

1 I E	Background & Motivati	ion			
	Problem Class				
	• Reacting Flows				
	Surface Ablation				
2 F	Physical Modeling				
	Governing Equations				
	Thermochemistry				
	• Ouasi-Steady Ablatic	on			
3 F	Finite Element Formula	ition			
	Sully-Implicit Navier-S	tokes (FIN-9	S) Overview		
	Verification				
	Parallelism				
	Parfact Gas Flow over	ar a Double (Cone		
	Viscous Thermal Fou	ilibrium Ch	emical Reactir	ng Flow	
	Viscous Peacting Elo	w with Oue	si Staady Surf	age Ablation	
	Modeling Arciet Flor	w willi Qua	SI-Steady Sulla	ace Ablation	_
	modeling Arcjet Flow	w 8			NASA
	Ingoing Chantenges				
	Kirk et al. (NASA/JSC)	Fully Implicit Meth	nods for Hypersonics	September 26, 2012	3 / 85
	Kirk et al. (NASA/JSC) Backg	Fully Implicit Meth ground & Motivation	nods for Hypersonics	September 26, 2012	3/85
1 E	Kirk et al. (NASA/JSC) Backg Background & Motivati	Fully Implicit Meth ground & Motivation	nods for Hypersonics	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class	Fully Implicit Meth ground & Motivation	nods for Hypersonics	September 26, 2012	3/85
1 F	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows	Fully Implicit Meth ground & Motivation	nods for Hypersonics	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation	Fully Implicit Meth ground & Motivation	nods for Hypersonics	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling	Fully Implicit Meth ground & Motivation	nods for Hypersonics	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations	Fully Implicit Meth ground & Motivation ION	nods for Hypersonics	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations Thermochemistry	Fully Implicit Meth ground & Motivation ION	nods for Hypersonics	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation bysical Modeling Governing Equations Thermochemistry Quasi-Steady Ablatic	Fully Implicit Meth ground & Motivation ion	nods for Hypersonics	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations Thermochemistry Quasi-Steady Ablatic	Fully Implicit Meth ground & Motivation ion	nods for Hypersonics	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations Thermochemistry Quasi-Steady Ablatic Finite Element Formula	Fully Implicit Meth ground & Motivation ion ion	Noterview	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations Thermochemistry Quasi-Steady Ablatic Finite Element Formula Fully-Implicit Navier-S	Fully Implicit Meth ground & Motivation ion ion	nods for Hypersonics	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations Thermochemistry Quasi-Steady Ablatic Finite Element Formula Fully-Implicit Navier-S Verification Parallelism	Fully Implicit Meth ground & Motivation ion ion	nods for Hypersonics	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations Thermochemistry Quasi-Steady Ablatic Finite Element Formula Fully-Implicit Navier-S Verification Parallelism	Fully Implicit Meth ground & Motivation ion	nods for Hypersonics	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations Thermochemistry Quasi-Steady Ablatic Finite Element Formula Fully-Implicit Navier-S Verification Parallelism Results	Fully Implicit Meth ground & Motivation ion ion ion tion tokes (FIN-S	nods for Hypersonics	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations Thermochemistry Quasi-Steady Ablatic Finite Element Formula Fully-Implicit Navier-S Verification Parallelism Results Perfect Gas Flow over	Fully Implicit Meth ground & Motivation ion ion ion tion tokes (FIN-S er a Double (uilibrium Ch	S) Overview	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations Thermochemistry Quasi-Steady Ablatic Finite Element Formula Fully-Implicit Navier-S Verification Parallelism Results Perfect Gas Flow ove Viscous Thermal Equ	Fully Implicit Meth ground & Motivation ion ion on ation tokes (FIN-S er a Double (ailibrium Ch	S) Overview	September 26, 2012	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations Thermochemistry Quasi-Steady Ablatic Finite Element Formula Fully-Implicit Navier-S Verification Parallelism Results Perfect Gas Flow ove Viscous Thermal Equ Viscous Reacting Flo	Fully Implicit Meth ground & Motivation ion ion on tion tokes (FIN-S er a Double (ailibrium Ch ow with Qua	Nodes for Hypersonics S) Overview Cone nemical Reacting si-Steady Surfa	ng Flow ace Ablation	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations Thermochemistry Quasi-Steady Ablatic Finite Element Formula Fully-Implicit Navier-S Verification Parallelism Results Perfect Gas Flow over Viscous Thermal Equal Viscous Reacting Flow Modeling Arcjet Flow	Fully Implicit Meth ground & Motivation ion ion on ation tokes (FIN-s) er a Double Q ailibrium Ch ow with Qua WS	Nodes for Hypersonics	ng Flow ace Ablation	3/85
	Kirk et al. (NASA/JSC) Backg Background & Motivati Problem Class Reacting Flows Surface Ablation Physical Modeling Governing Equations Thermochemistry Quasi-Steady Ablatic Finite Element Formula Gully-Implicit Navier-S Verification Parallelism Results Perfect Gas Flow ove Viscous Thermal Equ Viscous Reacting Flow Modeling Arcjet Flow	Fully Implicit Meth ground & Motivation ion ion ion tion tokes (FIN-s) er a Double (ailibrium Ch ow with Qua ws	Nodes for Hypersonics	ng Flow ace Ablation	3/85

