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p gency g

Numerical simulation concerning the thermocapillary convection in a half-zone liquid bridge
taken static and dynamic surface deformation into account was conducted. The liquid bridge has
a free surface, which deforms due to the thermocapillary-driven flow as well as the gravity. In this
research, the fundamental equations and the boundary conditions were derived for the concerned
configuration with taking the static axisymmetric and for the dynamic 3-D free-surface displace-
ment into account. Then, (1) code validation concerning the moderate Prandtl number fluid and
(2) a series of analysis concerning the high Prandtl number fluid were conducted. In the code
validation the critical Marangoni number and the fundamental frequency of the induced flow were
in good agreement with those obtained by linear stability analysis. As for the analysis concerning
the high Prandtl number fluid, the critical Marangoni number with and without considering the
dynamic surface deformation was obtained. In addition, the phase differences among the surface
deformation, the axis- and azimuthal-velocity, and the surface temperature variation were ana-
lyzed. It was found that the rotating oscillatory flow retained a lower fundamental frequency than
the pulsating one, which was also indicated by the terrestrial experiments.

1 INTRODUCTION

One of the purposes of the space environment utilization such as a space station is the pro-
duction of a new material. Uniform or high-quality material can rather hardly be formed on the
ground owing to the natural convection by the buoyancy effect and sedimentation by the density
difference. On the other hand, the buoyancy effect can be reduced and thus, a high-quality material
processing is expected to be enabled in the space environment.

Floating Zone Method is one of the likely candidates of the material processing methods under
the micro-gravity. In this method the both ends of the material rod are cooled down, and the center
is heated to be melt. Molten liquid sustained between the rods is called a liquid bridge. This melt
zone is slowly moved vertically and thus a uniform single crystal is produced. The material in the
liquid phase is sustained by the surface tension. Generally the surface tension of a liquid decreases
with increasing temperature. Because a temperature gradient exists along the free surface, the
difference of the surface tension is originated by the temperature difference. Thus a flow occurs in
a liquid bridge even under the micro-gravity. This flow is called as thermocapillary or Marangoni
convection. Though this convection can occur also on the ground, it is usually hidden by the
buoyancy. Thus this phenomenon is hardly recognized in our usual observation. On the other
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hand, thermocapillary convection becomes dominant under the micro-gravity because the influence
of the buoyancy is strongly reduced. Therefore, the analysis of the thermocapillary convection is
of primary importance for the material formation under the micro-gravity. The configuration of
the floating zone method is called as Full Zone Model. The upper half of the full zone model is
deeply influenced by the buoyancy on the ground so that the thermocapillary effect can scarcely
be recognized. On the other hand, the lower half is less affected by buoyancy. Because upper
temperature is higher than the lower one. As the results the thermocapillary effect dominates the
convection in the lower half of the full zone model. Consequently Half Zone Model is preferred
in the fundamental research on the ground and is employed in this research as well. The half zone
model corresponds to the half part of the liquid bridge in the full zone model; the one side of the
bridge is heated up and the other is cooled down:

The experiments for the thermocapillary convention are widely conducted. Kamotani!! studied
effect of zone rotation on oscillatory thermocapillary flow in simulated floating zones. Velten'
observed the periodic instability of thermocapillary convection in cylindrical liquid bridges.

As for the numerical simulation Savino and Monti®® simulated the oscillatory flow numerically
and compared it with their experiments. Yasuhiro! investigated the relations between the wave
number and aspect ratio or Marangoni number.

From these researches, it turned out that thermocapillary convection exhibits the oscillatory
flow under a certain condition.

It should be noted that the existing numerical simulations ware conducted without considering
the free surface movement. On the other hand, the free surface vibration is observed with the
oscillatory flow in the terrestrial experiments. An influence of surface vibration upc;n the flow field
instability must be evaluated to understand the mechanism of the oscillatory flow.

Consequently the purpose of this research is to analyze the three dimensional thermocapillary
convection numerically with consideration of the free surface movement.

2 NUMERICAL METHOD FOR THE THREE
DIMENSIONAL ANALYSIS

The goal of this study is to analyze the influence of the free surface deformation upon the ther-
mocapillary flow. Therefore, an analytical method is developed to capture the temporally varing
surface motion. In this analysis, B.F.C.(Boundary Fitted Coordinate) method is employed.

2.1 The governing equation

{Continuity equation]
o, Ovg 0 .
ar\r) + g + gt =0 M

[Navier-Stokes equation]
(r-direction)
v, 0 d 0 oP

+ '—(TUTUT) + _(UGUr> b Ug -+ -——(TUZ’U,«) = ——_—

ot  Or a0 Oz or

r
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To consider a thermocapillary convection in a
To + AT liquid bridge, a configuration of the analysis is
defined in figure 1. The liquid bridge with vol-
ume V is bounded by two rigid parallel disks of
equal radii » = Ry located at z = 0 and H.
: The temperature difference between these disks
Free surface is defined by AT. The gravity is assumed in the

: direction of —z.

