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1.　Introduction

　During the past ten years, many authors have investi-

gated the problem of attitude determination using the Glo-

bal Positioning System (GPS). GPS has the potential to be

the key system for spacecraft and aircraft attitude determi-

nation and navigation1, 2. With the potential capability to pro-

vide angular velocity, a spacecraft on-board GPS receiver is

really a full-capability sensor. Because of its advantages of

full capability, long-term stable accuracy, low cost, and low

power consumption, GPS attitude determination is very at-

tractive for space applications.

　The algorithms of attitude determination using GPS can
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ABSTRACT

　This paper presents a new approach to the problem of attitude determination using GPS. Unlike the tradi-

tional linearized, or quaternion-based methods, the attitude matrix element solution is calculated directly. This

approach is computationally more economical than the linearized method, and does not need any initial atti-

tude, as it is a non-iterative, forward procedure. As a generalization of the balanced condition, a symmetric

condition is introduced which acts to simplify the derived solution, and makes the approach suitable for either

coplanar or non-coplanar baseline configurations. It is also applicable to both symmetric and non-symmetric

cases. Furthermore, it can act as a compass algorithm in the case of a two-antenna configuration which always

fulfills the symmetric condition. The results of experiments demonstrate that algorithms derived from this new

approach are highly efficient.
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概　　要

　GPS搬送波位相データによる姿勢決定問題に対する新しいパラメータ推定アルゴリズムを提案する。新

解法では、常套的な線形化法やクオタニオン法とは異なり、姿勢行列要素を直接求める。線形化法に比べ

て、本手法は計算負荷が少ないうえ、逐次解法ではないので初期姿勢情報を必要としない。また、GPSア

ンテナ配置に関する従来の平衡条件の一般化として、対称条件を導入する。対称条件が満たされるアンテ

ナ配置の場合には、アンテナの同一平面上の有無、または対称・非対称配置に拘わらず、最適な姿勢行列

要素解を極めて簡単なアルゴリズムによって計算できる。さらに2アンテナ構成の場合には、コンパスアル

ゴリズムとして適用できる。終わりにGPS姿勢決定用受信機による実験データの解析から、提案する新解

法の有用性を実証する。
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be categorized into three kinds: those that employ the car-

rier phase measurements directly4; those utilizing the GPS

vectorized observations5-7; and those based on state estima-

tion theory, i.e. Kalman filtering, which yield the highest

level of accuracy7. The use of GPS vectorized observations

can be summarized as a problem of two-level optimal esti-

mation, and certain conditions must be satisfied in order to

guarantee that the solution is globally optimal .

　Two traditional approaches to the first kind of algorithm

are the non-linear least squares fit (NLLSFit) method and

the Parallel to Wahba's Problem (PWP)4, 8. NLLSFit is the

more computationally expensive due to its iterative nature,

but although the PWP method is faster than NLLSFit, it

has to satisfy the condition of a balanced baseline configu-

ration in order to obtain the optimal  solution6, 8.

　This paper presents a new approach, which is character-

ized by the fact that it calculates the attitude matrix ele-

ment solution (AMES) directly. The key idea is to convert

a non-linear problem of attitude angles into a linear weighted

least squares problem of attitude matrix elements. The ad-

vantages of this method are that it is less computationally

intensive and does not need any initial attitude information

due to a non-iterative procedure, that it is suitable for both

coplanar and non-coplanar baseline configurations as well

as for a two-antenna configuration. The symmetric condi-

tion derived hereafter can be regarded as the generaliza-

tion of the balanced condition, and is no longer the neces-

sary condition to guarantee the AMES solution optimal and

just acts as the role to simplify the derived solution. Due to

this point, the approach can be applied to either symmetric

or non-symmetric cases. It is worth noting that the two-an-

tenna configuration always satisfies the symmetric condi-

tion as shown in the sequel. Results of experiments using a

TANS Vector GPS receiver show that algorithms derived

from the new approach are highly efficient.