Background & Motivation Problem Class

The physical phenomenon of interest is high-speed gas dynamics

Properly characterizing the aerodynamic performance of reentry vehicles is critical for optimal trajectory design.

Background & Motivation Problem Class

Aerothermodynamics

... is concerned with predicting the instantaneous total heat transfer rate and integrated heat load into a vehicle.

Properly characterizing this environment is crucial because it provides the design conditions for the thermal protection system:

heat transfer rate \rightarrow thermal protection material selection heat load \rightarrow thermal protection material thickness

ASA

This document is provided by JAXA

Background & Motivation Reacting Flows

• When chemical kinetic timescales are approximately equal to flow timescales, the chemical composition of a flowfield must be determined as part of a simulation procedure. Such flows are in *chemical nonequilibrium*.

- Molecules and atoms can store energy in various *modes*.
- At hypersonic conditions these modes may not be in equilibrium, resulting in *thermal nonequilibrium*.
- The physical models and governing equations for flows in thermochemical nonequilibrium have been simulated previously with finite difference and finite volume techniques.
- In this work we review the physical models and implement a SUPG finite element scheme for hypersonic flows in thermochemical nonequilibrium.

Kirk et al. (NASA/JSC)	Fully Implicit Meth	ods for Hypersonics	September 26, 2012	9/8
В	ackground & Motivation	Surface Ablation		
 At hypersonic entry capabilities of reusa Reusable mater It is necessary t 	y conditions, su able thermal pr ials typically lin hen to consider	reface temperature sotection system nited to $T < 2,000$	res may exceed materials. 0 K.	
• Ablative materials decomposition, blo	respond to high wing, and surfa	n temperatures thace recession.	rough pyrolysis,	
• Typically, ablation we hope to do bette	analysis is deco er.	oupled from the	external flowfield, b	out
• Additionally, accur increased fidelity.	ately character	izing ground tes	t facilities requires	
• As we will see, how unique numerical c	vever, more acc hallenges, nece	curate numerical essitating novel 1	l modeling results in numerical algorithm	1 18.

NASA

September 26, 2012

$$\frac{\partial \rho E}{\partial t} + \boldsymbol{\nabla} \cdot (\rho H \boldsymbol{u}) = -\boldsymbol{\nabla} \cdot \dot{\boldsymbol{q}} + \boldsymbol{\nabla} \cdot (\boldsymbol{\tau} \boldsymbol{u}) + \boldsymbol{\nabla} \cdot \left(\rho \sum_{s=1}^{ns} h_s \mathcal{D}_s \boldsymbol{\nabla} c_s\right)$$

• Problem class may also require a multitemperature thermal nonequilibrium option.

$$\frac{\partial \rho e_V}{\partial t} + \boldsymbol{\nabla} \cdot (\rho e_V \boldsymbol{u}) = -\boldsymbol{\nabla} \cdot \dot{\boldsymbol{q}}_V + \boldsymbol{\nabla} \cdot \left(\rho \sum_{s=1}^{ns} e_{Vs} \mathcal{D}_s \boldsymbol{\nabla} c_s\right) + \dot{\omega}_V$$

Physical Modeling Governing Equations

Turbulence Modeling

• We model the effects of turbulence using the Spalart-Allmaras one-equation turbulence model:

$$\frac{\partial}{\partial t}(\bar{\rho}\nu_{\rm sa}) + \frac{\partial}{\partial x_j}(\bar{\rho}\tilde{u}_j\nu_{\rm sa}) = c_{b1}S_{\rm sa}\bar{\rho}\nu_{\rm sa} - c_{w1}f_w\bar{\rho}\left(\frac{\nu_{\rm sa}}{d}\right)^2 \\ + \frac{1}{\sigma}\frac{\partial}{\partial x_k}\left[(\mu + \bar{\rho}\nu_{\rm sa})\frac{\partial\nu_{\rm sa}}{\partial x_k}\right] + \frac{c_{b2}}{\sigma}\bar{\rho}\frac{\partial\nu_{\rm sa}}{\partial x_k}\frac{\partial\nu_{\rm sa}}{\partial x_k}$$