The governing equations are described in cylin-
drical coordinate. As for the gravity, the
Oberbeck-Boussinesq approximation is utilized
in these equations.

Hot Disk H

Figure 1: The configuration
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[Energy equation]
or a 0 0
ror T é—;(rvrT) + 5@<U€T) + EZ(TUZT)
1 o8 orT 0 10T o ar
‘E[EE(TE)J’EE(;%)"F@;(T@)] (3)

The scales used for non-dimensionalization are as follows.

Table 1: Scales used for non-dimensionalization
Variable 7,z t v = (v, Vg, Uz) D T

Scale  H Hp/orAT orAT/p p(orAT/u)?> AT

The non-dimensional numbers are defined by
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v
Pr = -
K

Ma = —o AT H
LK

gBAT H?
V2

Egs. (1)-(3) can be transformed from the physical domain to the computational domain by
Jacobian matrix. ‘

-8 - 3
% L& G m %
39 o
ar . 0 {r gr Tir o€
% §o Co Mo ¢
L 357 - 0 gz <z Nz an
-5 A
ar 1 r 0, 2 ;%
2 | _ |0 e O 2z || 5 (5)
£ 0 re 60 = g
%( ¢ V¢ ~¢ aae
i -(9_77 ] 0 7’77 97, Z',? 3
Equation (5) is inversely transformed as follows,
8
;% An A A Ap 5(9?
3% _ l Agr Agp Ay An a_é (6)
L (% J | Az Az Ass Am £
37 An Ag » Ap Ay a%

A = %(7“59(/37]‘ + 7¢Onze + Tobezc — Thbcze — Tz — Tebyze)
A = —g(negzn + 7¢Oz + Trbrze — Tyczr — 1072y — ro0n2¢)
A1z = 1(r:0czy + 1¢Onzr + obr2e — To0c 2, — Telr 2y — 720 2¢)
A = "%(TT@&ZC +1relczr +1e0r2¢ — 1Oz — el 2 — T.02E)
Ay =0

Agy = g(‘gczn = Onz)

Agz = —1(0czy — 6, 2¢)

Ags = -Zt(eé,zC — Bcz¢)

Az; =0

Asz = *'i:(rczn — TuZc)

Ass = (rezy — 1y2e)

AMZ*?%%"Q%)

Ay =0
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7,
Agp = —5—(7"49,7 — 7yb¢)
Agz = —1(reby — 140¢)
Ay = 2(7"594 = 1¢be)

Each component can be related from Eqgs. (4), (6) as:

T
J = E(rg(‘)(zn + 7¢Oy ze + Tnbezc — b ze — Otz — Tebnzc)

1
& = —7§(TT9<Z" + 1¢Onzr + Tnbrzc — TyOczr — 1ebrzy — To0y2¢)

1
G = jr(rTegz,, + 70p2r + Tyfrze — Tnbezr — Tebrzy — o0y 2)

1
N = ——jg(r.,ﬁgz( + TeOczr + TOrze — Oz — b2 — 1-0c26)

1r
& = ‘J"g‘(GQZn — Oy2¢)
1
Gr = ’jr(gézn - 97,,25)

1r
N = 72(69:22( e 9('25)
11
& = —72(7“(277 — TyZ¢)
1
Co = 'j(TEZn - Tnzg)
11
N = ~7E(T52’< — T¢zg)
1r
§: = 75(7"(977 —y8¢)
1
G = “‘77"(7”6077 ~ Tn0¢)
1r

Ny = 75(?294 —71¢le)

The continuity equation, the Navier-Stokes equation and the energy equation ( Egs. (1)-(3) ) are
transformed by these rules.
[Continuity equation]

0
23

9

(JEVe) + 55

(V) + %uvn) -0 @

AN e
LAl

Here, V¢, V¢, V,, are defined by
1
Ve = &urt —Gove + L.
‘/( = ggrvr + ’i’(@ve =+ {gzvz

1
Vi = noup+ ;7791)9 + Ny .
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These velocities are called as contravariant velocities.

[Navier-Stokes equation]

%%+%U V), VP+£%V%»+@§§T
Equation (8) is expanded as
5‘ +e g‘*‘Ct C avi
e nggmvgvl) §(,)C(Jvcfm b 5 (V) + e
- (e roge g )e
et galEes g ¢ UGG+ g
b aUEE T ¢ S UGS + S )
. %u%gp UGS + 5 S
+ 65 595988?) 85( 250@(?2) a@f( 250?798:)7Z
v eS0T + F U506 + oSy
+ ;77( 12?7959%2) aa( 277949212) a(leenesz)
b sl T + S UG + gUtn
b plEE T g UEG R + e B
+ ;(anézaqg) aa( z(za,lg) ;n(annz%%)
(et
T M )
+ ez(%ﬂ’
where v; = (v, Vg, ).
[Energy equation]
%%HU V)T eA—;;VQT
Equation (10) is expanded as equation (11).
eSS
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2 v

*’H%%“WJ) F5 WD) + 5
vt PSS + UG + F UG o)
" %%(Jécrfr (Z) T gzuggg*) + ZPZ(chmr—f)—f;)
+ g-(Jnrfrag) aa(Jvaa?) a(JnrmgT)
+ ;;?*(J —&0&o 5) 85( feCeaC) aag(J 59"7982)
b ST+ el eeg) + e EGng)
L2 1277959;;) T SmO50) + U oG
bty é) 5<J§£z<z C)+%<J§§znz8§>
n é%ugg@ 5) C(Jﬁéz@« C) C( fcznzaT)
b gUnE T+ UGG+ ) (11

2.2 The coupling and time advancement

In this analysis, fractional step method is utilized to computate these governing equations. Euler
method is adapted for time advancement.