2.　Statement of Problem

　The basic measurement for GPS-based attitude determi-

nation is the single difference carrier phase, which is the

carrier phase difference between the GPS signals received

by two antennae separated by a baseline. This kind of mea-

surement also reflects the projection of the baseline vector

onto the line-of-sight vector of a GPS satellite.

　If there are m baselines and n visible satellites, one

method of attitude determination is to find the attitude ma-

trix A that minimizes the following cost function:

　J(A)＝ΣΣwij

2(Δφij＋ nij・λ－βj －^si

T AT  bj )
2

n�

i=1

m�

j=1

(1)

where Δφij is the single difference carrier phase measure-

ment corresponding to ith satellite and jth baseline, nij is

the integer ambiguity, λ is the wavelength of the GPS L1
＾carrier signal, si is the unit LOS vector of ith satellite, bj is

jth baseline vector, βj is the line-bias corresponding to jth

baseline, and wij
2 is weighted factor.

　The typical method of attitude determination can be di-

vided into two independent steps: resolving the integer am-

biguities and determining attitude matrix A. Once the inte-

ger ambiguities are fixed, they no longer need to be resolved

in the later procedure. Therefore, the following equivalent

differential range can be defined if the integer ambiguities

are known:

　Δrij ＝Δφij ＋  nij・λ－βj (2)

Substituting Eq. (2) into Eq. (1), we obtain

　J(A)＝ΣΣwij

2(Δrij －^si

T AT  bj )
2

n�

i=1

m�

j=1

(3)

One kind of candidates to resolve the integer ambiguities

is the motion-based method, including platform motion-

based methods8, 9, GPS satellites motion-based methods10.

Both of them collect carrier phase measurements over a

few epochs till antennae platform moves or geometry of vis-

ible GPS satellites obviously changes. Although the motion-

based methods have been proved to be efficient, another

kind of method named instantaneous method is more suit-

able for real-time applications, i.e. spacecraft attitude con-

trol. An effective instantaneous ambiguity resolution is

Knight method which has been applied on the Trimble

TANS Vector attitude receiver11. Knight method has the

capability to determine the ambiguities only utilizing the

measurements at an epoch. Mathematically, it is based on

the search principle, and employs Kalman filter to do the

search procedure in order to find the most possible solu-

tion from a number of candidates.

　Although the integer ambiguities solution is very crucial

to the problem of attitude determination using GPS, the dis-

cussion below will focus on the method to resolve the atti-

tude matrix, and suppose the integer ambiguities have been

resolved by a method. In fact, we employ Knight method to

resolve the integer ambiguities in the experiments.

　The antenna configuration is assumed rigid in this pa-

per, and flexibility of the configuration is out of the scope of

This document is provided by JAXA.
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the present paper.

3.　Traditional Approach

　Two traditional approaches to the problem of Eq. (3) are

the non-linear least squares fit and the Parallel to Wahba's

Problem. These are summarized in the following para-

graphs.

a) Non-Linear Least Squares Fit method

　As is well known, the attitude matrix A can be expressed

by a first-order linearization about a nominal attitude A0 as

follows:

　A＝［I＋Ω(δθ)］A0 (4)

　Ω(δθ)＝�

 0 δθ3 －δθ2�
 －δθ3 0 δθ1�
 δθ2 －δθ1 0

(5)

whereδθi(i=1,2,3) are the three components ofδθ.

　To define Ω(bj) similarly as Eq .(5), only using bj in-

stead ofδθ, then Eq. (3) can be converted to the following

form:

　J(A)＝ΣΣwij

2(Δrij －^si

T A0

T  bj－^si

T A0

TΩ(bj )δθ)
2

n�

i=1

m�

j=1

(6)

Introducing a variables zij and a (1× 3) matrix hij as

　zij ＝Δrij － s^i

T A0

T  bj
(7)

　hij ＝ s^i

T A0

TΩ(bj ) (8)

then the linear weighted least squares solution of Eq. (6) is

given by:

　δθ^＝［ΣΣwij

2 hij

T hij ］
－1［ΣΣwij

2 hij

T zij ］
�

n�

i=1

m�

j=1

n�

i=1

m�

j=1

(9)

＾From Eq. (4), the nominal A0 can be corrected byδθ:

　A^＝［I＋Ω(δθ^)］A0

＾A0 is used instead of A in order to calculate a new correc-
＾tion parameterδθto correct the new A0. This iterative pro-

＾cedure continues until‖ δθ‖is smaller than a certain speci-

fied accuracy.

b) Parallel to Wahba's Problem

　Using baseline vectors and LOS vectors, we define the

matrices B(3×m) and S(3× n):

　B＝［b1  b2  …  bm］� (10)

　S＝［^s1  s^2  …  s^n］� (11)

We also constructΔR(m× n) of single difference range

measurements:

　ΔR＝�

 Δr11 Δr12 … Δr1n�
 Δr21 Δr22 … Δr2n�
 　 　 　 　�
 Δrm1 Δrm2 … Δrmn

…�

���

…�
�

…� …
�

(12)

If at the same time we introduce two positive numbers w2sii

which is the (i, i)th element of a diagonal positive definite

matrix Ws(n×n), and w2bjj which is the ( j, j)th element of a

diagonal positive definite matrix WB(m×m), such that

w2ij＝w2sii・w2bjj which replace the weighted factor w2ij, then

the problem of Eq. (3) can be converted into the following

equivalent form8 :

　J(A)＝‖WB

1/2(ΔR－BTAS )WB

1/2‖F

2 (13)

where‖・‖2F＝ tr([・]T[・]) is the Frobenius norm of a ma-

trix, WB
1/2 is the square root of of WB, and WS

1/2 is the square

root of WS. If WB is chosen so as to satisfy the condition

　BWB  B
T ＝ I (14)

then the form of Eq. (13) can be made identical to that of

Wahba's problem, which maximizes the new cost function:

　J'(A)＝tr(ASWSΔRT  WB  B
T )＝tr(AGT ) (15)

where G＝BWBΔRWSS
T. Eq.(14) is referred to as Cohen's

balanced condition.  There are several methods to solve

Eq. (15), such as QUEST, SVD, the Euler-q method et al.12,
～i.e., QUEST employs quaternion q to represent the attitude

matrix A. After doing so, the problem of Eq－ . (15) is con-
～verted to one of finding the optimal solution q opt, which is

the eigenvector of a (4×4) matrix K corresponding to the

maximum eigenvalue of K, λmax. So

　K～q opt  ＝λmax 
～q opt

(16)

Here,

This document is provided by JAXA.
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　K＝�

G＋GT－tr(G)・I3×3 v

　 vT tr(G)

and v is a (3× 1) vector defined as

　v1＝G23－G32，v2＝G31－G13，v3＝G12－G21

where vj is the jth element of v, and Gij is the (i, j)th element

of G.
～　Up to this point, the optimal solution q opt has been ob-

tained and the attitude matrix A may also be calculated by
～q opt. However, the condition of Eq. (14) is referred to as a

"balanced" baseline configuration. Obviously, only non-co-

planar baseline configurations may satisfy Eq. (14). For the

case of coplanar baseline configuration, this method can

obtain the sub-optimal solution4, 6.

4.　New Approach

　Although the problem of Eq. (3) is a non-linear function

of the attitude angles, it is a linear function of the attitude

matrix A. The key idea is to convert the problem of Eq. (3)

to a weighted least squares problem of elements of A. In-

troducing a (9× 1) state vector a to express A as follows:

　a＝［a1
T　a2

T　a3
T］

T (17)

where ai
T(i＝1,2,3) is the ith row of A. Then

　 s^i

T AT  bj ＝［bjx^ si

T　bjy^ si

T　bjz^ si

T ］　 　～hij a
a1�
a2�
a3

(18)

where bjx, bjy, bjz are the three components of vector bj ,
～hij ＝［bjx^ si

T　bjy^ si

T　bjz^ si

T ］�is a (1× 9) matrix.