with closure terms

$$\mu_{t} = \bar{\rho}\nu_{sa}f_{v1}, \qquad f_{v1} = \frac{\chi^{3}}{\chi^{3} + c_{v1}^{3}}, \qquad f_{v2} = 1 - \frac{\chi}{1 + \chi f_{v1}}, \quad \chi = \frac{\nu_{sa}}{\nu}$$
$$f_{w} = g\left(\frac{1 + c_{w3}^{6}}{g^{6} + c_{w3}^{6}}\right)^{1/6}, \quad g = r + c_{w2}\left(r^{6} - r\right), \qquad r = \frac{\nu_{sa}}{S_{sa}\kappa^{2}d^{2}}.$$

Cirk et al u	(NASA/ISC)
LIK CUAL	(INASA/JSC)

Physical Modeling Governing Equations

Fully Implicit Methods for Hypersonics

Turbulence Modeling

• We model the effects of turbulence using the Spalart-Allmaras one-equation turbulence model:

$$\begin{aligned} \frac{\partial}{\partial t}(\bar{\rho}\nu_{\mathrm{sa}}) &+ \frac{\partial}{\partial x_{j}}(\bar{\rho}\tilde{u}_{j}\nu_{\mathrm{sa}}) = c_{b1}S_{\mathrm{sa}}\bar{\rho}\nu_{\mathrm{sa}} - c_{w1}f_{w}\bar{\rho}\left(\frac{\nu_{\mathrm{sa}}}{d}\right)^{2} \\ &+ \frac{1}{\sigma}\frac{\partial}{\partial x_{k}}\left[(\mu + \bar{\rho}\nu_{\mathrm{sa}})\frac{\partial\nu_{\mathrm{sa}}}{\partial x_{k}}\right] + \frac{c_{b2}}{\sigma}\bar{\rho}\frac{\partial\nu_{\mathrm{sa}}}{\partial x_{k}}\frac{\partial\nu_{\mathrm{sa}}}{\partial x_{k}}\end{aligned}$$

and source term

$$S_{\mathrm{sa}} = \Omega + S_m, \ S_{m0} = \frac{\nu_{\mathrm{sa}}}{\kappa^2 d^2} f_{\nu 2}$$

where

$$S_{m} = \begin{cases} S_{m0}, & S_{m0} \ge -c_{v2}\Omega \\ \frac{\Omega(c_{v2}^{2}\Omega + c_{v3}S_{m0})}{((c_{v3} - 2c_{v2})\Omega - S_{m0})}, & \text{otherwise.} \end{cases}$$

September 26, 2012

13/85

Physical Modeling Thermochemistry

Thermodynamics & Transport Properties

• Thermochemistry models must be extended for a mixture of vibrationally and electronically excited thermally perfect gases.

$$e^{\text{int}} = e^{\text{trans}} + e^{\text{rot}} + e^{\text{vib}} + e^{\text{elec}} + h^0$$

$$= \sum_{s=1}^{ns} c_s e_s^{\text{trans}} (T) + \sum_{s=mol} c_s e_s^{\text{rot}} (T) + \sum_{s=mol} c_s e_s^{\text{vib}} (T_V) + \sum_{s=1}^{ns} c_s e_s^{\text{elec}} (T_V) + \sum_{s=1}^{ns} c_s h_s^0$$

Here we have assumed that $T^{\text{trans}} = T^{\text{rot}} = T$ and $T^{\text{vib}} = T^{\text{elec}} = T_V$

- Additional transport property models are required. In this work we use
 - ► species viscosity given by Blottner curve fits,
 - ► species conductivities determined from an Eucken relation,
 - mixture transport properties computed via Wilke's mixing rule, and
 - mass diffusion currently treated by assuming constant Lewis number.

Kirk et al. (NASA/JSC)Fully Implicit Methods for HypersonicsSeptember 26, 201214 / 85

Physical Modeling Thermochemistry

Chemical Kinetics & Energy Exchange

Kinetics:

• we consider *r* general reactions of the form

$$N_2 + \mathcal{M} \rightleftharpoons 2N + \mathcal{M}$$

$$N_2 + O \rightleftharpoons NO + N$$

- When combined with forward and backward rates, these reactions produce the species source terms $\dot{\omega}_s$
- Presently, we use either CANTERA or an in-house library to provide these source terms.

Energy Exchange:

- Equilibration between the energy modes is modeled with a typical Landau-Teller vibrational energy exchange model with Millikan-White species relaxation times.
- Provides the vibrational energy source term $\dot{\omega}_V$

Physical Modeling Thermochemistry

Chemical Kinetics

• We consider *r* general reactions of the form

$$N_2 + \mathcal{M} \rightleftharpoons 2N + \mathcal{M}$$

...
 $N_2 + O \rightleftharpoons NO + N$

. . .