Here, the time in the computational domain is defined as the same time in the physical domain
(1 =1).

Equation (9) is described as

e+ fu, (12)

Ov; oP oFP
o7 +ft+fc‘— <§za§+<za<+7h )

where f;, f. and f, are the coordinate movement, convection and viscosity terms, respectively.
In fractional step method, the velocity is solved by dividing into three steps as below.

5 o= v+ At-{~fo+ fu} (13)
8P(n+1) ap(n-&-l) ap(n+1)

5 = e . y ; 4

U; (gz 8§ +§z 8< +77 577 )6 (1 )

o = g A {=f) (15)

Where U means temporally velocity, and superscript (n) indicates a time step. o; is a temporally
velocity without considering the movement of the computational grid. Because the free surface
deforms, the computational grid must be restructured. Therefore, it is important that the influence
of the computational grid movement is considered. Equation (15) is utilized to take account of the
computational grid movement.
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Equation (15) is considering in two dimensional coordinate for the simplicity.
Jacobian matrix in two dimension can be described as

)
% L& om [
5 |~ 0 & % (16)
EX O {z 72 5.5
-0
% 1 . =z 5Z—t
%5. = 0 Te Z¢ % (17)
B 0 m =z 5
Equation (17) is inversely transformed as follows,
9
% 1| (rezn —zern) (=rozg+2ma) (rezg—1r2g) 1 [ 3
%. =7 0 Zy —2Z¢ 585 ‘(18)
5 0 -y e 3
From Egs. (16) and (18), the relation of each components are given by
J = 7"52:7, 2¢Ty
‘fz = ——f‘]l M. = 'T"]é‘
Then equation (15) becomes equation (20) and is further transformed to equation (21).
() At{ 5111 5731} 20
() _ oo ppd 90, 00 21
v Uit { ar et 5z 1)

Where 9, is the velocity in the previous computational grid.

That s, if the computational grid moves -g—;At, the velocity in the restructured grid is indicated by
equation:(21) (See Figure. 2).

This approach can be adapted in the three dimension as well.

The pressure in the equation (14) is solved by the pressure poisson equation. The pressure poisson
equation is derived from the continuity equation and equation (14).
[Pressure poisson equation]

2 V- v
VP = 7 (22)
Equation (22) is expanded as follows.
0 0 oP
J r J rir J rifr
5( (3 5) 5( 4 3%¢ C) 5( & 77)
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Figure 2: The relation between the velocity and the computational grid

b ZUGES0) + UGG + grrn )

b UmE S+ I G+ g )

+ gg( ifefeaé) gg( feCeaI:) 85( 159?79%?)

+ ff(( iCefeag) ;Q(JiCeCeag) (‘;9(( i(eneap)
g + 5o inece%’;) - o)

b e + U x 2 reng)

b UGS+ 5T czcz(%) G
bR G + g+ %%g;

= A2 + )+ 5T @3

Where V;,V; and V,, are defined by
- o1 _
‘/5 = &Ur + ;561)6 + &0,
~ . 1 . N
VC = (Up + ;C.G'UG + (U
R S -
Vo = ot + ~ 76V + 175Uz,
which are called as contravariant temporally velocities.

To solve the pressure variation implicitly, equation (23) is calculated by successive over relaxatlon
method (SOR method) in this analysis.
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2.3 Boundary condition
2.3.1 Boundary condition of the velocity

To derive the boundary condition of the velocity at the free surface, the balance between the shear-
ing stress and the surface tension must be considered.
The relation between the shearing stress and the surface tension is shown in figure 3.

o
o+ B—S—ds

Figure 3: The stress balance between the shearing stress and the surface tension

From figure 3, the equations of the balance between shearing stress and the surface tension are
described as

. _— ad _— .
{ Tn,s - Td0ds = {(0 + 5% - ds) — o'} - rdf (24)

Trg - Tdfds = {(o + %55 rdf) — o} - ds
Newton’s law of viscosity equation is expressed as follows.

Tn,s = {8vs+Qv_7L}
: 25
ivie a2 @)

From Egs. (24) and (25) equation (26) is derived.

Joxt) Jv
/J‘{37:+ "}"_ 26
Wi B .

QT

If the velocity upon the free surface in the normal direction is assumed to be zero, equation (26)
can be shown as follows.