Substituting Eq. (18) into Eq. (3), we obtain

　J(A)＝ΣΣwij

2(Δrij －
～hij a)

2
n�

i=1

m�

j=1

(19)

The weighted least squares solution of Eq. (19) is that

　 a^ ＝［ΣΣwij

2 ～hij

T ～hij ］
－1
［ΣΣwij

2 ～hij

T Δrij ］
�

n�

i=1

m�

j=1

n�

i=1

m�

j=1

(20)

Taking into account Eq. (18), we obtain

　
 ～hij

T ～hij ＝�

bjx

2(^si s^i

T ) bjx bjy(^si s^i

T ) bjxbjz(^si s^i

T )�

bjy bjx(^si s^i

T ) bjy

2(^si s^i

T ) bjybjz(^si s^i

T )�

bjz bjx(^si s^i

T ) bjzbjy(^si s^i

T ) bjz

2(^si s^i

T )

(21)

By selecting the baseline configuration to satisfy the condi-

tion, which hereafter will be named the symmetric condi-

tion,

　Σwij

2 bjx bjy＝ 0，Σwij

2 bjx bjz＝ 0，Σwij

2 bjy bjz＝ 0
m�

j=1

m�

j=1

m�

j=1

(22)

Eq. (20) can be decomposed into three independent parts:

　 a^1 ＝［ΣΣwij

2 bjx

2(^si^ si

T )］
－1
［ΣΣ(wij

2bjx・Δrij )^si］
�

n�

i=1

m�

j=1

n�

i=1

m�

j=1

(23a)

　 a^2 ＝［ΣΣwij

2 bjy

2(^si^ si

T )］
－1
［ΣΣ(wij

2bjy・Δrij )^si］
�

n�

i=1

m�

j=1

n�

i=1

m�

j=1

(23b)

　 a^3 ＝［ΣΣwij

2 bjz

2(^si^ si

T )］
－1
［ΣΣ(wij

2bjz・Δrij )^si］
�

n�

i=1

m�

j=1

n�

i=1

m�

j=1

(23c)

　Thus far, the attitude matrix A can be calculated using

Eq. (20). Moreover, if the conditions of Eq. (22) are satis-

fied, A can be simplified so as to be computed from Eqs.

(23a)～(23c).

　Only one step now remains to reach the LS solution of

the problem. Suppose all w2ij to be equal to unity, and intro-

duce the following weighted differential ranges,

　Δ～rix ＝Σ(bjx・Δrij )  Σbjx

2
m�

j=1

m�

j=1

(24a)

　Δ～riy ＝Σ(bjy・Δrij )  Σbjy

2
m�

j=1

m�

j=1

(24b)

　Δ～riz ＝Σ(bjz・Δrij )  Σbjz

2
m�

j=1

m�

j=1

(24c)

Eqs. (23a)～(23c) can then be converted to the following

LS solution:

　 a^1 ＝［Σ(^si^ si

T )］
－1
［Σ(^siΔ～rix )］�

n�

i=1

n�

i=1

(25a)

　 a^2 ＝［Σ(^si^ si

T )］
－1
［Σ(^siΔ～riy )］�

n�

i=1

n�

i=1

(25b)

　 a^3 ＝［Σ(^si^ si

T )］
－1
［Σ(^siΔ～riz )］�

n�

i=1

n�

i=1

(25c)

Note that these solutions are sub-optimal as in the deriva-

tion we have not taken into account the orthogonal con-

straint

　Σ(ak ak

T )＝ I
3�

k=1

As shown in the sequel, orthogonalization procedures ex-

ist to improve the accuracy of solution.
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5.　Symmetric Condition

　The configuration which satisfies the symmetric condi-

tion of Eq.(22) is here termed the "symmetric" baseline con-

figuration. We can prove the following condition by noting

that w2ij＝w2sii・w2bjj .

Condition 1   If there exists a positive (m×m) diago-

nal marix WB such that

　BWB  B
T ＝Λ� (26)

where Λ is an arbitrary (3× 3) non-negative diagonal

matrix, m is the number of baselines,  and B is the

baseline matrix as shown in Eq.(10), then the configu-

ration is a symmetric baseline configuration.