• The reactions are of the form

$$\mathcal{R}_r = k_{br} \prod_{s=1}^{ns} \left(\frac{\rho_s}{M_s}\right)^{\beta_{sr}} - k_{fr} \prod_{s=1}^{ns} \left(\frac{\rho_s}{M_s}\right)^{\alpha_{sr}}$$

where α_{sr} and β_{sr} are the stoichiometric coefficients for reactants and products

• The source terms are then

$$\dot{\omega}_s = M_s \sum_{r=1}^{nr} \left(\alpha_{sr} - \beta_{sr} \right) \left(\mathcal{R}_{br} - \mathcal{R}_{fr} \right)$$

Kirk et al. (NASA/JSC)

Fully Implicit Methods for Hypersonics

Physical Modeling Thermochemistry

Energy Exchange

$$\dot{\omega}_V = \dot{Q}_v + \dot{Q}_{\text{transfer}}$$

We adopt the Landau-Teller vibrational energy exchange model

$$\dot{Q}_{s}^{\text{tr-vib}} =
ho_{s} rac{\hat{e}_{s}^{ ext{vib}} - e_{s}^{ ext{vib}}}{ au_{s}^{ ext{vib}}}$$

where \hat{e}_s^{vib} is the species equilibrium vibrational energy and the vibrational relaxation time τ_s^{vib} is given by Millikan and White

$$\tau_s^{\text{vib}} = \frac{\sum_{r=1}^{ns} \chi_r}{\sum_{r=1}^{ns} \chi_r / \tau_{sr}^{\text{vib}}}, \quad \chi_r = c_r \frac{M}{M_r}, \quad M = \left(\sum_{s=1}^{ns} \frac{c_s}{M_s}\right)^{-1}$$

and

$$\tau_{sr}^{\text{vib}} = \frac{1}{P} \exp\left[A_{sr} \left(T^{-1/3} - 0.015 \mu_{sr}^{1/4}\right) - 18.42\right]$$
$$A_{sr} = 1.16 \times 10^{-3} \mu_{sr}^{1/2} \theta_{vs}^{4/3}, \quad \mu_{sr} = \frac{M_s M_r}{M_s + M_r}$$

September 26, 2012

16/85

Physical Modeling Thermochemistry

Vibrational Energy Production and Energy Exchange

$$\dot{\omega}_V = \dot{Q}_v + \dot{Q}_{ ext{transfer}}$$

When molecular species are created in the gas at rate $\dot{\omega}_s$, they contribute vibrational/electronic energy at the rate

$$\dot{Q}_{vs} = \dot{\omega}_s \left(e_s^{\mathrm{vib}} + e_s^{\mathrm{elec}}
ight)$$

so the net vibrational energy production rate is

$$\dot{Q}_v = \sum_{s=1}^{ns} \dot{\omega}_s \left(e_s^{\mathrm{vib}} + e_s^{\mathrm{elec}} \right)$$

Combining terms yields the desired net vibrational energy source term

$$\dot{\omega}_V = \sum_{s=1}^{ns} \dot{Q}_s^{\text{tr-vib}} + \sum_{s=1}^{ns} \dot{\omega}_s \left(e_s^{\text{vib}} + e_s^{\text{elec}} \right)$$

Kirk et al. (NASA/JSC)

Physical Modeling Quasi-Steady Ablation

Fully Implicit Methods for Hypersonics

September 26, 2012 19 / 85

September 26, 2012

Physical Modeling Quasi-Steady Ablation

45

Physical Modeling Quasi-Steady Ablation

Ablation Interface Conditions

Recession:

$$\rho v_w = \dot{m}_c'' + \dot{m}_g''$$

Mass:

$$J_i|_{gas} + \rho v_w C_i = \tilde{N}_i(C_i, T) + \dot{m}''_g C_{i,g}; (i:1..N_s)$$

Energy:

$$-k\frac{\partial T}{\partial y}\Big|_{gas} -\sum_{i=1}^{N_s} h_i(T_w) J_i\Big|_{gas} + \dot{m}_c'' h_c(T) - \rho v_w h_w(T)$$
$$+\alpha \dot{q}_r'' - \sigma \epsilon T_w^4 + \sum_{i=1}^{N_s} \dot{m}_g'' C_{i,g} h_i(T_w) + k_s \frac{\partial T}{\partial y}\Big|_{solid,w} = 0$$