{ pl = &

—83 )

L ou, . 180 27)
% +rg()) =15

Equation (27) can be non-dimensionalized as following equations.

{ Qvs 0T

on,~ " Bs 28)
1 9w 8 (ug\ S 18T (

r o5 e () = -
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{ Up = Vg COS (29)

v, = UsSin g

Vg = L
<=>{ T e (30)
Vs = m
Ous _ i(wr y
={El5z o
dn ~ On\sing
Ovur aT
= — COS PS5 ~
dmmy n T o (32)
Yz — —ginyw S
on kip65

Figure 4: The velocity at the free surface

In the equation of the relation between normal and tangential directions, the tangential velocity vs
is divided into radius and axial directions (See figure. 4).

Generally the following relations are derived in the normal and tangential directions.

[Normal derivatives]

29 = f——ﬁ(a¢g - 86,) (33)
5ot = T 78 (34)
[Tangential derivatives]
5 = T2 (35)
2= —};@ (36)

Here o = rf, + z?], B =rery+ 2ezy, Y= 7"? + zg.
Using equation (33), the equation of the stress balance between normal and tangential directions
is obtained.
1 (a%—ﬁavz) sin 1 Qz
N ¥ Ja o
The axial velocity v, is derived from equation (37). And the radius velocity is derived from the
relation of following equation.

37

vy = 58, (38)
sin @

On the other hand, the boundary condition of the circumferential velocity is defined by
10v, i 0 vg 10T

va0 Ve TS e (9)
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Equation (39) is transformed to the computational domain by the Jacobian matrix as

O, Ovr d g d e 0 g
{@%+@&+w Jorfe g+ Gqr (g ()
oT oT 8T
- $e£+@<+w } (40)

2.3.2 Boundary condition of the temperature

The condition of the heat transfer over the free surface is assumed to be adiabatic. Therefore the
equation of the boundary condition of the temperature is

592
an

Equation{41) is transformed by the Jacobian matrix as

=0 (41)

oro¢ 9T o¢ 9T on _

42
8§3 +8§8n+ n@n (42)
To transform into the computational domain, equation (33) is utilized.
orT 1 aT or
= (a5 — %) =0 (43)

an Jya 9E " on

2.3.3 The treatment of the liquid center axis

In this analysis the governing equations are described in the cylindrical coordinate. Therefore the
center of the cylinder (r = 0) can not be solved directly by the present equations (Egs.(2)-(3)).
This problem is solved through by the method below. The computational grid is fixed at the center.
[Navier-Stokes equation of the liquid center (axial direction)]

sz d
3t 87“( 00
- _T§£ 1 Lr [E(T%) i g_(}_af_)i) I 9 2y 8”’-’)} +TT££
0z Ma |Or" Or 00 r 06 0z 0z Re?

T0pv;) + == (vovs) + = (rv?)

9z
(44)

Equation (44) is integrated in all directions.

aUZ+ Af 277'( )+—}—[2:|Az
ot mwAr = vrte) TR Pelo

A8 2% v, L1 [ov Az
ar Az | 0z é

TAT =5 Or
As for-the radius and circumference velocity in the center, the velocity is summed over the sur-
rounding mesh points (See figure 5).

_op_Pr
0z Ma

N Gr
Re?

T (45)
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2T

V, = Z {v, cos 0y, + vgcos(by, + %)} (46)

=0

27

Vy=>" {vr sin By, + vgsin(y, + g)} 47)
7=0

Figure 5: The velocity at the center axis

After the summation, the velocities V;, V, are divided into the radius and circumference compo-
nents (v, Vg).

1

[V cos by, + V, cos( Gv,)} — (48)
2 g
vp = [vx(— sinf,,) + V, sin(g - avo)} ;13 )

Here nj shows the division number of the circumference direction. Such treatment at the center
axis is also applied to the energy equation.
[Energy equation of the liquid center]

or o

T_é? o 5 —(rv,T) +

Equation (50) is integrated in all directions.

a 1 [8,8T. 8,187, 08 ,0T
(rva)——m[—— r—)} (50)

3
56T+ 52 55 56 T 5 s

ol

OT A - 1 PURE N .V o 1 [aT71%%)
ot rar oD g BT = 5 {W—A;e;&' Ny H G

Also the pressure Poisson equation has to be sotved at the liquid center axis.
The pressure Poisson equation is derived from Egs. (52) and (53).

o el

A At Ps)+ 3Ar2,z }

Az2  3Ar?
1 3 2 M1
= |- — (D — Tzs) — v Arj};ovrj ~ (54)

2.4 The free surface shape

To computate the free surface shape, the stress balance over the free surface must be considered.
Along the free surface between two immiscible fluids (1) and (2) the forces on adjacent surface
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Vzp
From the figure 6 the continuity equation is de-
fined as

2 )
\ t / 7TAT‘2(’UZN — Ug) + %AT’AZ Z vy, =0 (52)
UT] " 3=0
B ot | OPJ d bed as foll
g Time advancement is described as follows.
/ ' \ : ~ Py—P.
U%\’+11) = ijN — Atﬁ}—PQ ‘

n — 5  — ¢

UT]‘ - 'Ur]. - AtAr+§A1‘]

o) where, Ar; is defined as Ar; = Ar.