　Specifically, if WB can be taken as a unit matrix, the con-

figuration will be called the innately symmetric configura-

tion. Then the innately symmetric condition can be ex-

pressed as

　BBT ＝Λ� (27)

Now the symmetric condition is expressed as Eq.(26) in-

stead of Eq.(22). The results derived in the previous sec-

tion can be summarized by the following conditions.

Condition 2   If the baseline configuration is not sym-

metric, the rows of attitude matrix can be estimated by

Eq.(20).

Condition 3   If the baseline configuration is symmet-

ric, the rows of attitude matrix can be estimated by a

combination of Eqs.(23a)～ (23c).

Condition 4   If the baseline configuration is innately

symmetric, the rows of attitude matrix can be estimated

by a combination of Eqs.(25a)～ (25c).

　Figure 1 shows some examples of innately symmetric

baseline configuration, where "M" represents the master

antenna, and "i" represents the ith slave antenna.

　If the matrix Λ happens to be a (3×3) unit matrix, Eq.

(26) will be completely the same as Eq.(14). Therefore, the

symmetric condition is the generalization of the balanced

condition.

　To show that the symmetric condition differs from the

balanced condition, the left hand side of Eq. (14) is expanded

as

　

bjx

2 bjx bjy bjx bjz�

bjy bjx bjy

2 bjy bjz�

bjz bjx bjz bjy bjz

2

BWB  B
T ＝Σwb

2

jj bj bj

T＝Σwb

2

jj

m�

j=1

m�

j=1

(28)

Substituting Eq. (28) into Eq. (14), we derive the following

equations:

　Σwb

2

jj

  bjx

2 ＝ 1，Σwb

2

jj

  bjy

2 ＝ 1，Σwb

2

jj

  bjz

2 ＝ 1
m�

j=1

m�

j=1

m�

j=1

(29a)

　Σwb

2

jj

 bjx

 bjy＝0，Σwb

2

jj

 bjx

 bjz＝0，Σwb

2

jj

 bjy

 bjz＝0
m�

j=1

m�

j=1

m�

j=1

(29b)

　This shows that Cohen's balanced condition requires Eqs.

(29a) and (29b) to be satisfied; however, the symmetric

condition only requires Eq. (29b) to be satisfied. Due to

Fig. 1  Examples of innately symmetric baseline configura-

tion
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this, the concept of symmetric condition is suitable for both

coplanar and non-coplanar configurations, and for two-an-

tenna configuration. As shown above, the symmetric con-

figuration is no longer the necessary condition to guaran-

tee the AMES solution optimal and just acts as the role to

simplify the derived solution.

6.　New Algorithm for Coplanar Baseline
Configurations

　The symmetric condition is more easily satisfied by co-

planar baseline configurations than by non-coplanar baseline

configurations. Because the z-components of all baseline

vectors bj are zero, the last two equations of Eq. (22) are

always satisfied. For the same reason, a3 cannot be esti-

mated by Eq. (23c) － only a1 and a2 can be estimated by

Eqs. (23a) and (23b). Fortunately, since A is an orthogonal

matrix, a3 can be derived as follows, once a1 and a2 have

been estimated:

　 a^3 ＝ a^1 × a^2 (30)

a) Three-Antenna Configuration

　The typical symmetric baseline configuration of three an-

tennae is shown in Fig. 1(b). If the lengths of two baselines

are the same, their positions in the antenna coordinate sys-

tem are given as

　b1＝［bx   by   0］
T
，b2＝［－bx   by   0］

T

　It is easy to show that, according to Condition 4, this

configuration is innately symmetric. The LS solution is then

　 a^1 ＝ ――［Σ(^si^ si

T )］
－1
［Σ^si(Δri1 －Δri2 )］

�
n�

i=1

n�

i=1

1�
2bx

(31a)

　 a^2 ＝ ――［Σ(^si^ si

T )］
－1
［Σ^si(Δri1 ＋Δri2 )］

�
n�

i=1

n�

i=1

1�
2by

(31b)