- Nonlinear Robin Boundary Conditions
- Enables quasi-steady solves, restarts

Kirk at al (NIASA/ISC

	Rink et al. (10/10/0500)	I dify implicit Methods for Hypersonies	September 20, 2012	227 05
	Fin	ite Element Formulation		
	Background & Motiv	ation		
	• Problem Class			
	• Reacting Flows			
	• Surface Ablation			
2	Physical Modeling			
	• Governing Equatio	ns		
	• Thermochemistry			
	• Quasi-Steady Abla	tion		
3	Finite Element Formu	ilation		
4	Fully-Implicit Navier	-Stokes (FIN-S) Overview		
	• Verification			
	• Parallelism			
5	Results			
	• Perfect Gas Flow o	ver a Double Cone		
	• Viscous Thermal E	quilibrium Chemical Reacting F	Flow	
	• Viscous Reacting F	Flow with Quasi-Steady Surface	Ablation	
	• Modeling Arciet F	lows		
6	Ongoing Challenges			NASA
				-
	Kirk et al. (NASA/JSC)	Fully Implicit Methods for Hypersonics	September 26, 2012	23/85

Sontombor 26, 2012

Finite Element Formulation

Stabilized Finite Element Scheme

$$\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{A}_i \frac{\partial \boldsymbol{U}}{\partial x_i} = \frac{\partial}{\partial x_i} \left(\boldsymbol{K}_{ij} \frac{\partial \boldsymbol{U}}{\partial x_j} \right) + \dot{\boldsymbol{S}}$$

Find U satisfying the essential boundary and initial conditions such that

$$\int_{\Omega} \left[\boldsymbol{W} \cdot \left(\frac{\partial \boldsymbol{U}}{\partial t} - \dot{\boldsymbol{S}} \right) + \frac{\partial \boldsymbol{W}}{\partial x_{i}} \cdot \left(\boldsymbol{K}_{ij} \frac{\partial \boldsymbol{U}}{\partial x_{j}} - \boldsymbol{A}_{i} \boldsymbol{U} \right) \right] d\Omega$$
$$+ \sum_{e=1}^{n_{el}} \int_{\Omega_{e}} \boldsymbol{\tau}_{\text{SUPG}} \frac{\partial \boldsymbol{W}}{\partial x_{k}} \cdot \boldsymbol{A}_{k} \left[\frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{A}_{i} \frac{\partial \boldsymbol{U}}{\partial x_{i}} - \frac{\partial \boldsymbol{G}_{i}}{\partial x_{i}} - \dot{\boldsymbol{S}} \right] d\Omega$$
$$+ \sum_{e=1}^{n_{el}} \int_{\Omega_{e}} \nu_{\text{DCO}} \left(\frac{\partial \boldsymbol{W}}{\partial x_{i}} \cdot \boldsymbol{g}^{ij} \frac{\partial \boldsymbol{U}}{\partial x_{j}} \right) d\Omega - \oint_{\Gamma} \boldsymbol{W} \cdot (\boldsymbol{g} - \boldsymbol{f}) d\Gamma = 0$$

for all *W* in an appropriate function space.

Kirk et al. (NASA/JSC)

Finite Element Formulation

Stabilization Parameters

Discontinuity capturing operator:

$$\nu_{\text{DCO}} = \left[\frac{\left\| \frac{\partial \boldsymbol{U}}{\partial t} + \boldsymbol{A}_{i} \frac{\partial \boldsymbol{U}}{\partial x_{i}} - \frac{\partial}{\partial x_{i}} \left(\boldsymbol{K}_{ij} \frac{\partial \boldsymbol{U}}{\partial x_{j}} \right) \right\|_{\boldsymbol{A}_{0}^{-1}}^{2}}{\left(\Delta \boldsymbol{U}_{h} \right)^{T} \boldsymbol{A}_{0}^{-1} \Delta \boldsymbol{U}_{h} + g^{ij} \left(\frac{\partial \boldsymbol{U}_{h}}{\partial x_{i}} \right)^{T} \boldsymbol{A}_{0}^{-1} \frac{\partial \boldsymbol{U}_{h}}{\partial x_{j}}} \right]^{1/2}$$

SUPG stabilization matrix:

$$\boldsymbol{\tau}_{\text{SUPG}}^{-1} = \sum_{i=\text{nodes}} \left(\left| \frac{\partial \phi_i}{\partial x_j} \boldsymbol{A}_j \right| + \frac{\partial \phi_i}{\partial x_j} \boldsymbol{K}_{jk} \frac{\partial \phi_i}{\partial x_k} \right)$$

where

$$\left. \frac{\partial \phi_i}{\partial x_j} \boldsymbol{A}_j \right| = \boldsymbol{L} \left| \boldsymbol{\Lambda} \right| \boldsymbol{R}$$

September 26, 2012

25/85

AS/

24/85

September 26, 2012

- libMesh provides all requisite finite element data, parallel domain decomposition details.
- ► Inherits PETSc preconditioned Krylov iterative solvers.
- CANTERA used for kinetic rates, in-house thermodynamics, transport properties.
- Only $\approx 30 \text{K SLOC}$
- Fully-coupled (monolithic solves), fully-implicit discretization.
- Rigorous verification using MASA-provided manufactured solutions.
- Testbed for intrusive VV/UQ schemes applied to hypersonics.