Ps

Figure 6: The model of the in and outflows

element of (1) and (2) must be the same.
If the surface is plane and the surface tension is constant, the stress balance over the free surface
leads

St .n=8%.n (55)

where S is the stress tensor.
The each components in the stress tensor are described as

Sij = —P(Sij + )\@52']‘ + peg; ‘ (56)

where )\ and y are coefficient of viscosity and second coefficient of viscosity, respectively.
In this analysis it is assumed that the fluid is Newtonian, so that

O =divv =0, (57)

In addition, if the free surface has curvature and the surface tension varies along the interface, the
equation of the stress balance is described as !

SY.n+o(V-nn—(I—nn)-Vo=8? .n, (58)

where I is the identity matrix, and n is the unit normal vector directed out of liquid (1) into the
ambient fluid (2).

The element o(V - n) in the second term is the Laplace pressure. The mean curvature of the
interface,

1 1

Vn=—+ —
n R1+R2’

(59)

can be expressed as the sum of the inverse principle radii of curvature R; and R,. The second term
in equation (58) indicates the surface force acting tangentially originated from the surface tension
o. The operator I — nn represents the orthogonal projection of a vector onto the tangent plane
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defined by n.
Besides the influence of the surface shape and the surface tension, the action of the gravity is taken
account into the equation of the stress balance,

S . n+o(V-n)n—(I—-nn) Vo+pYg(H —zn=8% .n+ p@g(H —z)n  (60)

Equation (60) is described in non-dimensional manner.
H - 61

The scales used for non-dimensionalization were indicated in table 1. In addition, the normalized
temperature T* = (T' — Tp)/AT has been introduced.
The surface tension is non-dimensionalized by using the normalized temperature,

1 B
s“’-n+(-~——T*> (V- m)n + (1 - mn) - VT* = §@ — 22

O'(T) - Uo(TQ) s OT(T - To) (62)
a (efy] (To)
= = -T" 63
orAT  orAT (03)
: 1
* T T* 64
=0 Ca , (64)
where 0* = FT{TT and the capillary number is defined by
O'TAT
Ca=—re. 65
oo(To) (65)
From equation (64), the gradient of the surface tension is expressed by the normalized temperature,
Vo* = -VT™* (66)

Bois called as Bond number which is defined by
(oY) — p®)gH?
ago ‘

Bo = (67)

The asterisk is omitted hereafter.
Equation (61) is expanded as follows.
Using the unit normal vector

1 10R  OR
—— — e e —— Y
=N (er Ro0% ™ 52 ez) (6%)

with the normalizing denominator

oR\! 1 (or\’|?
_ o7 = 69
N 1+<52> +R2<8’9> (69)
the surface curvature can be expressed as
-1 R | , (8R\®
V'“-R—sm[ R’a‘;z‘{R +<‘a—9> }
OROR (9ROR _ , 0°R
Oz 08 \ 0z 00 0206
R\ [ . OR\® _0O°R
- == ) - R— 0
{1+<az>}{1{ +2<89> R(%QH (70)
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The stress tensor is indicated as

= *-P(Sij + HeEij | (71)

where e;; in the cylindrical coordinate is defined by

Err =

=, e ="
or’

,
_1 2<@>+_
“ =35 o \ 7

ov, 1 %

ov,

:az’

, 10v, Oug 1 ({0v, Ou,
}" €= =5 {we*a } Ear = ’2‘{& ar }(72)

The unit normal vector and the identity matrix are shown below.

g (73)
]

(1.0 0

010 (74)
(00 1

nn represents the dyadic product which is expressed as

,{

n.ny Nyng N

n2  nme nen,
ngn, M  mgn, (75)

The components of the surface tension gradient is

o .
;a_g”% } (76)

oa
0z

From these matrices, the equation of the stress balance is led in the three directions.
Since the two directions of the curvature exist in the three dimension, the two tri-diagonal matrices
must be considered for axial and circumferential directions. The tridiagonal equations are indicated

below.
(Radius:ditection)

0*R -R3N®

922 R{R2+ (OR/30)2}(1/Ca—T

g — )
Ovy
_187" 3] 0 0 0
Vg 10v, ng 1 Jv, vz Ty
) 5—7:(7“)+r89 iy 5{&, }“
l—nfﬁT 10T or
T 5?”9@*”%}

. 1 _,0ROR OROR _ 82R)
R{R®+ (OR/00)| "0z 069z 06 ' 9200

ORpay g o PRy R
w1+ GorHe + 250y - RS

(77)
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(Circumferential direction)

R —R3N?
962~ R{1+ (0R/0z)2}(1/Ca-T)

1. 0 vy 10v,.ng 1.0v, Ov,.n,

U T3 e T a

n, Or o o0 “ 9z

1 9°R_, OR.,

YR OR/52)7) [~R8z2 U+ (5
_oOROR OROR Ok )

5, 9602 96 9200

2 OR.,
+Z(SP+R (78)

In addition to the these tridiagonal equations, the constant volume equation has to be solved to

maintain the volume of the liquid bridge.