　 a^3 ＝ a^1 × a^2

b) Four-Antenna Configuration

　The typical symmetric baseline configuration of four an-

tennae arranged in a square is shown in Fig. 1(c). The posi-

tions of three baselines in the antenna coordinate system

are

　b1＝［－b   b   0］
T
，b2＝［0   2b   0］

T
，b3＝［b   b   0］

T

　According to Condition 4, this configuration is also in-

nately symmetric. The LS solution is then

　 a^1 ＝ ――［Σ(^si^ si

T )］
－1
［Σ^si(Δri3 －Δri1 )］

�
n�

i=1

n�

i=1

1�
2b

(32a)

　 a^2 ＝ ――［Σ(^si^ si

T )］
－1
［Σ^si(Δri1 ＋ 2Δri2 ＋Δri3 )］

�
n�

i=1

n�

i=1

1�
6b

(32b)

　 a^3 ＝ a^1 × a^2

7.　Compass Algorithm

　The two-antenna configuration always satisfies the in-

nately symmetric condition, as shown in Fig. 1(a). Although

only a row of A can be estimated, the baseline vector sepa-

rated by two antennae acts like a compass.

　Suppose A is the 3(ψ)-1(θ)-2(γ) sequence as follows:

　A ＝�

 cγ・cψ－ sγ・sθ・sψ cγ・sψ＋ sγ・sθ・cψ － sγ・cθ�
 －cθ・sψ cθ・cψ  sθ�
 sγ・cψ＋ cγ・sθ・sψ sγ・sψ－ cγ・sθ・cψ  cγ・cθ�

(33)

whereψis azimuth,θis pitch,γis roll, and c denotes the

cosine function and s denotes the sine function.

　According to Condition 4, the second row of A can be

estimated to be

　 a^2 ＝ ――［Σ(^si^ si

T )］
－1
［Σ^siΔri ］

�
n�

i=1

n�

i=1

1�
b

(34)

so that the azimuth and pitch are given by

　ψ＝－tan－1(a21 /a22 )，θ＝
 tan－1(a23 /  a

2

21＋a222 ) (35)

8.　Experiments

a) Description of Experiments

　This section presents some results of experiments to test

the new algorithm. The raw single difference carrier phase

measurements and LOS vector were received from a TANS

Vector GPS receiver, which is a solid-state attitude-deter-

mination and position location system with a four-antenna

array13. Fig. 2 shows four antennae arranged in a 41cm×

41cm square. The definition of antenna coordinate system

is also shown as in Fig. 1(c). The positions of three baselines

in the antenna coordinate system are

　b1＝［－b  b  0］
T
，b2＝［0  2b  0］

T
，b3＝［b  b  0］

T

where b=29cm.

　One of experiments was carried out on December 23,

1998. The experiment was conducted continuously for 1
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hour, from GPS time 259180.75s to 262780.75s. The LOS

(line-of-sight) and single difference carrier phase measure-

ments were recorded in order to utilize them in post-pro-

cessing. A packet EC containing the LOS vectors was up-

dated by the Vector GPS receiver periodically at intervals

of approximately 30s, while a packet E3 containing the

single difference carrier phase measurements was output

by the Vector receiver at about 2.0s intervals. This means

that the LOS vector persists equally during about 15 ep-

ochs. As mentioned above, the integer ambiguities were

resolved by Knight method.

b) Comparison of Accuracy

Fig. 3 shows the results of the AMES algorithm for the four-

antenna configuration proposed in this paper, especially

shown as Eqs. (32a), (32b) and (30). The azimuth accuracy
＾will benefit from orthogonalization of A such that A(c) ＝

＾ ＾ ＾ ＾(A＋A－T )/2, where A and A(c) represent attitude matri-

ces (see Eq. (17)) before and after orthogonalization, re-

spectively. The procedures shown in the above equations
＾originally need iterations14. However, as A itself is close to

be orthogonal, one orthogonalization cycle is sufficient.

　The standard deviation (STD) of azimuth will be improved

from 0.502° to 0.424° by the orthogonalizing process. Note

that the results shown in Fig. 3 are those before applying

orthogonalization.