27/85

September 26, 2012

Fully-Implicit Navier-Stokes (FIN-S) Overview Verification

Manufactured Analytical Solution Abstraction Library

- Dearth of exact solutions necessitates method of manufactured solutions
- Some manufactured solutions exist for the calorically perfect Navier-Stokes equations
 - Developed in large part by Sandia National Labs
 - ► Specific solutions for field, boundary condition order-of-accuracy verification
- Existing solutions provide a necessary but not sufficient test suite
 - Will need to develop many more solutions to verify reacting flows with complex transport models
- Manufactured solutions are a valuable resource that should be accessible to anyone
- PECOS is developing the Manufactured Analytical Solution Abstraction (MASA) library to provide well-defined manufactured solutions and source terms for a range of physics applications

Manufactured solutions are being constructed and will be incorporated into the FIN-S regression test suite

Manufactured analytical solutions (used by Roy, Smith, and Ober) for each one of the primitive variables in Navier-Stokes equations are:

$$\rho(x, y) = \rho_0 + \rho_x \sin\left(\frac{a_{\rho x}\pi x}{L}\right) + \rho_y \cos\left(\frac{a_{\rho y}\pi y}{L}\right),$$

$$u(x, y) = u_0 + u_x \sin\left(\frac{a_{ux}\pi x}{L}\right) + u_y \cos\left(\frac{a_{uy}\pi y}{L}\right),$$

$$v(x, y) = v_0 + v_x \cos\left(\frac{a_{vx}\pi x}{L}\right) + v_y \sin\left(\frac{a_{vy}\pi y}{L}\right),$$

$$p(x, y) = p_0 + p_x \cos\left(\frac{a_{px}\pi x}{L}\right) + p_y \sin\left(\frac{a_{py}\pi y}{L}\right)$$

September 26, 2012

29/85

NAS

Fully-Implicit Navier-Stokes (FIN-S) Overview Verification

The method of manufactured solutions applied to Navier-Stokes equations requires modifying the governing equations by adding a source term to the right-hand side of each equation:

$$\frac{\partial \rho}{\partial t} + \frac{\partial \rho u}{\partial x} + \frac{\partial \rho v}{\partial y} = \mathcal{Q}_{\rho}$$

$$\frac{\partial \rho u}{\partial t} + \frac{\partial \rho u^{2} + p - \tau_{xx}}{\partial x} + \frac{\partial \rho uv - \tau_{xy}}{\partial y} = \mathcal{Q}_{u}$$

$$\frac{\partial \rho v}{\partial t} + \frac{\partial \rho vu - \tau_{yx}}{\partial x} + \frac{\partial \rho v^{2} + p - \tau_{yy}}{\partial y} = \mathcal{Q}_{v}$$

$$\frac{\partial \rho e_{t}}{\partial t} + \frac{\partial \rho ue_{t} + pu - u\tau_{xx} - v\tau_{xy} + q_{x}}{\partial x} + \frac{\partial \rho ve_{t} + pv - u\tau_{yx} - v\tau_{yy} + q_{y}}{\partial y} = \mathcal{Q}_{e}$$

so the modified set of equations has a known, analytical solution. Symbolic representations of requisite source terms and C-source code have recently been generated for 2D and 3D calorically perfect gas flows.

Kirk et al. (NASA/JSC)	Fully Implicit Meth	ods for Hypersonics	September 26, 2012	30 / 85
Fully-Implicit Navier-Sto	okes (FIN-S) Overview	Verification		
$ \begin{split} & \theta_{n} = \frac{a_{n} \pi L}{b} \cos \left(\frac{a_{n} \pi L}{L} \right) \left[v_{n} \cos \left(\frac{a_{n} \pi L}{L} \right) + v_{n} \sin \left(\frac{a_{n} \pi L}{L} \right) + v_{n$	$\begin{bmatrix} n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\n\\$			NASA
Kirk et al. (NASA/JSC)	Fully Implicit Meth	ods for Hypersonics	September 26, 2012	31 / 85

NAS

Fully-Implicit Navier-Stokes (FIN-S) Overview Verification

0.01

0.015 y [m]

0.005

250L

0.03

0.025

0.02

0.124L 0

0.005

0.01

0.015 y [m] 0.03

__ Re_x = 3.53e+05

0.025

0.02

• Specifically, for our 13 species ablation model in 2D with turbulence

 $\# \text{ DOFS} = (13 + 2 + 2 + 1) \times \# \text{ NODES}$

• For our implicit scheme, both storage and computational cost scale like (# DOFS)²

35/85

September 26, 2012

Fully-Implicit Navier-Stokes (FIN-S) Overview Parallelism

Need for Parallelism

Complex Physical Models

- Chemical Kinetics, transport properties for NS species inherently expensive.
- Temperature is a nonlinear function of species concentration, internal energy for a mixture of thermally perfect gases.
- Quasi-steady ablation boundary condition is also nontrivial.