/0 H/O " %R2d9dz v (79)

The position of the free surface ,R, is solved by using Tri-Diagonal Matrix Algorithm (TDMA)
derived from Egs. (61) and (79). The tri-diagonal matrices are given below.

(Axial direction)

r H H
a, oc1,o
bl—f " H
11 ax‘xcl,x
bn )i H
1k Otnk cl,n.k
H #
i nk+1a1 nk+1
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a C
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70
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The last array in this matrix gives the constant volume condition.
(Circumferential direction; for each R})

HC  C c - r.c -
Lk dek c a ., Rl.k dlck
2.k bz.kc2.k Rz k rdz k
: : = | (81)
c c c C
a'nj—xk nj—1 kcn'—l‘k R”Fl k dncj-—l‘k
o gtk el y
-cnjk njik njk J na:k gk ]

The free surface shape is derived from these matrices.

3 RESULTS AND DISCUSSION

3.1 Flow near a corner in 2-dimensional axisymmetric simulations
3.1.1 Flow near a corner

For high Pr fluid, the isotherm is compressed and the velocity on the free surface exhibits a peak
near a corner. Thus the fine mesh is needed to resolve the distributions near the corner.

In the vicinity of the corner, the flow velocity is very small, one can assume
U-VU < VU ‘ (82)
Accordingly, the Navier-Stokes equation can be simplified field as
vV?U =0 (83)

The solution of equation (83) has been obtained by Kuhlmann [6]. When a contact angle be-
tween the free surface and the endwall is 7/2, the axial velocity on the free surface is obtained by
following relation.

2
Uz = ——Wp, (84)
™

where U, is the axial velocity on the free surface, and wy is the vorticity which is determained by
the temperaure gradient on the free surface.
Accordingly, the velocity on the free surface can be related to the temperature gradient as

U, = 29T (85)
T Oz

This equation (85) gives the surface velocity near a corner.

3.1.2 Influence of the spacing

On the free surface near the corner, the influence of spacing on the distributions of velocity and
temperature are examined. The influence is investigated for the conditions given Tables 2 and 3.
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Table 2: The number of grid points
| R x Z |40 x40 |60 x 60 | 100 x 100 | 400 x 400 | 400 x 800 |

Table 3: The computational conditions
Ma | Pr| Bi| Gr| Ar
100001 28| 0 | 0 [05

Figures 8 and 9 are the distributions of the axial velocity and the temperature on the free surface. It
is found that the distributions of velocity and temperature in the neighborhood on the free surface
at mid-height are hardly influenced by the spacing for grid points 40 x40 and 400 x800. For high
Pr, the distribution of temperature on the free surface is strongly dependent on the magnitude of
the surface velocity. Here, the distribution of axial velocity exibits a distinct peak near a corner,
because the temperature gradient increases near the corner. Remarkable, the oscillation of the ve-
locity is observed at a cold corner. This indicates that the spacing is not sufficiently fine to resolve
the velocity and the temperature gradient at the corner.

Figures 10 and 11 show the distributions of the temperature gradient at cold and hot corners.
It is found that the magnitude of the temperature gradient at the endwall increases with increasing
grid points, because a large temperature gradient can be attained only when enough fine mesh is
employed. The temperature gradient tends to be a constant value at the endwall itself. In the simu-
lation, the distribution of temperature gradient calculated by using the 400400 grid points agrees
with the one by the 400x800.

We will derive the constant temperature gradient near a corner from the energy equation.
Assuming 2-dimensional axisymmetric flow, the following conditions can be applied

1 8°T
Us =0, 2o 0 (86)
In the straight cylinder, the radial velocity becomes
U-=0 (87)

On the free surface.
Since the heat conduction in the z direction is dominant, the radial heat conductive term is negligi-

ble :
10 (0T
Accordingly, we get the energy equation as follows :
aTr 1 d&*T
= 89
dz Ma dz? (89)
Integrating equation (89) to z yields
aT
er _ CeManzdz (90)
dz
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where, ¢ is an integration constant.
Here, we expand the velocity on the free surface in terms of z as follows :

U,=—az—=b+--- o

The integrated equation (91) becores

. a o, by ‘
e =—=2"— =2+ 92
/ U.dz 22 5 + (92)
As thewresult, we obtain the temperature gradient as
T a
_q___ — CE—NI(L7Z2, (93)
dz
The temperature gradient for z—0 becomes
Thus,
T
Ed——— = const. (94)
dz

. Figure-12 shows the distributions of the temperature gradient obtained numerically and analyti-
cally. Both distributions agree well near a corner.