Table 1 compares three kinds of algorithms. One of these

is the TRIAD algorithm15, which determines A by employ-

ing two vectors. Here, we utilize one of the following two-

baseline combinations:

　(b1，b2 )，(b2，b3 ) or (b1，b3 )

Fig. 2  TANS Vector's 4-antenna square configuration

(a)  azimuth～ time curve

(b)  pitch～ time curve

(c)  roll ～ time curve

Fig. 3  Results of AMES for conplanar configuration

Table 1  Comparison of accuracy for coplanar configuration

STD(deg)
Algorithm Azimuth Pitch Roll

AMES(b1, b2, b3) 0.424 0.302 0.184

　NLLSFit 0.417 0.288 0.170

TRIAD　b1, b2 0.459 0.254 0.337

　　　　b2, b3 0.561 0.254 0.332

　　　　b1, b3 0.680 0.443 0.184

　AMES(b1, b3) 0.442 0.388 0.195

　AMES(b2) 0.499 0.254 －
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　The NLLSFit algorithm requires an initial nominal solu-

tion of A, and the (b1, b2) solution of TRIAD is employed as

this initial value of NLLSFit. Table 1 also lists the results of

AMES which involve two baselines (b1, b3), and one baseline

(b2), respectively, compared with the results of TRIAD also

using b1 and b3. In this case, the result of AMES without

orthogonalization has almost the same accuracy as the

TRIAD.

　The results of compass algorithm, which employs only

the 2nd baseline b2 are shown in Table 1, too. The STDs of

azimuth and pitch are 0.499° and 0.254° respectively. It is

very interesting to note that the accuracy of compass algo-

rithm is higher than that of TRIAD employing two baselines

(b1, b3). However, it is almost as same as the average of

other two TRIAD solutions which employ (b1, b2) and (b2,

b3) separately, referring to Table 1.

　Multipath effects are obvious in Figs. 3. The largest re-

flector was the laboratory's wall, which lay about 4m to the

south of the antenna array.

　Some kinematical experiments have been done to exam-

ine AEMS. All results demonstrate that AEMS is very ef-

fective in the kinematical environment. A result of experi-

ments is shown in Fig.4.

c) Comparison of Computational Issue

　The recorded experiment data persist for 1 hour and con-

tain the total number of epochs of 1698. The data process-

ing is carried out in an IBM ThinkPad portable computer

with intel pentium III CPU. The computational time of 7

algorithms is listed in Table 2 where "Total" column means

the total spending time for processing all epochs, and "One

epoch" column records the average spending time for pro-

cessing data of one epoch, and "Percentage" column lists

the spending percentage of an algorithm compared with

that of NLLSFit algorithm. The absolute spending of an al-

gorithm is dependent on many factors such as the coding,

CPU, and the accuracy constraint if it is an iterative proce-

dure. Here, the iterative accuracy of NLLSFit is set to less

than 10－ 3 radians with the maximum iteration of 5.

Table 2 clearly shows that the computation loading of AEMS

for 3 baselines is only about 36.5% of that of NLLSFit, and

that of AEMS for 2 baselines is 29.4% of NLLSFit. The re-

duction by almost 2/3 is very obvious. The computationally

spending percentage of 5 algorithms is also shown in Fig.5.

Here, NLLSFit is the reference which percentage is set to

100%.

d) Non-coplanar Baseline Configuration

　AEMS is compared with PWP and NLLSFit in this sec-

tion. A simulation method named semi-mathematical simu-

lation is used to generate single-differential carrier phase

measurements for a non-coplanar baseline configuration.

The measurement errors and LOS vectors are completely

the same as the actual data taken from an experiment with

the coplanar baseline configuration (see Fig.2). Since the

baseline length is short enough, errors in the measurements

Table 2 Comparison of computional time for coplanar configuration

Algorithms Total One epoch Percentage
(s) (ms) (%)

AEMS(b1,b2 and b3) 0.052 0.031 36.5

NLLSFit 0.143 0.084 100

TRIAD(b1,b2) 0.076 0.041 48.2

TRIAD(b1,b3) 0.060 0.035 42.0

TRIAD(b2,b3) 0.054 0.032 37.7

AEMS(b1,b3) 0.042 0.025 29.4

AEMS(b2) 0.025 0.015 17.5

Fig. 4  kinematic Results of AEMS Fig. 5  Computational loads for coplanar configuration
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can be assumed to be almost equal when the baseline con-

figuration is changed. With this assumption we can simu-

late errors by

　εij ＝Δφij ＋ nij・λ－ s^i

T AT bi .

