition for a specified

flux direction.

We will manipulate this statement such that outgoing/incoming characteristic
variables are unchanged at inflow/outflow boundaries, respectively.
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Arcjet Simulations — Enabling Boundary Conditions

Characteristic boundary conditions for reservoir-type boundaries.

M: H(), {Cs}, my, f), and Us.

1: Let U = Ujp serve as an initial guess.

2: do

3:  Form the transformation matrix M~! = M~ (U)

4 Define the outgoing conserved variable increment Ut = U — U
5: Compute the outgoing characteristics increment SU = MUt
6:  Define the unconstrained residual r = —U

7 For each incoming characteristic, replace a row of M~! and r with a
8: linearized constraint derived from the reservoir conditions.

9:  Solve for the increment M~'6U = —r = —6U

10: Update the iterate U + U + U

11:  while ||0U||_ > &;

12: Compute F = F (U) as the inviscid flux on the outflow boundary in the weak

statement. )
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Arcjet Simulations — Enabling Boundary Conditions

Characteristic boundary conditions for vacuum-type boundaries.

Given: Ug and Ppaex = {vacuum fraction} x Peyit.

1: Let U = Upg serve as an initial guess.

2: do

3:  Form the transformation matrix M~' = M~ (U)

4 Define the outgoing conserved variable increment SUT = U — U

5: Compute the outgoing characteristics increment SU = MUt

6: Define the unconstrained residual r = —6U

7 For the single incoming characteristic, replace the row of M~ and r with a
8: linearized constraint derived from the back pressure condition.

9:  Solve for the increment M~ '6U = —r = —6U

10: Update the iterate U < U + 06U

11:  while ||0U||_ > &

12: Compute F = F (U) as the inviscid flux on the inflow boundary in the weak

statement. )
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Arcjet Flowfields — NASA Ames AHF, 7in Nozzle

Mach Number, M
| DN
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Arcjet Flowfields — NASA Ames AHF, 7in Nozzle
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Niodeling ArtFiovs
Arcjet Flowfields — NASA Ames AHF, 7in Nozzle

Vibrational/Electronic Temperature, T,, (K)
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Arcjet Flowfields — NASA Ames AHF, 7in Nozzle
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Viodeng Avee Fiow

Arcjet Flowfields — NASA Ames AHF, 7in Nozzle
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Arcjet Flowfields — NASA Ames AHF, 7in Nozzle
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Arcjet Flowfields — NASA Ames AHF, 7in Nozzle
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Viodlng Avt Fiows
Arcjet Flowfields — NASA Ames AHF, 7in Nozzle
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Ongoing Challenges

@ Ongoing Challenges @
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Ongoing Challenges

Full Disclosure

Opportunities for Further Enhancement
@ Linear Solver Strategy: Preconditioned GMRES is highly effective but

potentially overkill for early, highly nonlinear transients. Mixed implicit/explicit

schemes may provide a fast alternative.

® Improved Shock Capturing: Robust shock capturing is still a challenge. Current

scheme is fragile on bad meshes, and often convergence stalls.

@
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Ongoing Challenges

Additional Focus Areas

@ Physics Modeling

» Weakly lonized Flows
» Additional turbulence models
» Fully coupled radiative transport

® Unsteady ablation coupling
® Adjoints

» Sensitivity analysis
» Adaptivity
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Ongoing Challenges

Thank you!

Questions?
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