Figures 13 and 14 show the distribution of the velocity on the free surface for various grid spacing.
The straight line is the exact solution obtained by equation (85). As the number of grid points
increases, the peak of velocity at the cold corner approaches to that of the exact solution. At the
hot corner, the peak of the velocity approaches to one by the exact solution with increasing mesh
number. The value of the peak of the velocity calculated by using the 400x400 grid points agrees
with that of the exact solution, that of 400 x 800 also agrees well. Thus, the number of 400x400
grid points is needed at least in this conditions. When the number of the radial grid point is not
sufficiént, the value of the peak of velocity tends to exceed the value by the exact solution

3.1.3 Influence of Pr and Ma

The influence of Pr and Ma upon the distribution of the temperature gradient and the velocity on
the free-surface near a corner is investigated.

Calculdted conditions are

Ma= 1000, Pr=28

Ma= 2500, Pr=28

Ma=10000, Pr=28,4,67

Ma=40000, Pr=28

Here, Ar, Bi and Gr are 0.5, 0 and 0, respectively.

Figures-15 and 16 show the distribution of the temperature and the velocity on the free surface
for various Pr. In case of a constant Ma, it is found that the influence of Pr upon the distributions

on the free surface is large around the mid-height and is small near a corner.

Figures 17 and 18 show the distributions of the temperature and the velocity on the free sur-
face. For a high Ma, because the surface velocity is large, the most of the heat on the free surface
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is transfered directly to the cold endwall by the surface flow before the heat is conducted to the
inside of liquid bridge. Accordingly, as Ma increases, the large surface velocity causes the temper-
ature distribution on the free surface to be flat band around the at mid-height.

Figures 19 and 20 show the distributions of the axial velocity on the free surface near a corners.
The distributions of the axial velocity are in agreement with the results obtained by the exact solu-
tion. In case of Ma = 40000, the value of peak exceeds the exact solution, because the spacing is
not fine enough. For higher Ma, the accurate computation requires a large number of grid pints.

Figures 21 and 22 show the distributions of temperature gradients near the hot and the cold cor-
ners. The temperature gradients at the hot and the cold endwalls arrive at a constant value, which
increase with increasing Ma. The relation between temperature gradient and Ma becomes linear in
the logarithmic plot. This relations agree well with the result of the scaling analysis performed by
Canright [5].

3.2 Three dimensional simulations
3.2.1 Comparison with the linear stability analysis

The simulations of liquid bridges with statically and dynamically deformed free surface are per-
formed. The results are first compared with the linear stability analysis (LSA). Table 4 shows the
conditions for the comparisons with LSA. Here, « is the contact angle between the free surface and
the endwall. Ar, Bi, are 0.5, 0, respectively. The height of liquid d is 2RxAr with R = 2.5[mm)|.
The grid pints 0f 40 x 24 x 48 (r x & x z) is used in these simulations. In the case I, the compar-
ison of a liquid bridge with the statically straight surface in micrograity is performed. In the case
2, the result of simulation in a liquid bridge with the statically straight cylinder taken into account
the effect of gravity is validated. In the case 3, the result of simulation in a liquid bridge with the
statically deformed free surface is compared with that of LSA.

Table 4: The parameters for comparison with linear stability analysis.

Casel . Case2 Cased
sur face shape | cylinder cylinder deformed(a = 72)
Pr 4.38 4.38 4.00
Gr 0 8.97 x 10* x d® x Re 0

Table 5 shows the comparison with the results performed by LSA. In all case, the critical Re
are compared with the result performed by LSA. The result of case 3 is in good agreement with
that of LSA. In the cases 1 and 2, the value of critical Re is a little higher than the that of LSA.
It is known that the critical value tends to decrease as the number of grid points increases [7].
Therefore, it is considered that the critical Re is higher than that of LSA because the grid points
are coarse. In all case, the mode structures in liquid bridge are m=2. In the case of Ar=0.5, these
mode structures agree with the structures obtained by LSA. The validity of the present program is
confirmed through these examinations.

Table 5: The results of comparison with the linear stability analysis.

Casel Case2 Case3
Present | LSA[7] | Present | LSA[7] | Present | LSA[T]
Re, 990 950 1090 970 1150 1150
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3.3 Dynamic free surface deformation
3.3.1 Code validation of 2-dimensional calculation

In consideration of the dynamic free surface deformation, the 2-D code gives an axisymmetric
steady flow. This result is compared with our previous data by the code without the dynamic free
surface deformation. The compared results have already well verified as mentioned above. The 5
mm diameter liquid column with an aspect ratio of 0.5 is employed. The parameters used in this
2-D numerical simulation are: Re = 800, Pr=4.4, Ca=1.65x107% and g = 0. Figure 24 shows that
the axial velocity and the temperature variation with time. The monitoring point is the mid-height
over the free surface. The results agree well with each other.