Thus, the measurement data are computed by the sum of a

new baseline's projection on a LOS vector and the measure-

ment errors as

　Δφij

new

 ＝ s^i

T AT bi

new

 － nij

new・λ＋εij .

　The non-coplanar baseline configuration employed in the

simulation is shown in Fig.1(e). Three baselines are defined

as follows:

　
b1＝［－b  －h/3  －2b］

T
，b2＝［0  2h/3  －2b］

T
，b3＝［b  －h/3  －2b］

T
 �

where  b＝  2/2m，h＝  6/2m

　It is easy to understand that this configuration satisfies

either the balanced condition or the innately symmetric

condition. Results of a simulation are listed in Table 3. The

computation loads of three algorithms are compared in

Fig.6. It clearly shows that AMES greatly reduces the com-

putational time.

Table 3 Comparison of algorithms for non-coplanar configuration

STD(deg)
Algorithm Azimuth Pitch Roll computional time (ms)

AMES 0.186 0.138 0.153 0.036

NLLSFit 0.182 0.156 0.172 0.190

PWP 0.174 0.115 0.111 0.078

9.　Conclusions

　By converting the attitude matrix into a state vector, a

new approach is presented which efficiently resolves the

problem of attitude determination using GPS. This new al-

gorithm has a number of advantages which distinguish it

considerably from traditional methods. First, it is just as

easy to realize in the computer as to create a program for a

standard weighted least squares method or a standard least

squares method. Second, it does not require any initial val-

ues of attitude and avoids computationally expensive itera-

tion. Lastly, it can be applied not only to both the coplanar

and the non-coplanar baseline configurations, but also to

the one-baseline configuration as the compass algorithm

shows. Due to the symmetric baseline configuration which

can be regarded as the generalization of the balanced con-

dition and is no longer the necessary condition for the

optimality and just acts as the role to simplify the derived

solution, the 9-dimensional state vector can be decomposed

into three non-independent, 3-dimensional vectors, which

allows 3 row vectors of attitude matrix to be estimated sepa-

rately. This greatly reduces the computational burden.
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Appendix A: The Definition of Wahba's Problem

　The original definition of Wahba's problem is in a form

of least squares as follows. 16,

　Given two sets of n points {v1, v2, ..., vn}, and { u1, u2, ...,

un }, where n＿＞2, find the rotation matrix A (i.e., the or-

thogonal matrix with determinant +1) which brings the first

set into the best least squares coincidence with the second.

That is, find A which minimizes

　Σ‖uj － Avj‖
2

n�

j =1

(A1)

　This problem has arisen in the estimation of attitude of a

satellite by using direction cosines {uk} of objects as ob-

served in a satellite fixed frame of reference and direction

cosines {vk} of the same objects in a known frame of refer-

ence. A is then a least squares estimate of the rotation ma-

trix which carries the known frame of reference into the

satellite fixed frame of reference.

　The weighted least squares form of Wahba's problem can

be expressed as finding A which minimizes the following

cost function 17

　J(A)＝Σwj‖uj － Avj‖
2

n�

j =1

(A2)

where {w1, w2, ..., wn} is a set of positive weighted coeffi-

cients. There are not any effects to the resulting solution if

set wj satisfy the following condition:

　Σwj ＝ 1
n�

j =1
(A3)

Now define a new cost function as follows,

　 g(A)＝1－J(A)＝Σwj uj

T

 Avj

n�

j =1

(A4)

　It is easy to see that the optimal solution that minimizes

J(A) makes g(A) maximum. We can rewrite g(A) as in the

following form,

　 g(A)＝Σwj  tr［uj

T

 Avj ］＝ tr［AbT ］�
n�

j =1

(A5)

where

　B ＝Σwj uj vj

T
n�

j =1

(A6)
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