Fully Implicit Methods for Hypersonic

Fully-Implicit Navier-Stokes (FIN-S) Overview Parallelism

Opportunities for Parallelism

Multiple Types of Parallelism

- 1 **Domain Decomposition:** We use a standard non-overlapping domain decomposition approach provided by libMesh. Local computations are perfectly parallel, and the resulting implicit system is solved using preconditioned Krylov solvers from PETSc.
- 2 Multithreaded Computation: The relatively large element matrices resulting for reacting flows are well suited for threaded assembly. libMesh provides a convenient interface to Intel's Threading Building Blocks which can provide further parallelization on multicore architectures.
- **3 Vectorization:** Remember vectorization? While no longer the *de facto* paradigm for high-performance computing, modern microprocessors offer vectorized instructions worth exploiting. We are using Eigen for dense linear algebra and inherit its SSE optimizations.

September 26, 2012

September 26, 2012 39 / 85

Fully-Implicit Navier-Stokes (FIN-S) Overview Parallelism

Multithreading

- Modern Parallel systems often contain 12–16 (or more) on-node cores connected via low-latency network.
- On-node multithreading allows an additional parallel mechanism that can extend scalability in certain circumstances.
- libMesh provides a clean interface to Intel[®]'s Threading Building Blocks (TBB) which is we have access to.
- TBB is a C⁺⁺ template library consisting of
 - Algorithms
 - Containers
 - Mutexes
 - Timing routines
 - Memory allocators

designed to help avoid low-level use of platform-specific (e.g. pthread) implementations.

September 26, 2012

43 / 85

September 26, 2012

sults Perfect Gas Flow over a Double Cone

Background – AEDC Sharp Double Cone

- A sharp 25°-55° double cone was tested in N₂ at CUBRC.
- It was discovered that freestream vibrational nonequilibrium must be properly modeled for CFD to match experiment (Nompelis & Candler).
- The AEDC Hypervelocity Wind Tunnel No. 9 also uses N₂ as its test gas.
- A series of tests were conducted at AEDC using the same model to investigate the presence of vibrational nonequilibrium in the freestream.

Results

Perfect Gas Flow over a Double Cone

Observations

-				-		
	Run	2890	2891	2893	2894	
	M_∞	13.6	13.17	12.73	12.63	
	Re _D	1.12×10^{6}	4.11×10^5	8.44×10^4	$5.86 imes 10^4$	
	$ ho_{\infty}$ U $_{\infty}$	$\begin{array}{ c c c c c } 7.81 \times 10^{-3} \\ 2006.6 \end{array}$	2.96×10^{-3} 1949.8	5.90×10^{-4} 1763.5	3.98×10^{-4} 1682.6	kg/m ³ m/ _{sec}
	T_{∞}	52.3	52.7	46.1	42.7	K

• Four Reynolds numbers were tested in the nominally Mach 14 nozzle.

- No appreciable vibrational nonequilibrium effects observed.
- Highly unsteady flow observed for *all* Reynolds numbers tested.
- For a uniform freestream, CFD predicts steady flow for the two lowest Reynolds numbers.

Perfect Gas Flow over a Double Cone Results

51/85

September 26, 2012

Kirk et al. (NASA/JSC)

September 26, 2012

NASA

62

Results Viscous Thermal Equilibrium Chemical Reacting Flow

2D Extended Cylinder

- Laminar flow in thermal equilibrium
- Chemical nonequilibrium, 5 species air (N_2, O_2, NO, N, O)
- 5 reaction model with Park 1990 rates

$$c N_{2,\infty} = 0.78, c O_{2,\infty} = 0.22$$

 $U_{\infty} = 6,731 \text{ m/sec}$
 $\rho_{\infty} = 6.81 \times 10^{-4} \text{ kg/m}^3$
 $T_{\infty} = 265 \text{ K}$

- Blottner/Wilke/Eucken with constant Lewis number Le = 1.4 for transport properties
- Mesh, iterative convergence
- FIN-S/DPLR comparison

65

Viscous Reacting Flow with Quasi-Steady Surface Ablation

Arcjet Flowfields

Motivation

- Arcjets are uniquely suited to perform high enthalpy, long duration material response testing.
- Modern computational techniques are required to adequately characterize the freestream properties.
- Analysis complicated by multitude of scales, physical phenomenon:
 - ► Very low speed, high pressure plenum,
 - ► very high speed, low pressure nozzle exit,
 - ► highly nonequilibrium flow about test specimen.
- Adequately treating these phenomenon simultaneously is challenging for numerical methods.