The comparison of the free surface shape without Marangoni convection with experimental re-
sults is made in Figs. 25, 26. The experimental result in Fig. 25 is the ones given by Nishino
at Marangoni Modeling Research meeting. Figure 26 is the computational results with the same
aspect ratio and diameter as in the Fig. 25. Silicone oil of 5¢St is used. According to Nishino’s
results, the free surface is concaved in 10 pm at the point 400 pm apart from the edge of the upper
disk, while the surface is also convexed near lower disk with a volume ratio of 1.0. The surface
shape is rather asymmetry in upper and lower regions. A preliminary calculation with volume ratio
gave symmetric surface shape. So, another volume ratio has been assumed. With volume ratio of
1.08, the present numerical analysis is in good agreement with the experiment. This difference can
be acceptable within a range of an experimental error.

3.3.2 Code validation of 3-dimensional calculation

In the previous algorithm, the free surface shape was determined owing to the stress balance on
the surface and resultant velocity variation with iterative calculation. The iteration requires a long
calculation time. So an algorithm was modified to accelerate as Fig. 7. The temporary velocity
and the shape of liquid bridge are calculated separately, and the flow field is replaced to fit to a new
coordinate. Finally, the pressure is calculated using to the revised flow field. By this modification,
the program can run much faster, and more robustly.

Next, Fig. 27 indicates the axial velocity and the temperature variation compared with our nu-
merical result for the fixed surface. The monitoring point is mid-height. The present result can
be compared for the condition of steady, non-oscillatory flow. Acetone (Pr = 4.4) is used in this
calculation under the zero gravity. The symbol indicates the present result, and the line is the nu-
merical one without surface deformation by our group. The 3-D results also agree well with the
non-deformed results.

Figure 28 indicates the free surface shape without Marangoni convection. The blue line repre-
sents the experimental result given by from Nishino. The experimental conditions are: 5cSt of
silicone oil as the test fluid, D=5mm, aspect ratio is 0.5, volume ratio is 1.048. The figure shows
that the difference between experiment and numerical simulation is enough small and maximum
difference is less than 5 %. Espesially, the maximum and minimum deflection points agree well
each other.
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Figure 7: Algorithm of 3-dimensional code

3.3.3 Results of the 3-dimensional simulation

The critical Re number is calculated to investigate the effect of the dynamic free surface deforma-
tion for the critical condition. The black line in Fig. 29 indicates the absolute azimuthal velocity
variation in each Re number without the dynamic free surface deformation under zero gravity. The
test fluid is Acetone(Pr=4.4). We calculated in various Re numbers as given in Table 6.

Table 6: Re number
Re: 1000 1300 1500 2000

We can see that the azimuthal velocity increases gradually at Re = 2000. From the growth rate
of the azimuthal velocity obtained in this figure, the critical Re number can be estimated, because
the growth rate of 0 means the critical point. From the comparison between the growth rates in
several Re numbers, the critical Re number can be estimated as 1020 (Fig. 30). Kulhmann’s group
reported that the critical Re number is about 950 in this case from their linear stability analysis.
This difference may be attributed to the rather coarse mesh of 30 x 20 x 30 (r x € x z) in the
present calculation. An additional calculation with a large grid number of 50 x 40 x 60 has
given a more stable results. This supports the above consideration. Then the angular velocity w is
compared. Our angular velocity is 31 while their theoretical result is 29 as shown in Table 7. So,
both are in a fairly good agreement.

Table 7: The angular velocity compared with LSA
Present Result 31
Linear Stability Analysis 29
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As for the liquid bridge with dynamic free surface deformation, the azimuthal velocity variation
is shown as blue line in Fig. 29. The influence of Ca number is one of important parameters for
surface deformation. Ca number is defined as the ratio of thermal coefficient of surface tension
times delta T divided by surface tension. That is Ca number is 0 in the case of non-deformed liquid
bridge. In the case of deformable surface, the increase of AT results in the increase of both Re
and Ca numbers. The relation in the present calculation is Ca = 2.062x 1072 and 4.117x107? at
Re = 1000 and 2000, respectively. In the case of the dynamic free surface deformation, the critical
Re number is slightly larger than the one with the static free surface. The effect of dynamic free
surface deformation can be seen quite small in the present condition.

Figures 31 ~ 34 indicate the comparison between the dynamic free surface deformation and the
variation of other quantities with time in the oscillatory flow state, and the transition from pulsative
to rotation flow occurs at around nondimensional time of 850. Figures 31 and 33 show an obser-
vation at a quarter height, and Figs. 32 and 34 show an observation at three quarter height over
the free surface. Figures 31 and 32 show the phase shift of m between temperature and surface
deformation. As for the axial velocity, it oscillates in phase with free surface at the lower part (Fig.
33). The phase shift is observed between the axial velocity and the surface deformation, especially
in the rotational state (Fig. 34).
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4 CONCLUSIONS

(1) To resolve the velocity and temperature distributions near a comer, a very fine mesh is re-
quired. In case of Ma = 10000, at least, the number of grid points more than 400 grid points
are needed near a corner.

(2) The results of the present is in good agreement with the results of linear stability analysis
with respect to the critical Reynolds number.

(3) The effect of Ca number for the critical condition is small in the present condition.

(4) The phase shift between temperature and free surface deformation is observed in the oscil-
latory flow state. As for the axial velocity, the phase shifts is observed in the rotating flow
state.
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