Arcjet Flowfields

Arcjet Simulations – Enabling Boundary Conditions

Implicit, Characteristic Boundary Conditions for Thermochemical Nonequilibrium Flows

Consider the transformation from conserved variables to characteristic variables:

$$\delta \hat{\boldsymbol{U}} = \frac{\partial \hat{\boldsymbol{U}}}{\partial \boldsymbol{U}} \delta \boldsymbol{U} = \boldsymbol{M}^{-1} \delta \boldsymbol{U}$$

where δU is a pertubation in the conserved variables, $\delta \hat{U}$ is a pertubation in the conserved variables, and M^{-1} is the transformation matrix given by the left eigenvectors from the inviscid flux Eigendecomposition for a specified flux direction.

We will manipulate this statement such that outgoing/incoming characteristic variables are unchanged at inflow/outflow boundaries, respectively.

Arcjet Simulations – Enabling Boundary Conditions

Characteristic boundary conditions for reservoir-type boundaries.

<u>Given</u>: H_0 , $\{c_s\}$, \dot{m}_A , \hat{v} , and U_B .

- 1: Let $U = U_B$ serve as an initial guess.
- 2: **do**

3: Form the transformation matrix $M^{-1} = M^{-1}(U)$

- 4: Define the outgoing conserved variable increment $\delta U^+ = U U_B$
- 5: Compute the outgoing characteristics increment $\delta \hat{U}^{+} = M^{-1} \delta U^{+}$
- 6: Define the unconstrained residual $r = -\delta \hat{U}$
- 7: For each incoming characteristic, replace a row of M^{-1} and r with a
- 8: linearized constraint derived from the reservoir conditions.
- 9: Solve for the increment $M^{-1}\delta U \equiv -r = -\delta \hat{U}$
- 10: Update the iterate $\boldsymbol{U} \leftarrow \boldsymbol{U} + \delta \boldsymbol{U}$
- 11: while $\|\delta U\|_{\infty} > \varepsilon_{it}$
- 12: Compute $\vec{F} = F(U)$ as the inviscid flux on the outflow boundary in the weak statement.

Kirk et al. (NASA/JSC)

Fully Implicit Methods for Hypersonics

September 26, 2012 72 / 85

Results Modeling Arcjet Flows

Arcjet Simulations – Enabling Boundary Conditions

Characteristic boundary conditions for vacuum-type boundaries.

<u>Given</u>: U_B and $P_{back} = \{vacuum fraction\} \times P_{exit}$.

- 1: Let $U = U_B$ serve as an initial guess.
- 2: **do**
- 3: Form the transformation matrix $M^{-1} = M^{-1}(U)$
- 4: Define the outgoing conserved variable increment $\delta U^+ = U U_B$
- 5: Compute the outgoing characteristics increment $\delta \hat{U}^{+} = M^{-1} \delta U^{+}$
- 6: Define the unconstrained residual $r = -\delta \hat{U}$
- 7: For the single incoming characteristic, replace the row of M^{-1} and r with a
- 8: linearized constraint derived from the back pressure condition.
- 9: Solve for the increment $M^{-1}\delta U \equiv -r = -\delta \hat{U}$
- 10: Update the iterate $U \leftarrow U + \delta U$
- 11: while $\|\delta U\|_{\infty} > \varepsilon_{it}$
- 12: Compute F = F(U) as the inviscid flux on the inflow boundary in the weak statement.

Arcjet Flowfields – NASA Ames AHF, 7in Nozzle

75

83/85

September 26, 2012

Ongoing Challenges

Additional Focus Area	26					
Physics Modeling						
 Weakly Ionized 	 Firstes Wodening Weakly Ionized Flows 					
 Additional turb 	ulence models					
 Fully coupled rate 	adiative transport					
2 Unsteady ablation of	coupling					
3 Adjoints						
 Sensitivity analy Adaptivity 	ys1s					
- Adaptivity						
			NASA			
Kirk et al. (NASA/JSC)	Fully Implicit Methods for Hypersonics	September 26, 2012	84 / 85			
	Ongoing Challenges					
	Thank you!					
	Questions?					
	Questions:					
			_			
			NASA			
Kirk et al. (NASA/JSC)	Fully Implicit Methods for Hypersonics	September 26, 2012	85 / 85			